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Abstract

Detecting anomalous behavior can be of crit-
ical importance in an industrial application
context: While modern production sites fea-
ture sophisticated alarm management sys-
tems, they mostly react to single events. In
the context of process industries and het-
erogeneous data sources, we model sequen-
tial alarm data for anomaly detection and
analysis, based on first-order Markov chain
models. We outline hypothesis-driven and
description-oriented modeling and provide an
interactive dashboard for exploration and vi-
sualization.

1. Introduction

In many industrial areas, production facilities have
reached a high level of automation: sensor readings
are constantly analyzed and may trigger various forms
of alarms. Then, the analysis of (exceptional) sequen-
tial patterns is an important task for obtaining insights
into the process and for modelling predictive applica-
tions. The research project Farly detection and deci-
sion support for critical situations in production envi-
ronments (FEE) aims at detecting critical situations
in production environments as early as possible and to
support the facility operator in handling these situa-
tions, e. g., (Atzmueller et al., 2016a). Here, appropri-
ate abstractions and analytics methods are necessary
to adapt from a reactive to a proactive behavior.
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This paper summarizes the implementation of a
comprehensive modeling and analytics approach for
anomaly detection and analysis of heterogeneous data,
as presented in (Atzmueller et al., 2017a).

2. Related Work

The investigation of sequential patterns and sequential
trails are interesting and challenging tasks in data min-
ing and network science, in particular in graph mining
and social network analysis, e.g., (Atzmueller, 2014;
Atzmueller, 2016b). In previous work (Atzmueller
et al., 2016b), we have presented the DASHTrails ap-
proach that incorporates probability distributions for
deriving transitions utilizing HypTrails (Singer et al.,
2015). Based on that, the HypGraphs framework (Atz-
mueller et al., 2017b) provides a more general mod-
eling approach. Using general weight-attributed net-
work representations, we can infer transition matrices
as graph interpretations.

Sequential pattern analysis has also been performed
in the context of alarm management systems, where
sequences are represented by the order of alarm noti-
fications, e. g., (Folmer et al., 2014; Abele et al., 2013;
Vogel-Heuser et al., 2015). In contrast to those ap-
proaches, we provide a systematic approach for the
analysis of sequential transition matrices and its com-
parison relative to a set of hypotheses. Thus, similar
to evidence networks in the context of social networks,
e.g., (Mitzlaff et al., 2011) we model transitions as-
suming a certain interpretation of the data towards a
sequential representation. Then, we can identify im-
portant influence factors.
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3. Method

The detection and analysis of irregular or exceptional
patterns, i.e., anomalies (Hawkins, 1980; Akoglu et al.,
2015), in complex-structured heterogeneous data is a
novel research area, e.g., for identifying new and/or
emerging behavior, or for identifying detrimental or
malicious activities. The former can be used for deriv-
ing new information and knowledge from the data, for
identifying events in time or space, or for identifying
interesting, important or exceptional groups.

In this paper, we focus on a combined detection and
analysis approach utilizing heterogeneous data. That
is, we include semi-structured, as well as structured
data for enhancing the analysis. Furthermore, we also
outline a description-oriented technique that does not
only allow the detection of the anomalous patterns,
but also its description using a given set of features.
In particular, the concept of exceptional model min-
ing, (Leman et al., 2008; Atzmueller, 2015; Duivesteijn
et al., 2016) suitably enables such description-oriented
approaches, adapting methods for the detection of in-
teresting subgroups (that is, subgroup discovery) with
more advanced target concepts for identifying excep-
tional (anomalous) groups. In our application context
of an industrial production plants in an Industry 4.0
context, cf. (Vogel-Heuser et al., 2015; Folmer et al.,
2017), we based our anomaly detection system on the
analysis of the plant topology and alarm logs as well
as on the similarity based analysis of metric sensor
readings. The combined approach integrates both.

For sequential data, we formulate the “reference be-
havior” by collecting episodes of normal situations,
which is typically observed for long running processes.
Episodes of alarm sequences (formulated as hypothe-
ses) can be compared to the normal situations in order
to detect deviations, i.e., abnormal episodes. We map
these sequences to transitions between functional units
of an industrial plant. The results can also be used
for diagnostics, by inspecting the transitions in detail.
In summary, we utilize Bayesian inference on a first-
order Markov chain model, see Figure 1. As an input,
we provide a (data) matrix, containing the transitional
information (frequencies) of transition between the re-
spective states, according to the (observed) data. In
addition, we utilize a set of hypotheses given by (row-
normalized) stochastic matrices, modelling the given
hypotheses. The estimation method outputs an evi-
dence value, for each hypothesis, that can be used for
ranking. Also, using the evidence values, we can com-
pare the hypotheses in terms of their significance.

For modeling, we use the freely available Rapid-
Miner (Mierswa et al., 2006) extension of HypGraphs,
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Figure 1. Overview on the modeling and analysis process.

that calculates the evidence values for different believe
weights k and compares them directly with the given
hypothesis and a random transition as a lower bound.

4. Process Model & Implementation

The first part of the analytical workflow is to build
the transition network for training and testing the hy-
potheses. We build these hypotheses on real plant
data and calculate the transition matrices for hourly
time slots. In the same way, after further preprocess-
ing (smoothing and down-sampling) we aggregate the
corresponding raw sensor data. The calculated outlier
score (Amer & Goldstein, 2012) is then presented, to-
gether with the evidence scores. A high outlier score
indicates possible anomalous sensor readings and a low
evidence score indicates deviating transition patterns
in the alarm sequences. For further inspecting the out-
lier scores, we provide an additional dashboard. This
shows the k highest outlier score for single sensor read-
ings for a selected time segment and the associated
sensor readings. Drilling-down from a high level of ab-
straction for a whole processing unit down to single
sensor readings, a process engineer is then able to an-
alyze possible critical situations in a convenient way.

For future work, we aim at extending the proposed
approach by integrating the knowledge gained from a
conceptual plant knowledge graph (Atzmueller et al.,
2016a). We also plan to integrate the system into
the Big data architecture proposed in (Klopper et al.,
2016), also considering further extensions on Big Data
frameworks, e.g., (Meng et al., 2016; Carbone et al.,
2015) and advanced assessment, exploration and ex-
planation options, e.g., (Atzmueller et al., 2006; Atz-
mueller & Roth-Berghofer, 2010; Seipel et al., 2013)
using advanced descriptive data analysis and model-
ing techniques, e. g., (Atzmueller, 2016a).

Acknowledgments

This work was partially funded by the BMBF project
FEE under grant number 011S514006.



Anomaly Analytics and Structural Assessment in Process Industries

References

Abele, L., Anic, M., Gutmann, T., Folmer, J., Klein-
steuber, M., & Vogel-Heuser, B. (2013). Combin-
ing Knowledge Modeling and Machine Learning for
Alarm Root Cause Analysis. MIM (pp. 1843-1848).

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph
Based Anomaly Detection and Description. DMKD,
29, 626-688.

Amer, M., & Goldstein, M. (2012). Nearest-Neighbor
and Clustering-based Anomaly Detection Algo-
rithms for Rapidminer. Proc. RCOMM (pp. 1-12).

Atzmueller, M. (2014). Analyzing and Grounding
Social Interaction in Online and Offline Networks.
Proc. ECML-PKDD (pp. 485-488). Springer.

Atzmueller, M. (2015). Subgroup Discovery. WIREs:
Data Mining and Knowledge Discovery, 5, 35—49.

Atzmueller, M. (2016a). Detecting Community Pat-
terns Capturing Exceptional Link Trails. Proc.
IEEE/ACM ASONAM. IEEE Press.

Atzmueller, M. (2016b). Local Exceptionality Detec-
tion on Social Interaction Networks. Proc. ECML-
PKDD (pp. 485-488). Springer.

Atzmueller, M., Arnu, D., & Schmidt, A. (2017a).
Anomaly Detection and Structural Analysis in In-
dustrial Production Environments. Proc. Interna-
tional Data Science Conference. Salzburg, Austria.

Atzmueller, M., Baumeister, J., & Puppe, F. (2006).
Introspective Subgroup Analysis for Interactive
Knowledge Refinement. Proc. AAAI FLAIRS (pp.
402-407). Palo Alto, CA, USA: AAAT Press.

Atzmueller, M., Kloepper, B., Mawla, H. A., Jaschke,
B., Hollender, M., Graube, M., Arnu, D., Schmidt,
A., Heinze, S., Schorer, L., Kroll, A., Stumme, G., &
Urbas, L. (2016a). Big Data Analytics for Proactive
Industrial Decision Support. atp edition, 58.

Atzmueller, M., & Roth-Berghofer, T. (2010). The
Mining and Analysis Continuum of Explaining Un-
covered. Proc. AI-2010. London, UK: SGAI.

Atzmueller, M., Schmidt, A., & Kibanov, M. (2016b).
DASHTrails: An Approach for Modeling and Anal-
ysis of Distribution-Adapted Sequential Hypotheses
and Trails. Proc. WWW 2016 (Companion). ACM.

Atzmueller, M., Schmidt, A., Kloepper, B., & Arnu,
D. (2017b). HypGraphs: An Approach for Analy-
sis and Assessment of Graph-Based and Sequential
Hypotheses. In New Frontiers in Mining Complex
Patterns, LNAI Springer.

Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A.,
Markl, V., & Tzoumas, K. (2015). Apache Flink:
Stream and Batch Processing in a Single Engine.
Data Engineering, 28.

Duivesteijn, W., Feelders, A. J., & Knobbe, A. (2016).
Exceptional Model Mining. DMKD, 30, 47-98.

Folmer, J., Kirchen, I., Trunzer, E., Vogel-Heuser, B.,
Potter, T., Graube, M., Heinze, S., Urbas, L., Atz-
mueller, M., & Arnu, D. (2017). Challenges for Big
and Smart Data in Process Industries. atp edition,
01-02.

Folmer, J., Schuricht, F., & Vogel-Heuser, B. (2014).
Detection of Temporal Dependencies in Alarm Time
Series of Industrial Plants. Proc. 19th IFAC World
Congress, 24—29.

Hawkins, D. (1980). Identification of Outliers. London,
UK: Chapman and Hall.

Klopper, B., Dix, M., Schorer, L., Ampofo, A., Atz-
mueller, M., Arnu, D., & Klinkenberg, R. (2016).
Defining Software Architectures for Big Data En-
abled Operator Support Systems. Proc. INDIN.

Leman, D.; Feelders, A., & Knobbe, A. (2008). Ex-
ceptional Model Mining. Proc. ECML-PKDD (pp.
1-16). Heidelberg, Germany: Springer.

Meng, X., Bradley, J., Yavuz, B., Sparks, E.,
Venkataraman, S., Liu, D., Freeman, J., Tsai, D.,
Amde, M., Owen, S., et al. (2016). MLLib: Ma-
chine Learning in Apache Spark. JMLR, 17, 1-7.

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M.,
& Euler, T. (2006). Yale: Rapid prototyping for
complex data mining tasks. Proc. KDD (pp. 935-
940). New York, NY, USA: ACM.

Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., &
Stumme, G. (2011). Community Assessment using
Evidence Networks. Analysis of Social Media and
Ubiquitous Data. Heidelberg, Germany: Springer.

Seipel, D., Kohler, S., Neubeck, P., & Atzmueller, M.
(2013). Mining Complex Event Patterns in Com-
puter Networks. In New Frontiers in Mining Com-
plex Patterns, LNAI. Springer.

Singer, P., Helic, D., Hotho, A., & Strohmaier, M.
(2015). Hyptrails: A Bayesian Approach for Com-
paring Hypotheses about Human Trails.  Proc.
WWW. New York, NY, USA: ACM.

Vogel-Heuser, B., Schiitz, D., & Folmer, J. (2015).
Criteria-based Alarm Flood Pattern Recognition
Using Historical Data from Automated Production
Systems (aPS). Mechatronics, 31.



