
Query Based Multicontext Based Browsing: a
Technical Report

Julien Tane

September 29, 2004

Abstract

Formal Concept Analysis [3] is an algebraic framework suitable for different knowl-
edge processing tasks. It has been widely used in a variety of domains. The current
approaches use one lattice (or a nested line diagram) to organize objects according to
their properties. However, it is often difficult to change the data representation to adapt
it to the goals of the visualisation. It is therefore crucial to ease the interaction with the
data for Formal Concept Analysis applications. To tackle this issue, we introduce a new
artifact: the query based multicontext. The goal of this report is to address the different
issues which play an important role for browsing with the query based multicontext.
We first give its definition and describe some of its basic properties. Then, to demon-
strate its flexibility, we use it in combination with ontologies to create a knowledge
base browsing framework which we illustrate by describing diverse useful interactions
with its interface. Furthermore, we discuss our approach by comparing it to the current
state of the art in Formal Concept Analysis.

0.1 Introduction

With the success of the Internet, browsers have become a very natural way of searching
information in the web. Wordnet gives two sense of the word “browser” :

1. browser – (a viewer who looks around casually without seeking anything in par-
ticular)

2. browser, web browser – (a program used to view HTML documents)

If we look at the first meaning of the word, we notice that it does not apply com-
pletely to the use Internet user make of a browser. Sometimes, user look for very
specific information, but do not know how to find it easily. For this, there are search
engines, to which one submits a query to receive a certain number of links to browse
from in order to find the information one seeks. This kind of queries are usually based
on specific keywords appearing in the text of the web pages found. They do not make
use of the semantic information contained in the web pages. In order to remedy to
that problem, some search engines are based on content directories, which classifies
document about the same topic together. The advantage of a directory is the possibility
of browsing through it. As language and data mining technologies evolve, the research
made crucial steps to enhance the classification of data using background knowledge.
Moreover, the W3C put in later years much effort into the creation of the next Web
generation: the Semantic Web as “an extension of the current web in which informa-
tion is given well-defined meaning” (see[5]). This implies that the creation of browsers
capable of exploring and interact with the data using semantic information will become
even more crucial.

In order to store and exchange semantic information, diverse kinds of knowledge
representation frameworks have been devised (Concept(ual) Graphs [6], Description
Logics, RDF-based ontologies [7] ...). All these frameworks contain a conceptual level
and an instance level which we will respectively callontology and fact base. We
will call knowledge base the structure combining the two. The ontology contains the
concepts and the relations between them occurring in the domain, whereas the fact base
contains statements describing the instances and their relations using a given ontology.

Knowledge bases are usually complex structures, where both conceptual and in-
stance level interplay. In order for users to best understand and use their data, a mean
for visualizing the diverse crucial aspects is indispensable. On the conceptual level, a
special type of relation plays a major role: the subsumption hierarchy, that is the hier-
archy organizing the concepts according to their generality. Moreover, this hierarchy is
coupled to an instantiation function which ascribes to each concept the set of instances
corresponding to it. Therefore, a browsing tool should be capable of processing and
displaying subsumption hierarchies as well as the instantiation function.

If we take a look at the literature, we will see that different applications have been
designed and implemented to help browse knowledge bases. However, most ontology
browsers (e.g: OntoEdit1, Protege2, ...) display hierarchies using trees. While trees
have the advantage of being somewhat compactly displayable, they are not very well

1http://www.ontoprise.de/products/ontoedit
2http://protege.stanford.edu/

1

suited for data where objects can easily belong to different domains or when concepts
may have multiple superconcepts. Some others (see for example, the OIModeller in the
KAON framework) use a graph based representation, which looses then the hierarchical
representation.

Since its beginning, in the 80’s, Formal Concept Analysis has been applied in dif-
ferent fields such as Knowledge Representation or Data Mining. In the domain of
the visualization of ontologies, concept lattices offer an elegant solution to some of
the drawbacks of trees or graph based visualization techniques. With Formal Concept
Analysis, it is possible to display multiple inheritance and multiple instantiation in a
natural way. For examples of this, we refer to the following papers on scaling: [4].

Knowledge bases do not only consist of the aforementioned relations: subsumption
hierarchies and instantiation functions. A number of non hierarchical relations appear
in knowledge bases, for example a given fact base could code the fact that a given
person works with another one. Since this kind of relations is not hierarchical in its
nature, a way has to be found as how to cope with these. Since the essence of Formal
Concept Analysis is to represent binary relations through lattices. Here, again it proves
an interesting way of visualizing non hierarchical relations.

However, up to now, most traditional techniques display only one lattice or sets of
lattices but do not allow the interaction with the objects or attributes in order to modify
the visualisation according to the needs of the situation. To remedy to this issue, we
will present, in this paper, an approach based on the combination of Formal Concept
Analysis and ontologies which allowed us to create an ontology/FCA-based browsing
application to manage web resources for an E-Learning domain, see [8].

The basis of our approach is the use of a new artifact to represent complex data
using queries. As we will see in the follwing section, this artifact, calledquery based
multicontext, is composed of a family of contexts, whose index set is composed of tu-
ples of three queries. For a given triple, by evaluating the queries, we obtain a new
context. We will then show how this new artifact allows us to formalize the naviga-
tion between the diverse lattices of interest. Informally, a context of our multicontext
corresponds to the current lattice displayed by the application. Given interactions with
the interface, which we describe later in this paper, then allow the definition of a new
query triple, and therefore a new context.

In the first section, we describe our multicontext by defining it formally. We present
basic functionalities and constructors, which are useful for the definition in the follow-
ing section. To support our claims, we describe formally the way the data in knowledge
base can be displayed by combining the query based multicontext with ontologies. The
next section addresses the issue on how to navigate through a knowledge base using
the graphical user interface. It studies different kinds of user interaction which allow
the changing from a lattice to another one by defining a new tuple of three queries. We
will illustrate this through a step by step example of how the interface can be used to
browse the knowledge base.

2

0.2 The query based multicontext

In this section, we will discuss the query based multicontext, an artifact that we define
in this section and which is central to this article. We will start by recalling a first
multicontext structure presented in [9]. We reprint here its definition.

Definition 1 [9] A multicontext of signature σ : P → I2, where I and P are non-
empty sets, is defined as a pair(SI , RP) consisting of a familySI := (Si)i∈I of sets
and a familyRP := (Rp)p∈P of binary relations withRP ⊆ Si × Sj if σp = (i, j).

There are many possible uses of such a structure, it represents a family of contexts,
indexed by the set P, which specifies throughσ which sets of objects and attributes
will be used. However, this kind of multicontext is still too general for our purpose.
It does not specify a structure on the diverse aspects defining a given context. We
need to describe more precisely the sets of elements chosen as objects or attribute
sets. We were interested in displaying the concept lattice representing a context with
a complex definition. We wanted to visualise the context composed of the researchers
of given institutions: “AIFB”, “LS3” and “FZI” as object set, with certain topics of
interests: “Data Mining”, “NLP” and “Knowledge Representation” as attribute set and
with the relation defined as the researchers which have a publication on one of the
given topic. This implied defining a complex query on a knowledge base. We were also
interested in how one could define such a context by interacting with some other context
representation of the knowledge base. This led us quite naturally to the definition of
a query based multicontext, which we will define in the following paragraph. For
this, we adapted the preceding definition in order to give a maximum control on how
a given formal context should look like, while preserving index sets which allow the
manipulating of the multicontext on its intensional level. Indeed as we will shortly
see, using queries to define the object set, attribute set and incidence relation, creates
a new structure with interesting properties. But let us first define the query based
multicontext.

0.2.1 Query Based Multicontext Definition

Let us first now expose the formal definition of our query based multicontext using the
notations of [3] which we will use until the end of this article.

Definition 2 Let Ω be a set, called universe, andL1 and L2 two query languages,
whose queries, i.e their elements, return sets of elements ofΩ, respectively sets of pairs
of elements ofΩ. LetP := L1 × L1 × L2. We call an element p ofP, a context index.
Moreover we define two evaluations functions named “eval” onL1 and respectively
L2, which return for a given query inL1, respectivelyL2, the result of the evaluation
of the query.

For a context indexp = (q1, q2, q3) ∈ P, we can define its induced query-based
context as:Kp := (eval(q1), eval(q2), eval(q3) ∩ (eval(q1), eval(q2))). Now let us
define a query based multicontext with index setP as the set:{Kp|p ∈ P}.

3

We can now see that it is very easy to map our query based multicontext definition
on the multicontext of definition 1. This is simply done by defining P:=P, and I :=L1.
Then∀p = (q1, q2, q3) ∈ P , we setσ(p) = (q1, q2) andRp := eval(q3)∩ (eval(q1)×
eval(q2)). The setSi indexed by the elements of I are the results of the evaluation of
q1 andq2, or put more formally∀q1 ∈ L1, Sq1 := eval(q1). In other words, our
query based multicontext is a specific case of the multicontext defined in [9]. However,
the supplementary information that we have in the query based multicontext allows us
to manipulate its context more easily. Indeed, it is possible to define certain operators
on the context index, as well as simple generic constructor. Depending on the query
languages used forL1 andL2, it is also possible to study the relations between contexts
of our multicontext through the use of there context index. This opens a wide range of
interesting questions as to which query language suits which application.

0.2.2 Some Generic Context Construction Methods

We will now introduce some generic context index constructors which will be used in
later parts of this report. They correspond to typical configurations such as creating the
context of a hierarchy or of a Join. Their purpose is to allow the easy construction of
a context index from given queries, but they also allow a more easily understandable
representation of a given context index. Therefore, we define the notations for the
created context index. Moreover, it is also interesting and important to see how these
constructors interact with each other.

In [3], diverse context constructions operators were defined, such as dual, apposi-
tion and subposition3. We want to be able to use equivalent operators on the context
index, in order to have a kind of calculus on the elements ofP. Of course the dual of a
context index is trivial. But if we want to define apposition and subposition, we need to
add a disjunct union operator as in [3]. But, introducing the disjunction operator cre-
ates a problem with our definition where we use a single entity setΩ. We have not yet
found a clever theoretical solution to this problem, however, we solve it pragmatically
and programmatically by keeping track of the place and query from which the entity
has been created4. For two sets A and B, we use the notationdisjoint(A,B) := Ȧ∪ ḃ.

In table 1, we define some useful generic query primitives, which we consider from
now on contained in the query languagesL1 andL2. In order to simplify the table,
we will use the following conventions:q1, q2 ∈ L1 andq3, q6 ∈ L2 and R is a binary
relation overΩ, i.eR ⊆ Ω× Ω.

In [3], diverse context constructions were defined, such as We can now define the
operations from [3]: dual, apposition and subposition.

Definition 3 For p1 := (q1, q2, q3) andp2 := (q4, q5, q6) in P, we define the following
operators:

• dual: pd
1 := (q2, q1, q

−1
3)

• apposition: ifq1 = q4 thenp1|p2:= (q1, q̇2 ∪q q̇5, q̇3 ∪q q̇6).

3We will not consider the complementation operation in this paper.
4This is done in exactly the same way in [3]

4

Notation evaluation
L1gen Result inΩ
q1 ∩q q2 eval(q1) ∩ eval(q2)
q1 ∪q q2 disjoint(eval(q1), eval(q2))
dom(q3) {a ∈ Ω|(a, b) ∈ eval(q3)}
range(q3) {b ∈ Ω|(a, b) ∈ eval(q3)}
q3(q1) {b ∈ Ω|∃a ∈ eval(q1), (a, b) ∈ eval(q3)}
q−1
3 (q1) {a ∈ Ω|∃b ∈ eval(q1), (a, b) ∈ eval(q3)}

R∗(q1) {y ∈ Ω|∃x ∈ eval(q1)(x, y) ∈ eval(R∗)}
L2gen Result inΩ× Ω
graph(R) {(a, b) ∈ Ω× Ω|(a, b) ∈ R}
R∗ {(x, y) ∈ Ω× Ω|∃x1, ..., xn ∈ Ω, xRx1R . . . RxnRy}
q3 ∪q q6 disjoint(eval(q3), eval(q6))
q3 ∩q q6 eval(q6) ∩ eval(q6)
q−1
3 {(b, a) ∈ Ω× Ω|(a, b) ∈ eval(q3)}

q3 1q1 q6 {(a, c) ∈ Ω × Ω|∃b ∈ eval(q1), ((a, b) ∈ eval(q3) ∧ (b, c) ∈
eval(q6))}

Table 1: The table defining the function symbols for the generic query languageL1gen

andL2gen

• subposition: ifq2 = q5 then p1
p2

:= (q̇1 ∪q q̇4, q2, q̇3 ∪q q̇6).

With these supplementary context index operators, we are able to define some
generic constructors that we use later in this article to create our browsing framework.
In some cases, it is also useful to consider that the results of some queries are included
in a subset ofΩ. Hence, the following definition:

Definition 4 Let A be a subset ofΩ, i.e A ⊂ Ω, we call a queryq ∈ L1, a query over
the set A, ifeval(q1) ⊂ A.

The purpose of this will be made clear from the following sections.

Hierarchies

The first interesting constructor which should be characterised in our framework, are
hierarchies. Of course, the coding of hierarchies in Formal Concept Analysis is quite
natural.

Definition 5 For a queryqH over a partial ordered set(H,≤), we define the hierarchy
based context indexOrder(qH,≤) for (qH,≤) as:
Order(qH,≤) := (qH, qH, graph(≤)).

Instantiation Hierarchies

The constructor we will consider here requires an instantiation function, to which we
give a very broad definition.

5

Definition 6 For two subsetsC andI of Ω 5 a functionι defined onC and with values
in P(I) is called an instantiation function. (C, I,ι)) is then called aninstantiation
triple.

Let us now we consider the context of instantiation hierarchies. The instantiation
function can take many forms, not just the natural subsumption hierarchy. For example,
the relation between the topics and publications can be seen as an instantiation function:
a given topic maps to a set of publication on this topic. Therefore, the term concept
and instance here are more general than the one used in the knowledge base definition.

We can now define two kinds of instantiation hierarchies depending on whether the
query is defined on the concept set or on the instance set:

Definition 7 For an instantiation triple (C, I,ι)) and forqC a query over the setC, we
define theinstance hierarchy context index for concepts fromqCas:
InstH(qC , ι) := (ι(qC), qC , graph(ι)−1).

For an instantiation triple (C, I,ι)) and forqI a query over the setI, we define the
concept hierarchy context index for the instances fromqIas:
ConcH(qI , ι) := (qI , ι

−1(qI), graph(ι)−1).

Subsumption/Instantiation Hierarchies

As we said earlier instantiation relation is usually coupled with a subsumption relation
on the concept set. But all instantiation triple are not compatible with the hierarchy
on the concept set. For this reason, we formalize the compatibility in the following
definition:

Definition 8 Let (C, I,ι) be an instantiation triple. An instantiation triple is compati-
ble with the partial order(C,≤) if ∀c, c1 ∈ C, c ≤ c1 =⇒ ι(c) ⊂ ι(c1).

Now we want to define a context, which allows us to combine hierarchies with
instantiation functions. Again there are two kinds of context indexes depending on
which set is the query actually done.

Definition 9 Let (C, I,ι) be an instantiation triple compatible with the partial ordered
set(C,≤). For qC ∈ L1 be a query onC, andqI ∈ L1 a query onI, the subsump-
tion/Instantiation context indexSub/Inst(qC ,≤, ι) for the concepts ofqC is defined
as:
SI(qC ,≤, ι) := (qC ∪q ι(qC), qC , graph(≤) ∪q graph(ι)−1) = Order(qC ,≤)

InstH(qC ,ι)

and the subsumption/Instantiation context indexSub/Inst(qC ,≤, ι) for the in-
stances ofqI is defined as:

SI(qI ,≤, ι) := (ι−1(qI)∪qqI , ι
−1(qI), graph(≤)∪qgraph(ι)−1) = Order(ι−1(qI),≤)

ConcH(qI ,ι) .

The Join Relation Context

Another important constructor is the Join.

5For an instantiation triple, we will callC theconcept set, and I theinstance set.

6

Definition 10 Let qA,qB , qC be three queries inL1 and letqR1 andqR2 be queries in
L2. The Joint context indexJoin(qA, qR1 , qB , qR2 , qC) betweenqA andqC through
qR1 andqR2 overqC is defined as:
Join(qA, qR1 , qB , qR2 , qC) := (qA, qC , qR1 1qC

qR2)

Of course it is possible to generalise the Join Relation Contexts to more than two
queries ofL2.

The Relation/Instantiation Context

Another interesting context occurs when one wants to organise some group of objects
according to a certain classification. This is the purpose of theRelation/Instantiation
Context.

Definition 11 Let C andB be two sets, and (C,B,ι) an instantiation triple, then For
qA, qB ∈ L1, qR ∈ L2, whereeval(qB) ⊆ B, we define the Relation/instantiation
context index:RI(qA, qR, qB , ι) as:
RI(qA, qR, qB , ι) := (qA, qB , graph(qR))|Join(qA, graph(qR), qB , graph(ι)−1, ι(qB))

Up to now we presented the definition of the query based multicontext, gave some
generic operators on the queries and on the context indexes. In the following sections,
we present a model for a knowledge base and define a mean of querying it by instanti-
atingL1 andL2 for the knowledge base model. By combining the generic constructor
exposed above with the ontology-basedL1 andL2, we will be able to create the knowl-
edge browsing framework presented in the fourth section of this article.

0.3 Query-Based Multicontext for Knowledge Bases

Now we turn to the subject of ontologies and knowledge bases, since we want to show
that the query based multicontext is an appropriate representation for applications using
ontologies. We first give a formal definition of the knowledge base model that we use
in this paper. We then propose the two query languagesL1 andL2, which are needed
to define a query based multicontext on a knowledge base. It will then be followed
by an example of knowledge base and give a first example of a context index for the
knowledge base query-based multicontext.

The purpose of an ontology is to create a sharable computer-usable representation
of a specific domain. For this, the conceptual relation between concepts are coded
into an ontology language. Among the scientific community diverse artifacts are called
ontologies [7]. In the present work, we present the ontology model that we used and
was presented in [2]. Let us now expose the necessary parts:

Definition 12 An ontology is a tupleOnto =: (C,≤C ,R,≤R, σ) where(C,≤C) and
(R,≤R) are ordered sets and whereσ is a mapping fromR to non empty words over
C.

To a given ontology, it is possible to give a fact base (slightly different but equiva-
lent definition):

7

Definition 13 A fact baseFB for an ontologyOnto is a tuple(IC , ιC , IR, ιR) where
IC andIR are called respectively instances and property instances,IR is a set of non
empty words onIC (i.e IR ⊆ P(I+

C))) such thatιC is a mapping fromC to P(IC),
andιR is a mapping from(R) defined as:
ιR(r) ∈ Πi=|σ(r)|

i=1 ιC(π(i, σ(r)) where|σ(r)| is the length of the wordσ(r) and for all
words or tuples,π(i, w), returns the i-th letter or component. Moreover the following
conditions are valid:
∀c, c2 ∈ C, c ≤C c2 ⇒ ιC(c) ⊆ ιC(c2) and∀r, r2 ∈ R, r ≤R r2 ⇒ ιR(r) ⊆ ιR(r2).

We call a aknowledge basea coupleKB = (O, FB), whereO is an ontology and
whereFB is a fact base for the ontologyO.

0.3.1 Ontology Query Language

As we mentioned earlier knowledge bases contain different kinds of entities and rela-
tions. In order to make the most out of its structure, we define the two query languages
L1 andL2 in such a way, that we can make use of the generic context index constructors
defined in section 0.2.2.

Before defining them these two languages, we need to set the basis universeΩ
Therefore, for the rest of this article, letΩ := C ∪ I ∪ R be the universe. As we
said earlier, the evaluation function for queries fromL1 return a set of entities of the
base universe, where as for queries fromL2, it returns pairs of entities of this base uni-
verse. The function symbols6 of the query language we present here take as parameters
queries.

Let us begin by definingL1, thenL2.
L1 - Querying for EntitiesThe queries of the first query language define which

entities of the knowledge base universe should be retrieved. Since there exists in the
knowledge base a natural division between some groups of entities, it makes sense
to define three sublanguagesL1C , L1R and L1I which return respectively concept,
relation and instance sets. Table 2 presents the function symbols for building queries
for these languages, each having is own section in the table. To simplify the table,
we will use the following notations:qC , qD ∈ L1C , qR ∈ L1R, qI , qI1 , qI2 ∈ L1I

,i, j ∈ N with i 6= j and finallyc1, . . . , cn ∈ C, i1, . . . , in ∈ I, r1, . . . , rn ∈ R. All
three languages are built inductively from the ground terms defined in the second row
of its section. Note that these function symbol may make use some query belonging to
one of the two other languages. For example,∃CqR(j : qC) is built using two queries:
qR andqC belonging toL1R andL1C respectively.

Finally, the query languageL1 is the language the language recursively defined
by queries ofL1C , L1R, L1I or of queries built from these query set as term for the
operation symbols defined in table 1.

L2 - Querying for Entity pairsIn a similar way, table 3 presents some new function
symbols for a query language which returns pairs of elements. As forL1, we consider
L2 as the language created through the use of these symbols in addition to the function
symbols defined in table in table 1.

6There are three exceptions:{c1, . . .}, {i1, . . .} and{r1, . . .}.

8

Notation Meaning Query Result
L1C returns (concept names) Results: Concept Sets
ALLCONCEPTS returns all the concepts C
{c1, . . . , cn} the set of concepts composed of

{c1, . . . , cn}
{c1, . . . , cn}

≤C qC all subconcepts of elements ofqC {d ∈ C|∃c ∈ eval(qC), d ≤C c}
≥C qC all superconcepts of elements ofqC {d ∈ C|∃c ∈ eval(qC), d ≥C c}
qC uC qD intersection of the sets of elements

of qC andqD

{e ∈ C| e ∈ eval(qC) ∧ e ∈
eval(qD)}

qC tC qD union of the sets of elements ofqC

andqD

{e ∈ C|e ∈ eval(qC) ∨ e ∈
eval(qD)}

concepts(qI) the set concepts of which the in-
stances inqI are instances

{e ∈ C|∃i ∈ eval(qI)ι(e)}

∃C .qC concepts attached to some concept
of qC through some relation

{e ∈ C|∃m,n ∈ N,m 6= n,∃c ∈
qC∃r ∈ R, e ∈ π(n, σ(r)) ∧ c ∈
π(m,σ(r))}

∃CiqR(j : qC) concepts at a position i in one of re-
lation of qR related to a concept of
qC at position j

{d ∈ C|∃c ∈ eval(qC), ∃r ∈
eval(qR), c = π(j, σ(r)) ∧ d =
π(i, σ(r))}

L1R returns (relation names): Results: Relation Sets
ALLRELATIONS all the relations R
{r1, . . . , rn} the set of relations composed of

{r1, . . . , rn}
{r1, . . . , rn}

≤R qR all subrelations of elements ofqR {s ∈ R|∃r ∈ eval(qR), s ≤C r}
≥R qR all superrelations of elements ofqR {s ∈ R|∃r ∈ eval(qR), s ≥C r}
∃R.qC relations attached to a concept ofqC {r ∈ R|∃c ∈ eval(qC),∃n ∈

N, c = π(n, σ(r))}
∃RqR(j : qC) the set of relations where there ex-

ists concept belonging to c compat-
ible with its signature

{r ∈ R|∃c ∈ eval(qC), r ∈
eval(qR), c = π(j, σ(r))}

∃R.(i : qI1 , j : qI2) relations where some instance of
qI1 , qI2 appear at position i and j re-
spectively

{r ∈ R|∃i1 ∈ eval(qI1),∃i2 ∈
eval(qI2)r ∈ eval(qR),∃w ∈
ιR(r), i1 = π(i, w)∧ i1 = π(j, w)}

L1I returns (instance names): Results: Instance Sets
ALLInstances returns all the instances IC

{i1, ..., in} the set of instances{i1, ..., in} {i1, ..., in}
Inst(qC) the set of instances of concepts be-

longing toqC

{i ∈ IC |i ∈ ι(eval(qC))}

qC uI qD intersection of the sets of instances
of qC andqD

{i ∈ IC |i ∈ ιC(eval(qC) ∧ i ∈
ιC(eval(qD))}

qC tI qD union of the sets of instances ofqC

andqD

{i ∈ IC |i ∈ ιC(eval(qC)) ∨ i ∈
ιC(eval(qD))}

∃IqR(j : qC) set of instances related to some in-
stance of one concept ofqC through
some relation ofqR

{d ∈ IC |∃c ∈ eval(qC),∃r ∈
eval(qR), c ∈ σ(r)}

∃IqR(j : qI) set of instances related to some in-
stance inqI through some relation
out of qR

{d ∈ IC |∃i1 ∈ eval(qI),∃r ∈
eval(qR), (d, i1) ∈ ιR(r)}

Table 2: The table defining the function symbols of query languagesL1C , L1R and
L1I .

9

Notation Meaning Query Result
Instij(qR) the sets of pair

of instances for
which one rela-
tion of qR holds

{(i1, i2) ∈ IC × IC |∃r ∈ eval(qR), (i1, i2) ∈ ιR(r)}

INSTANTIATION the instantiation
function for
concepts

graph(ιC) := {(c, i1) ∈ C× IC|i1 ∈ ιC(c)}

≤C the graph of≤C graph(≤C)
≤R the graph of≤R graph(≤R)

Table 3: The table defining the knowledge base specific function symbols for the query
languageL2

A Note on Complexity
For our browsing application, the efficiency of the computation of the queries

played a great role. For that reason, we chose query languages, whose queries are
computable in polynomial time. It can be proven that all these queries are polynomial.
The reader interested in this topic is referred to [1] which is a good reference for the
complexity of query languages. The query languages7 presented in this article belong
to the family of thepositive existential queries, which is equivalent to the family of
conjunctive queries with union. It should also be noted that the given queries are also
language are monotonic (see [1]).

In 0.5.3, we also provide a pseudo code implementation of the proposed query
languages. This somewhat naive implementation will be replaced by the use of the
query language. We are still looking at the possibilities to insert negation. But we have
not fully addressed that issue yet.

However, it should be noted that the query languages are declarative. They do
not suppose a special implementation and the three queries of a context index are not
supposed to be implemented independently from each other.

0.3.2 An Example Ontology

In order to illustrate our approach, we will now present an example of knowledge base
and of one context index defined using the query languages presented in the previous
paragraph. The example knowledge base we use is describes universities. The follow-
ing table shows part of the ontology’s concept setC and relationsR.

C Person, Student, Professor, Teaching Staff, Tutor, Assistant, PhDStudent, Topic,
Publication, Institution, Country, Region, Conference, Date, Event...

R takesPartIn, hasWritten, holdsLecture, hasTeachingRole, belongsTo, isPartOf,
publishedAt, takesPlaceAt, followsLecture, ...

The fact base for this knowledge base contains, for example, the persons work-

7This might not be true for queries defined with the help of the transitive closure operator.

10

Figure 1: The subsumption-instantiation lattice for all the subconcepts of “Person”:
SI(≤C {Person},≤C , INSTANTIATION).

ing at the university, their roles, their publications, their lectures... For example, you
can find statements like: Professor(“Gerd Stumme”), Lecture(”Knowledge Discovery
Lecture”), holdsLecture(“Gerd Stumme”,”Knowledge Discovery Lecture”). Meaning
that“Gerd Stumme” is an instance of “Professor”, ”Knowledge Discovery Lecture” is
a “Lecture”, “Gerd Stumme” holdsLecture ”Knowledge Discovery Lecture”. The first
two statements were instantiations whereas the third one is a relation-instance.

Now,using the query languages defined for knowledge bases, it is easy to write the
context index of the subsumption-instance hierarchy of the subconcepts of “Person”:
SI(≤C {Person},≤C , INSTANTIATION). The diagram in Figure 1 displays
the concept lattice corresponding to this context index. In the following section, we ad-
dress the issue of defining a knowledge base browsing framework for such a knowledge
base.

0.4 An Ontology-based Formal Concept Analysis Brows-
ing Framework

Among the applications of the query based multicontext, we will now describe the
creation of a browsing framework for Formal Concept Analysis. This browsing frame-

11

work is based on the combination of the query based multicontext and knowledge bases
presented in the previous section. We will describe our approach by drawing a parallel
with typical web browsers such as Firefox or Opera8. A web browser displays one page
at a time, by fetching it from a location specified by its URL (Unified Resource Lo-
cator). In some cases, there is no actual page stored on the server, but is automatically
generated by the server. In our approach, we feed our browser with a context index
p ∈ P instead of an URL, this causes the query based multicontext based browser to
display the Hasse diagram of the concept lattice (B(Kp)) of the given context index. In
a web browser, a user can change the displayed page by simply entering a new URL or
interacting with the page to get some relevant new URL. The browser the displays the
new URL. In our browsing framework, both entering and interacting are also possible.
The user can enter a new context index and the browser displays its lattice. But the user
can also interact with the displayed lattice in order to create a new context index and
again the browser displays its lattice. In order to describe the way our browser works,
we describe the kind of interaction with the lattice which result in the creation of a
new context index. This description is done by first presenting the seletion mechanism,
that is what and how the objects are selected from the lattice. Then we introduce the
workflow mechanism, which allows the creation of different context index depending
on the selected objects and the browsing mode.

0.4.1 Selection

As we mentioned earlier, we want to characterise the selection mechanism, in other
words what can be selected and how it can be selected. In the context of a Formal
Concept Analysis browsing application, there are many types of objects which can be
selected but they can be separated in two main classes: lattice elements on the one
hand and entities of the entity universeΩ on the other. Before we address the question
of what is to be selected, we want to specify how we can make a selection. We will
consider only one click on a lattice element9. But we will consider two kinds of clicks:
“left-click” and “right-click”. The former corresponds to a selection following a given
mode, whereas the latter corresponds to the selection of the given set, but shows a
context menu with diverse actions on this set. In order to understand our approach,
we first expose the diverse modes, then we describe the result of a “left-click” on an
element of the lattice, then of a “right-click”.

Click Mode In order to formalize the interaction with the lattice, we define the
notion of click mode. A click mode is the type of lattice element which is selected
from the lattice. When clicking on a lattice element, different types of objects might
be interesting to select: concepts, concept intents, concept extents, extent contingents,
intent contingents, labels, filters, ideals, concepts sets... Table 4 contains a list of lattice
elements which can be selected by using one click. Because we defined the query based
multicontext for knowledge bases exclusively on sets, we only consider entity sets.
The selection creates a query on the selected set:{< elementsoftheselectedset >}.

8See http://www.free-definition.com/Web-browser.html
9We will not address the selection of more than one lattice element.

12

Table 4: The different click modes and the type of sets you get when clicking
Lattice object Type selected
label the singleton set{entity}
extent entity set
intent entity set
extent contingent entity set
intent contingent entity set
concept pair of entity sets
filter concept set
ideal concept set
filter ∪ ideal concept set
neighbourhood concept set

Hence, we consider that for a given selection, the selection mode is chosen. This plays
an important role, both when “right-clicks” or “left-clicks” are used.10.

Left-Click In our browsing interface left-clicking on a node corresponds to the direct
selection of the entities as predefined by the chosen mode: concept, intent....

Let us now consider the context induced by the context index:SI(≤C {Person},≤C

) (see Figure 1). In the concept selection mode, left-clicking on the node of the formal
conceptµ“PhDStudent′′ means selecting the concept with extent:eval(˙Inst({“PhDStudent′′})∪q

˙≤C {“PhDStudent′′}) and intent:eval(≥C {“PhDStudent′′}∩C ≤C {“Person′′}),
whereas in the extent contingent mode, the same click means selecting the set eval({“PhDStudent′′})
which of course returns:{“PhDStudent′′}. Therefore, it is up to the user to decide
what he wants to select by choosing the right mode. Again you will find the selection
modes in table 4, which work with a simple “left-button” click of a concept or of a
label.

Right-Click In the query based multicontext definition,Ω can be anything, but we
will consider only the case where underlying universe is a knowledge base. We saw in
the previous section that it was possible to query to get to new sets of entities or new
relations. We presented two query languages,L1 andL2 which delivered queries over
concepts, relations or instances of the knowledge base.

These entities allow the direct access of new entity set through queries on other
entity sets, like Inst on a concept entity. Therefore, “right-clicking” opens a context
menu for more complex actions such as:

1. selecting the set defined by one of the lattice element given above (concept, in-
tent...)

2. selecting one or more entities from these same sets...

3. selecting entities or an entities’ set directly accessible from one of these entities

10Two possibilities for setting/choosing mode would possible: either external or defined on specific part
of the chosen concept (top part of the node, bottom part...)

13

4. some other action

(1) is equivalent to selecting another mode. (2) corresponds to selecting a subset
of the selected set. (3) means: use a query primitive on the given set and select its
result, for example on a set concept set, “select InstancesOf”, (4) do some action such
as displaying a specific context index by using this set.

Let us consider the example lattice of figure 1. Let us first give an example for
(2). In the concept extent mode, right-clicking on the node labeled “Researcher” (i.e
representing the conceptµ′′Researcher′′) allows for choosing some instances among
its extent, for example “Julien Tane”, “Professor Stumme”, the “some” allows the user
determining exactly the instances of interest. An example for (3), right-clicking on
Professor and choose “select Instances for Relation¿holdsLecture”, and select all In-
stances. For an example of (4), suppose the mode is: “select intent contingent”, right-
clicking on the node for formal conceptµ“Researcher′′ opens a context menu adapted
to the set:{“Researcher′′}. Some of the possible actions in the context menu are ac-
tions for creating a new context index for the given set (here{“Researcher′′}). For
example, the action “display subconcept hierarchy for“, would create the context in-
dex: Order(≤C {“Researcher′′}, ≤C), in other word the subconcept hierarchy for
the elements of the concept query{“Researcher′′}.

To conclude this section, we have shown diverse example of selection. A selection
can be directly used as in (4). But, it can also be used in more complex workflows. In
the following paragraph we will expose one of these complex workflows.

0.4.2 Usage Workflow

We just saw how some entity sets can be selected. We will now introduce diverse work-
flows to create a new context index. In section 0.2.2, we presented different generic
constructor for some interesting context index. In our approach, we use these generic
constructors as a kind of workflow guideline to create the new context index. Each of
these constructors constitutes a browsing mode. The workflows of a given mode can
be simple: it involves only a “left-click”, or it can be complex, it involves a sequence
of selections.

The user can choose one browsing mode among which are: simple relation lattice,
Order Mode Subsumption Instantiation lattice, Join Lattice, Relation-Instantiation lat-
tice. To each of these browsing mode is associated a browser workflow. In a given
mode, some variables should be replaced by queries. Let us describe the modes:

• the Simple Relation Lattice mode: Three queries(q1, q2, q3) of the new context
index are defined one after the other. In other words, the workflow consists in
the definition of each of these queries, the new context index is then:(q1, q2, q3).

• the Order Lattice: Only one selectionq is needed, but should be of one of the
following type: L1C or L1R. The returned context index is:Order(q,≤C) if
q ∈ L1C andOrder(q,≤R) if q ∈ L1R.

14

• the Subsumption Instantiation lattice mode: Only one selection is needed (but
should belong toL1C or L1I). The context index of the new lattice to be dis-
played is:SI(qC ,≤C , ιC).

• Join Lattice: here five selection are needed:

1. an instance queryqA

2. a relation queryqR1

3. an instance queryqB

4. a relation queryqR2

5. an instance queryqC

The returned context index is thenJoin(qA, qR1, qB , qR1, qC).

• Relation-Instantiation: here four selections are needed:

1. an instance queryqA

2. a relation queryqR

3. an instance queryqB

4. the instantiation relationqR

In the following example, we will use the latter one since it is the most complex.
But, it is important to note, that it is always possible to select the intent, extent... of a
given node of any lattice and display some very simple lattices for it: for example, if
the set I chosen builds an instance queryqI (that is the query evaluated to get this set
was inL1I), then it is possible to build the context indexConcH(qI ,≤C) by choosing
the menu in the context menu.

The goal is to display the concept lattice of the context having persons working at
certain institutions as objects, and the publications and their topics as attributes. The
incidence relation is then composed of the relation instances of “hasWritten”, as well
as of the join of “hasWritten” with “isOnTopic”. Put formally, this means define the
context index:
RI(q1, {hasWritten}, {Publication}, {isOnTopic}, {Topic}) where:
q1 := ∃I1{worksAt}(2 ∈ {“AIFB′′, “FZI ′′})

Diverse steps are needed:

• define object set (shownInstH(ALLCONCEPTS,≤C):

– do a right click1 on “Person”, and choosing in the context menu: “select
For Instances for Query with constraint> worksAt(Institution)”.

– do a right click on “Institution” and choose in the list of instances “AIFB”
and “FZI”.

• choose relation (shownOrder(∃R.({“Person′′)},≤R)) (see Figure 2):

7It opens the context menu.
8It opens the context menu.

15

Figure 2: The subsumption lattice of the relations of “Person”:Order(≤R

{∃R.({“Person′′},≤R).

– do a left click2 on ”hasWritten(“Publication”)”.

• refine “Publication” (shownOrder(“PUBLICATION ′′,≤C)):

– do a right click1 on “ScientificArticle”, and choosing in the context menu:
“select For Instances for Query with constraint> “publishedInProceedin-
gOf(“Event”)

• choose instantiation relation (shownOrder(∃R.(“Publication′′),≤R)):

– do a right click on “isOnTopic(Topic)”

• displayRI(q1, {hasWritten}, {Publication}, {isOnTopic}) (see Figure 3)

Some other aspects which play a crucial role for the acceptation of such a browsing
interface such as the choice of the lattice display algorithm, of the nodes’ and labels’
appearance, etc... have not yet been treated here. We plan to extend this report with
section concerning these topics.

0.5 Implementation

In this section, we will shortly describe our the basic elements of our ongoing imple-
mentation of this browsing framework. Our browsing application mainly sets on two
existing Java applications that we extended in order to combine them: the Concept

16

Figure 3: The final lattice of the context index:
RI(q1, {hasWritten}, {Publication}, {isOnTopic}, {Topic}).

Explorer11 from Serguey Yevtushenko and the KAON Ontology framework. We will
shortly describe them before discussing their combination.

0.5.1 Concept Explorer

The Concept Explorer is a FCA application designed to implement and test diverse
algorithms and methods. While it is is a standalone Formal Concept Analysis applica-
tion, we use it mainly as a Formal Concept Analysis library for data model, algorithms
and graphical display. The implementation being quite efficient, it satisfies the need of
a FCA browsing application. We made minimum changes to the Concept Explorer in
the hope of integrating our ideas in Concept Explorer.

11See http://www.sourceforge.net/projects/conexp.

17

0.5.2 KAON Ontology Framework

The KAON framework can be seen as a graphical user framework with diverse ontol-
ogy applications all based on a powerful ontology API: the KAON API. It has different
kind of applications, such as a graph-based ontology editor: OI-modeler, or a set of
ontology learning tools called texttoonto12. On top of the KAON framework another
tool suite: the Courseware Watchdog has been designed, whose goal is to find, organize
learning material. It mainly integrates different kind of tools such as a focused crawler,
a interface to a peer-to-peer network, a text clustering application, and the ontology
learning tool. This gives a good basis to show how formal concept analysis can be
used in cooperation with other tools. In [8] we presented the interaction of the Formal
Concept Analysis interface with the other components of the Courseware Watchdog.

A few supplementary words should be said about the KAON Ontology API. This
API serves as Facade to diverse ontology back-end types. You may have stored your
knowldege base in a database or as a file. This allows for further flexibility since the
storing of a knowlege base in itself is independent of its use. Moreover, it allows for
multilingual representation of the ontology through the use of a conceptual layer.

0.5.3 Combining ConceptExplorer and KAON

In order to combine the two we load the ontology–instance model. At the request of
a user, the application creates the corresponding context. The query languages on the
knowledge base presented earlier in this paper, have been implemented on top of the
KAON API. We are also exploring the possiblity of using the KAON query language
for querying directly knowledge base s.

All along this paper, we presented the query based multicontext, but it is crucial to
mention that the evaluation of a context index, does not imply the independant eval-
uation of its queries. To manage context intensionally using their context index, the
latter are very useful. However, in many cases, it would be inefficient to calculate the
three queries independantly. Therefore, the engine which evaluates the context index
may choose to combine the queries to be more efficient, as long as the resulting context
would have been the one obtained through the independant evaluation.

First let us define the API:
A supplementary method on the ontology: getTopConcepts

• Ontology

– getInstances: returns all the instances the ontology

– getConcepts: returns all the concepts the ontology

– getRelations: returns all the relations the ontology

– getRelationInstances: returns all the relation instances the ontology

• Concept:

– getInstances: returns the instances of this concept

12See http://www.sourceforge.net/projects/texttoonto

18

– getSubConcept: returns the subconcepts of this concept

– getSuperconcept: returns the superconcepts of this concept

– getRelationsForAtPosition(int j): returns the relations where the concept is
at position j

– getRelations: returns all the relations r where this concept is a component
of σ(r)

• Relation:

– getSubRelations: returns the subrelations of this relation

– getSuperRelations: returns the superrelations of this relation

– getRelationConceptTuple: returns the tuple of concepts for which this re-
lation is defined

• Instance:

– getParentConcepts

In the following, we give either a simple description on how to implement this
query, or we give the pseudo-code for more complex queries. Most of the algorithm are
quite straight forward. Of course, this present a very simple possible implementation.

• Concepts

– ALLCONCEPTS: already part of the API

– {c1, ..., cn}: add them one after the other to a set.

– ≤C qC : please find the pseudocode in algorithm 1.

Algorithm 1 Returns all the subconcepts of the concepts resulting from queryqC

nottreated = eval (qC)
res =∅
while nottreated6= ∅ do

choose an element e from nottreated
remove e from nottreated
add e to res
add e.getSubConcepts() to nottreated

end while
return res

– ≥C qC : Same thing as algorithm 1, except for the use of the method:
getSuperConcepts() instead of getSubconccepts().

– qC uC qD: simple set intersection of the results of eval (qC) and eval (qD)

– qC tC qD: simple set union of the results of eval (qC) and eval (qD)

concepts(qI):

19

Algorithm 2 Returns all the concepts which instances resulting from queryqI

nottreated = eval (qI)
res =∅
while nottreated6= ∅ do

choose an element e from nottreated
remove e from nottreated
add e.getParentConcepts() to res

end while
nottreated = res
res = res.copy()
while nottreated6= ∅ do

choose an element e from nottreated
remove e from nottreated
add e.getSuperconcepts() to res

end while
return res

– ∃C .C: Same algorithm as algorithm 2 except that getRelations replaces
getParentConcept, and get

– ∃CiqR(j : qC):

• Relations:

– ALLRELATIONS: already part of the API.

– {r1, ..., rn}: add them one after the other to a set.

– ≤R qR: same kind of algorithm as algorithm 1, replacing getSubConcept
by getSubRelation.

– ≥R qR: same kind of algorithm as algorithm 1, replacing getSubConcept
by getSuperRelation.

– ∃R.qC : same kind of algorithm as algorithm 4, replacing getInstances by
getRelations.

– ∃RqR(j : qC): The algorithm uses is algorithm 3 to evaluate the query.

– ∃R.(i : qI1 , j : qI2):

• Instances:

– ALLINSTANCES: already part of the API.

– {i1, ..., in}: add them one after the other to a set.

– Inst(qC): The algorithm 4 describes how instantiation can be defined.

– qI1 uI qI2: simple set intersection of the results of eval (qI1) and eval (qI2)

– qI1 tI qI2: simple set union of the results of eval (qI1) and eval (qI2)

20

Algorithm 3 Returns all the relation belonging to the results ofqR and which are
defines as having a concept ofqC at position j

allowedrel = eval (qR)
nottreated = eval (qC)
res =∅
for all nottreated6= ∅ do

pick and remove an element e from nottreated
put e.getRelationsForAtPosition(j) into res

end for
res = intersection (allowedrel,res)
return res

Algorithm 4 Returns all the concepts which instances resulting from queryqI

nottreated = eval (qC)
res =∅
while element in nottreateddo

choose an element e from nottreated
remove e from nottreated
add e.getInstances() to res

end while
return res

0.6 Conclusion

This technical report presented the query based multicontext and one of the possible
application: knowledge based browsing with Formal Concept Analysis. It introduced
the definition of the query based multicontext, some of its promissing features and di-
verse generic context constructors. Then we investigated how this new structure can be
used on top of a knowledge base by defining appropriate query languages. Finally, we
described a new browsing framework which combines ontologies and Formal Concept
Analysis for knowledge base browsing. Future work will be oriented towards other
kind of data: databases, data mining results, text collections. Another interesting path
of research will be how to integrate other Formal Concept Analysis techniques with
the query based multicontext as well as further consequences of the query languages’
expressivity.

21

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of Databases. Ad-
dison Wesley, Reading, Mass. U.S.A, 1996.

[2] E. Bozsak et al. KAON - Towards a large scale Semantic Web. InProceedings of
the Third International Conference on E-Commerce and Web Technologies (EC-
Web). Springer Lecture Notes in Computer Science, 2002.

[3] Berhard Ganter and Rudolf Wille.Formal Concept Analysis – Mathematical Foun-
dations. Springer Verlag, Berlin – Heidelberg, 1999.

[4] Bernhard Ganter and Rudolf Wille.Applications of Combinatorics and Graph The-
ory to the Biological and Social Sciences, volume 17, chapter Conceptual Scaling.
Springer Verlag, 1989.

[5] Tim Berners Lee, James Hendler, and Ora Lassila. The Semantic Web: A new
form of Web content that is meaningful to computers will unleash a revolution of
new possibilities. 2001.

[6] John F. Sowa.Knowldege Representation - Logical, Philosphical and Computa-
tional Foundations. Brooks/Cole, Pacific Grove, CA, U.S.A, 2000.

[7] Rudi Studer and Steffen Staab, editors.Handbook on Ontologies in Infornation
Systems. Springer Verlag, Berlin – Heidelberg, 2003.

[8] Julien Tane, Christoph Schmitz, Gerd Stumme, Steffen Staab, and Rudi Studer.
The Courseware Watchdog: an Ontology-based tool for Finding and Organizing
Learning Material. In Ingo Wegener, editor,Fachtagung Mobiles Lernen und
Forschen, 6.11.2003, Universität Kassel, 2003.

[9] Rudolf Wille. Conceptual Structures of Multicontexts. InConceptual Structures:
Knowledge Representation as Interlingua, Proceedings of the 4th International
Conference on Conceptual Structures, ICCS’96, pages 23–39, Sydney, Australia,
1996. Springer Lecture Notes in Computer Science.

22

