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Abstract—For supporting interpretation, assessment and ap-
plication of data mining models, explanation-aware methods are
crucial. This paper presents an approach for explanation-aware
feature selection and assessment using symbolic abstractions of
time series. For that, we utilize the symbolic approximate ag-
gregation (SAX) method for data abstraction to be implemented
into data mining models. We investigate several approaches and
discuss experiences in the context of petro-chemical production.

I. INTRODUCTION

A common process model applied in data analytics is the
CRISP-DM model [1] for data mining. It structures the data
mining process into the phases business understanding, data
understanding, data preparation, modeling, evaluation and
deployment. Ideally, these phases are applied iteratively. A
very important phase is the evaluation phase, where the con-
structed data mining models are checked before the models can
be deployed. Furthermore, models for which the deployment
phase involves interactions with the user also requires user
assessment of the mined models and their output.

In addition, in data mining typically data exploration during
the phases business and data understanding, as well as the
data preparation phase take up 70% to 80% of the project
efforts [2]. Usually, for data mining projects for process
industry applications, signal data is a very important data
type to be assessed. Signal data is produced by sensors (e.g.
flow-meters, temperature or pressure sensors, online analyzers)
and actors (e.g. valves) and can be understood as time-series
data. When extracted from a process information system, the
time-series are usually equidistant. Signal data presents several
challenges for data mining and analytic purposes. Examples
are information obscured by the sheer volume of data [3],
missing values, collinearity, data outliers, measurement noise,
varying sampling rates [4], high dimensionality, low accuracy,
or incorrect data. All these problems are present in the FEE
data sets which commonly feature around 1,000 signals.

The objective of the FEE project1 [5] is to provide support
to plant operator by means of big data analytics. Several
application scenarios have been identified in workshops with
application partners from the petro-chemical industry [6].

1http://fee-projekt.de/

Event prediction is a particular important application sce-
nario: It is suitable for events that happen repeatedly in a
similar fashion in the plant but for which the exact timing
is not known beforehand. The objective of the scenario is to
predict a future event with sufficient probability and prediction
period (sufficient depends on the specific event) and to give
operators more time to react appropriately. This class can be
tackled by means of classification or regression, if combined
with a suitable alarm logic.

A particular challenge in the petro-chemical application
domain is the importance of domain knowledge or even plant-
specific knowledge. While domain knowledge can be acquired,
plant-specific knowledge is only available from engineers
and operators working in the specific plant. Obviously, these
persons are no data mining experts. The issues of explanation
becomes thus more pressing for all steps within the CRISP-
DM process. Then, data analytics needs to be able to confirm
decisions during the data mining process with the plant experts
and to sufficiently collect their feedback.

Objectives. The transparency of the applied models and
their explanation-awareness is a major factor for supporting
the user. In particular, if explanations for the complete models,
or parts thereof can be provided, then the acceptance of the
patterns and their evaluation can often be significantly im-
proved, e. g., [7]. In this context, we consider both explanation-
aware models and representations in order to provide for a cost
effective feature selection and assessment approach.

Contribution. In this paper, we consider symbolic represen-
tations, i. e., decision tree models and sequence representations
of time series given by the symbolic aggregate approximation
(SAX) [8], [9] as a convenient data abstraction. In a general
process model for explanation-aware data analytics, we inves-
tigate this abstraction together with a decision tree model in
the context of feature selection and assessment, and present a
case study in a petro-chemical production context.

The rest of the paper is structured as follows: Section II
discusses related work. Next, Section III outlines the proposed
approach. After that, Section IV presents results of a case study
in the petro-chemical production context. Finally, Section V
concludes with a summary and directions for future work.



II. RELATED WORK

A. Explanation-Aware Computing

For software systems the ability to explain reasoning pro-
cesses and their results ultimately impacts usability and accep-
tance. In that context, explanation-aware computing (ExaCt) is
the vision of software systems being smart in interactions with
their users [10]. In a general explanation scenario we can dis-
tinguish three main participants [11]: The user who interacts
with the software system via its user interface, the originator,
i. e., the problem solver, modeling, or prediction component
(in the data mining context), which provides the functionality
for the original task of the software, and the explainer. In
a reconstructive explanation [12], for example, the explainer
generates explanations by transforming a trace, e. g., based
on output of the originator and/or intermediate results of the
problem solving process, into a plausible explanation story.
The transformation is an active, complex problem-solving
process in itself using additional domain knowledge.

Similarly, for data mining and analytics explanation-aware
techniques [7] can be applied for a better explanation of mod-
els and discovered patterns for the data analyst. Explanation-
aware data mining is especially relevant for establishing trust
in the method, e. g., [13] for explanation-aware data mining
in the context of pattern mining, inspection and introspection,
e. g., [14]. This paper considers explanation-aware approaches
for feature selection and assessment using symbolic time
series abstractions. To the best of the authors’ knowledge, no
approach tackling this problem has been proposed so far.

As put forward and described in the Mining and Analysis
Continuum of Explaining [7] appropriate data representation
and abstraction can facilitate explanation-awareness, also sup-
porting and featuring different analysis and presentation levels.
Then, data and models can be inspected at different levels of
detail, from aggregated representations to the original ones
in drill-down fashion combined with appropriate explanation
capabilities. Typically, the user starts on an aggregated view
that can be refined subsequently, for getting insights into the
relations in the data and the constructed model.

As one prominent example of an aggregation and abstraction
technique in the area of time series analysis, the symbolic
aggregate approximation (SAX) technique [8], [9] is a high-
level representation of time series. A key feature of the
technique is its symbolic representation by discretizing time
series into symbolic strings. This allows dimensionality reduc-
tion, data abstraction, effective distance computation and data
summarization. These are also the key features that we build
upon for enabling explanation-awareness in this paper.

B. Dimensionality Reduction and Feature Selection

High-dimensional data such as signal data (commonly more
than 1,000 signals per plants) presents a challenge to existing
machine learning, data mining and system identification meth-
ods also known as curse of dimensionality [15]. The issue can
be addressed during the data preparation phase of CRISP-DM
by dimensionality reduction methods.

For soft sensors dealing with signal data, [16] discusses
multivariate statistical techniques; e. g., Principal Component
Analysis (PCA) and Partial Least Squares (PLS) are used to
reduce the dimensionality of process data, by projecting the
large amount of original variables onto a lower number of
orthogonal latent variables. Kadlec et al. [4] discuss PCA
and PLS also for dealing with the collinearity present in
signal data. These methods however make it very difficult to
understand the process of dimensionality reduction and verify
the results with domain or plant-specific knowledge.

Variable selection can be also considered as dimensionality
reduction. The idea is to select variables that are most infor-
mative for a given learning or data mining problem. Applying
variable selection to signal process data is not a simple task.
Common methods are the ranking of variables by correlation
measures, one-class classifiers, or variable subset selection by
wrappers or embedded methods [17]. Correlation measures
are expensive due to the required cross-correlation analysis
of hundreds of signals and one-class classifiers usually do
not yield results suitable for ranking. In addition, [17] give
examples where variables with a partial linear correlation
actually improve the performance of trained machine learning
models. Thus, a filtering approach based on correlation only
might result in a not optimal selection of features. Wrapper
methods [18] easily become intractable considering the large
number of possible process signals [17], [19]. Most suitable
appear the embedded methods, where the subset selection
happens within the learning algorithm. An important class
of algorithms with embedded variable selection are decision
trees with corresponding pruning techniques. Decision trees
furthermore have the benefit of being comprehensible for
humans, in contrast to other embedded machine learning
algorithms like artificial neural networks.

C. Decision Tree Classifiers

Decision trees are standard methods for classification,
e. g., [20], [21] that build a tree structure with decisions
(selections on the attribute domain) on the inner nodes, until
a leaf node is reached indicating the respective classification.
Decision trees feature a fast classification performance, and
can be applied both for categorical as well as numeric features.
Furthermore, they provide rather interpretable models (for
humans) since the tree structure (paths, nodes) can be directly
inspected. Also, utilizing the structure, the importance of
individual features for the classification task can be assessed.

In addition to categorical data, an important subclass of
classification tasks also addresses class labels which can be
(partially) ordered. For this ordinal data, there exist specific
decision tree classification methods, e. g., the classification
trees for ordinal responses method [22] as implemented in
the rpartScore software package [23]. The algorithm is an
adaptation of the standard CART [24] algorithm for building
classification and regression trees. In this paper, we apply
the rpartScore algorithm in our industrial application context
for demonstrating its explanation capabilities and potential for
feature selection and model understanding.
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Fig. 1. Overview – General process model for Explanation-Aware Analytics

III. METHOD

Below, we describe the general process model and exem-
plary components for explanation-aware analytics. The process
can be seen as a special instantiation of a general explanation-
aware scenario in an industrial data analytics context. We first
present a bird’s eye view on the overall process. After that,
we focus on the task of feature selection and assessment for
which we briefly summarize the basics of symbolic abstraction
and decision tree methods applied in our case study.

A. Process Model
In a general explanation-aware data analytics system, the

user interacts via the user interface which then accordingly
interfaces with the originator, the constructed model, and
the explainer. For our general industrial application context,
Figure 1 provides an overview on the general process. As de-
scribed above, the originator targets the problem solving task,
e. g., a predictive modeling or pattern detection task, while the
explainer focuses on generating appropriate explanations, e. g.,
for making the processes of the originator more transparent, to
increase trust in the decisions taken, or to support assessment
and validation processes. For that, e. g., the generated artefacts
such as a data mining model can be exploited.

In our application context of time series analytics and
feature assessment, we primarily facilitate the inspection of
the built model using the SAX and decision tree representation
described below. We utilize the features of the originator
and the constructed model for providing indications on the
importance of features. In this way, the available feature set
and the model can be inspected in detail, and important
influence factors can be identified (or even uncovered). For
a cost effective approach we can choose a relatively simple
but interpretable model in the early phase of a CRISP-DM
project for identifying important features, while the process
model allows more advanced models as well which can be
applied in later phases.

B. Feature Selection and Model Assessment

Feature selection targets the construction process of the
model as well as its assessment by the domain specialist,
by explicitly identifying the important features. Then, for an
in-depth assessment of the model, for example, important
features can be inspected on the symbolic as well as on the
(original) time series level in order to validate the model before
being deployed. Furthermore, the model itself can potentially
be simplified using the reduced feature set, or alternative
modeling approaches can be explored.

C. Symbolic Approaches
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Fig. 2. Example SAX transformation of a time-series with alphabet a-b-c
(adapted from [9]). The x-axis shows the time series that is partitioned
by segments of 20 time units. The segments are mapped to the alphabet
on the y-axis; splits are derived by distributional analysis, cf. [9].

The symbolic aggregate approximation (SAX) technique
is a high-level representation of time series. This symbolic
representation is obtained by discretizing time series into
symbolic strings. That is, for a given alphabet size, the time
series is split into different time windows, for example, with
a length of one minute each.



To summarize, the time series is first transformed by piece-
wise approximate aggregation, dividing the time series into
different time windows (segments). After that, each segment
is replaced by the mean value of the contained values. For
discretization, each such preprocessed segment is subsequently
mapped to a given alphabet value. Figure 2 shows an illustra-
tive example. Due to the limited space, we refer to Lin et
al. [9] for an in-depth discussion of SAX.

The SAX representation can be simply integrated into a
machine learning algorithm for categorical (symbolic) data,
e. g., for a decision tree learner. Figure 3 shows an illustrating
example of a decision tree: This tree has been constructed
using the classification trees for ordinal responses (rpartScore)
approach, and accordingly targets an ordinal class variable,
utilizing SAX-based features. Using the tree, we can classify
new data by traversing a path through the tree according to
the features observed in our data until we reach a leaf node
which provides the classification. In particular, the left branch
is taken, if the condition on the inner node matches, while the
right branch is chosen otherwise.

So, in the example shown in Figure 3, for the root node
the right branch (with the next condition P6315 = a) is
taken, if the observed value of the attribute FI6316 of the
new data tuple to be classified is not contained in the set
{a, b, c, d, e, f, g, h, o, p, q, r, s, t}. The labels on the leaf node
indicate the ordered class labels.

|FI6316=a,b,c,d,e,f,g,h,o,p,q,r,s,t

P6315=a
F6016=a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,r

FI6316=i,j,k FI6313=g,h,i
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Fig. 3. Illustrative example of a decision tree classifier built using
the rpartScore method using symbolic features and an ordinal class
(response) variable. For classification of new data, the tree is traversed
starting from the root node; the respective left branch is taken, if the
condition on the inner node matches, while the right branch is chosen
otherwise, until a leaf node is reached. The classification is then indicated
on the respective leaf node.

IV. CASE STUDY

Below, we provide a case study using a real-world dataset
from a petro-chemical production context. We first describe the
applied dataset before we present our experiments and discuss
our results in detail.

A. Dataset

In the context of the FEE project, we obtained a dataset from
one of the application partners, i. e., data from a petro-chemical
plant. The dataset contained measurements of different sensors
from April to June 2014, and January to March 2016. In
particular, the dataset contains so-called foaming events, that
occurred in 2014 and 2016, which we target for classification.

For our experiments, we split the dataset by year and
obtained two partitions of equal size for 2014 with 130024
instances and 2016 with 129876 instances, respectively. As
features, we utilized 195 time series of sensor measurements
(signals) that were present in both datasets (2014 and 2016).
The data was preprocessed by computing the SAX represen-
tation for each signal, yielding 20 classes (symbols: ’a’ - ’t’).

B. Results and Discussion

In our industrial application context, we instantiated the
process model with a decision tree classifier for obtaining the
model since the embedded approach seems most suited for
the process industries: First, all signals can be utilized, and
information gain is obtained also for signals with collinearities,
since collinearity is considered implicitly. Second, a model
(result) can always be obtained, which features introspection
and results in explanation-aware fashion. Third, the approach
is modular and scalable using available Big data implementa-
tions, e. g., [25].

For decision tree construction, we applied the rpartScore
algorithm [23] using squared differences in scores for esti-
mating the misclassification costs in splitting, and the total
misclassification rate in pruning. For the complexity parameter
it of the algorithm, we empirically determined the value
it = 0.38 using the automatic estimation method of rpartScore
during training.

The process engineer provided us with background knowl-
edge about a specific signal, namely P6315A, which is cor-
related with our targeted class, i. e., the foaming event, but
so far the technical reasons for the correlation are unknown.
Therefore, we used our method in order to identify other
relevant signals in the dataset. As an indication of a foaming
event, we the used P6315A signal together with a threshold
as a class label and the other 195 signals as features for the
classification model. As a metric for the model performance,
we used the Kendall-tau-b metric to measure the correlation
on the held out data in terms of changed labels.

Therefore, for all pairs test instances, we counted the
concordant pairs in terms of a higher label, e. g. a→ c in the
model prediction and a → e in the held out data. Discordant
pairs were counted in terms of opposite label directions, e. g.
c→ e in the model prediction and c→ a in the held out data.



TABLE I
RESULTS OF THE DECISION TREE CLASSIFIER USING DIFFERENT

COMBINATIONS OF THE 2014 DATA (D2014) AND THE 2016 DATA
(D2016) FOR TRAINING AND TEST, RESPECTIVELY. THE KENDALL-TAU-B

SCORE (Kendall) IS USED AS A PERFORMANCE MEASURE.

Model Train / Test (CV) Kendall
D2014 / D2014 0.83
D2016 / D2016 0.80
D2014 / D2016 0.20
D2016 / D2014 0.28

First, we performed 10-fold cross validation on each par-
tition individually, to measure the model quality by year.
Then, for each year, the best model of the cross validation
was applied to the respective other year, to measure the
generalization of the model. The results are shown in Table I.
We observe, that although the correlation within the same
year is relatively high (≥ 80%), switching the models, i. e.,
applying the 2014 model on the 2016 data and vice versa does
not perform as well. This indicates, that the data for 2014 and
2016 have different characteristics, that were captured by the
model, i. e., that there is some sort of “concept drift” which
can be caused, for example, by different load profiles of the
plant or other modifications in the production process.

TABLE II
RESULTS: TOP 20 SIGNALS OF THE BEST PERFORMING MODEL IN

CROSS-VALIDATION FOR THE 2014 AND THE 2016 MODEL,
RESPECTIVELY. THE SIGNALS MARKED WITH (*) ARE PART OF THE

SUBPLANT AFFECTED BY FOAMING, WHILE THE SIGNALS IN BOLD ARE
CONTAINED IN THIS SELECTION BOTH FOR 2014 AND 2016.

2014 2016
Signal Score Signal Score
FI6316∗ 100.0 FI6313 100.0
FV6316 93.0 FI6316∗ 77.91
LV6308 91.78 T6021 68.36
T6314 91.71 FV6316 64.19
T6315∗ 79.66 T6335 61.80
TV6317 69.85 PC6601B 52.68
P6315∗ 25.56 T6321 39.77
U6212 25.51 L6304 26.58
TI6410 24.46 FI6311 26.09
TC6402 16.48 T6266 25.96
TI6402 16.38 T6260 25.89
P6220 8.48 L6309A 22.68
F6016 7.59 F6310 13.20
PC6001 5.05 FI6303 11.33
P6005 4.56 L6017 10.88
F6403B 4.49 F6235 10.54
F6403A 4.43 FC6235 10.50
FI6313 3.27 FV6224 6.24
FP6630A 2.31 F6319 5.06
FC6235 1.84 PV6316A 5.04

As indicated in the table, we see rather different profiles of
the features. The abstraction capability of this representation
can be observed in Figure 3 indicating a strongly pruned
decision tree for the 2014 model during cross validation. Here,
we observe the most important feature (FI6316) at the root
node, while the features up to the contained feature P6315 are
slightly less important alternatives for the first condition that
were considered in the construction of the tree.

TABLE III
RESULTS OF THE ROBUSTNESS EXPERIMENT: RESULTS OF DECISION TREE

CLASSIFIERS LEARNED FROM DIFFERENT SAMPLE SHARES FROM THE
RESPECTIVE 2014 AND 2016 DATASETS, AND THE RESPECTIVE

KENDALL-TAU-B (Kendall) PERFORMANCE SCORES.

Model: Train / Test (CV) Kendall
10% D2014, 90% D2016 / 90% D2014, 10% D2016 0.79
20% D2014, 80% D2016 / 80% D2014, 20% D2016 0.79
30% D2014, 70% D2016 / 70% D2014, 30% D2016 0.80
40% D2014, 60% D2016 / 60% D2014, 40% D2016 0.85
50% D2014, 50% D2016 / 50% D2014, 50% D2016 0.85
60% D2014, 40% D2016 / 40% D2014, 60% D2016 0.82
70% D2014, 30% D2016 / 30% D2014, 70% D2016 0.81
80% D2014, 20% D2016 / 20% D2014, 80% D2016 0.85
90% D2014, 10% D2016 / 10% D2014, 90% D2016 0.77

As outlined above, the individual models for 2014 and 2016
did not score well on the respective complementary dataset,
taking the full dataset into account. Therefore, we performed
another experiment in order to assess the robustness of the
proposed symbolic approach using SAX and the rpartScore
ordinal decision tree classifier for trend detection. For that,
we constructed mixed (train and test) datasets by sampling
the 2014 and 2016 datasets with varying proportions from
10% to 90% and 90% to 10%, respectively. Thus, we trained
our model on this mixed data containing portions of both
the 2014 and 2016 data characteristics, and applied it on the
respective (mixed) hold-out sets that would have also been
encountered in a typical cross-validation setting. Table III
shows the partitioning of the data and the respective results of
the individual runs.

As we can observe in the table, the proposed method is
relatively robust, since the obtained accuracies are in line, or
even better than the performance on the respective original
datasets. While these increases in predictive performance were
not statistically significant, nevertheless we get some confirma-
tion on the appropriate selection of our classification method in
our process model since the instantiation with the decision tree
approach proved rather adequate in all demonstrated settings
with robust results. Thus, our results support the applicability
of our proposed method, since it could construct robust models
even in the (large) presence of noise.

Overall, our results indicate, that the proposed approach
using SAX and ordinal decision trees is able to capture
the dependencies between the signal features and the target
(prediction) variable indicating the foaming event. We were
able to capture the trends in our model, and experiments with
noisy data (by mixing different partitions of the data) showed
the robustness of the approach. Furthermore, the resulting
decision trees were typically rather small (see Figure 3 for an
example), and thus easy to interpret. Thus, the applied models
are well suited for inspection and feature selection, since the
decision tree provides a clear view on the important factors,
as a cost effective method for feature selection. The factors
can then provide information or justification to the process
engineer or support the interpretability of the applied method.
Furthermore, they can also be used in further engineering of
other predictive approaches.



V. CONCLUSIONS

In this paper, we considered both explanation-aware models
and representations in order to provide for a cost effec-
tive feature selection and assessment approach. We proposed
an explanation-aware process model for data analytics, and
showed its instantiation for feature selection and assessment
in the industrial domain. Specifically, we considered symbolic
representations, i. e., decision tree models and sequence rep-
resentations of time series given by the symbolic aggregate
approximation (SAX) as a convenient data abstraction. In
a case study in a petro-chemical production context, we
investigated the proposed process model and its instantiation
in the context of feature selection and assessment.

Our results indicate the applicability of the proposed ap-
proach in the industrial context. The method is able to capture
the important dependencies as indicated by the applied trend
detection technique regarding the anomalous event. Further-
more, the applied method proved rather robust when using
different samples of different situations as could be observed
for our applied datasets. In addition, since collinearity is
considered implicitly in the selected decision tree classifier
we were able to utilize all signals for the feature selection
which was also reflected in the results regarding the feature
importance. Altogether, the method provides a cost effective
option for feature selection and assessment in process indus-
tries. Due to its modularity, simple models can be utilized in
an early stage of the data mining process, while they can be
refined subsequently also including (intermediate) results of
the process later, as needed.

For future work, we aim to extend the approach towards
a more comprehensive coverage of the CRISP-DM process,
such that, e. g., also the modeling phase can be supported by
explanation-aware techniques. Here, both appropriate model-
ing methods as well as data representations and introspection
methods [7], [26] are relevant starting points. Here, especially
the refinement of Big Data into Smart Data, and its utilization
in process industries [27] requires adequate modeling and
explanation capabilities. Also, we aim to extend and evaluate
the approach towards Big data implementations, e. g., [25]
for providing an effective and scalable approach for large-
scale analytics. The connection with graph-based (semantic)
data representations [5], [28] and according data mining meth-
ods [29] is another interesting option for future research.
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