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Robert Jäschke1,2, Andreas Hotho1, Christoph Schmitz1, Bernhard Ganter3, Gerd Stumme1,2

1 Knowledge & Data Engineering Group, University of Kassel, Germany,
http://www.kde.cs.uni-kassel.de

2 Research Center L3S, Hannover, Germany, http://www.l3s.de
3 Institute for Algebra, Dresden University of Technology, Germany,

http://www.math.tu-dresden.de/∼ganter/

Abstract

In this paper, we present the foundations for mining fre-
quent tri-concepts, which extend the notion of closed item-
sets to three-dimensional data to allow for mining folk-
sonomies. We provide a formal definition of the problem,
and present an efficient algorithm for its solution as well as
experimental results on a large real-world example.

1 Introduction

With the observation that Formal Concept Analysis
(FCA) [13, 5], a mathematical theory for deriving concept
hierarchies from data, provides an elegant framework for
reducing the effort of mining association rules [9, 14, 12],
a new research area emerged around 1999 which became
known as closed itemset mining in the data mining commu-
nity and as iceberg concept lattices in FCA.

Independent of this development, Formal Concept Anal-
ysis has been extended about ten years ago to deal with
three-dimensional data [8]. This line of Triadic Concept
Analysis did not receive a broad attention up to now. With
the rise of folksonomies as core data structure of social
resource sharing systems, however, the interest in Triadic
Concept Analysis increased again.

With this paper, we initiate the confluence of both lines
of research, Triadic Concept Analysis and closed item-
set mining. In particular, we give a formal definition of
the problem of mining all frequent tri-concepts (the three-
dimensional version of mining all frequent closed itemsets),
and present our algorithm TRIAS for mining all frequent tri-
concepts of a given dataset.

The paper is organized as follows. In the next section,
we introduce folksonomies and social resource sharing sys-
tems and motivate our conceptual clustering approach for

this kind of data. In Section 3, we discuss Triadic Formal
Concept Analysis and provide in Section 4 a formal defini-
tion of the problem of mining frequent triadic formal con-
cepts; in Section 5, we introduce our TRIAS algorithm. Sec-
tion 6 comes up with a real-world application, the folkson-
omy of the bookmark sharing system del.icio.us, and con-
cludes with experiments on the effectiveness and efficiency
of the algorithm.

2 Motivation: Conceptual Clustering of
Folksonomies

Social resource sharing systems on the web, such as
the shared photo gallery Flickr1, the bookmarking system
del.icio.us,2 or our own system BibSonomy3 (see Figure 1)
have acquired large numbers of users within less than two
years. The reason for their immediate success is the fact
that no specific skills are needed for participating, and that
these tools yield immediate benefit for each individual user
(e.g. organizing ones bookmarks in a browser-independent,
persistent fashion), without too much overhead. The core
data structure of a social resource sharing system is a folk-
sonomy. It consists of assignments of arbitrary catchwords
– called ’tags’ – to resources by users. Thus it consists of
three sets U, T, R of users, tags, and resources, resp., and a
ternary relation Y between them. Folksonomies have thus
one dimension more than typical basket analysis datasets
(which consist of the two dimensions ‘items’ and ‘transac-
tions’). A formal model for Folksonomies as well as an
overview of related work can be found in [6].

Our algorithm solves the problem of frequent closed
itemset mining for this kind of data. It will return a tri-
ordered set of (frequent) triples, where each triple (A, B, C)
consists of a set A of users, a set B of tags, and a set C of re-
sources. These triples – called (frequent) tri-concepts in the

1 http://flickr.com 2 http://del.icio.us 3 http://www.bibsonomy.org



sequel — have the property that each user in A has tagged
each resource in C with all tags from B, and that none
of these sets can be extended without shrinking one of the
other two dimensions. They are thus the three-dimensional
version of closed itemsets.

We can additionally impose minimum support con-
straints on each of the three dimensions ‘users’, ‘tags’, and
‘resources’. In the dyadic case, they equal the minimum
support and minimal length thresholds from association rule
mining. By setting higher values, we can focus on the
largest conceptual components of the folksonomy before
having a more detailed look with lower thresholds.

3 Triadic Concept Analysis

Inspired by the pragmatic philosophy of Charles S.
Peirce with its three universal categories [10], Rudolf Wille
and Fritz Lehmann extended Formal Concept Analysis in
1995 with a third category [8]. They defined a triadic for-
mal context as a quadruple K := (G, M, B, Y ) where G,
M , and B are sets, and Y is a ternary relation between G,
M , and B, i. e., Y ⊆ G × M × B. The elements of G, M ,
and B are called objects, attributes, and conditions, resp,
and (g, m, b) ∈ Y is read “object g has attribute m under
condition b”. A triadic concept of K is a triple (A1, A2, A3)
with A1 ⊆ G, A2 ⊆ M , A3 ⊆ B, and A1 × A2 × A3 ⊆ Y
such that none of its three components can be enlarged with-
out violating this condition. This is the natural extension of
the definition of a formal concept4 to the triadic case.

Lehmann and Wille present in [8] an extension of the
theory of ordered sets and (concept) lattices to the triadic
case, and discuss structural properties. This approach initi-
ated research on the theory of concept trilattices.5 With the
rise of social resource sharing systems on the web, triadic
data became recently interesting for many researchers. In
particular, one needs knowledge discovery and information
retrieval methods that are able to handle very large datasets.

In [11], we discussed how to compute association rules
from a triadic context based on projections. A first step to-
wards truly ‘triadic association rules’ has been done in [4].

4 The Problem of Mining all Frequent Tri-
Concepts

We will now formalize the problem of mining all fre-
quent tri-concepts. We start with an adaptation of the notion
of ‘frequent itemsets’ to the triadic case.

Definition 1. Let F := (U, T, R, Y ) be a folkson-
omy/triadic context. A tri-set of F is a triple (A, B, C) with
A ⊆ U , B ⊆ T , C ⊆ R such that A × B × C ⊆ Y .
4 In terms of association rules: a closed itemset together with
all its related transactions, see [13, 5] for details. 5 See
http://www.bibsonomy.org/tag/triadic+fca

Figure 1. BibSonomy displays bookmarks
and bibliographic references simultaneously.

As folksonomies have three dimensions which are com-
pletely symmetric, one can establish minimum support
thresholds on all of them. The general problem of mining
frequent tri-sets is then the following:

Problem 1 (Mining all frequent tri-sets). Let F :=
(U, T, R, Y ) be a folksonomy/triadic context, and let
u-minsup, t-minsup, r-minsup ∈ [0, 1]. The task of min-
ing all frequent tri-sets consists in determining all tri-sets
(A, B, C) of F with |A|

|U| ≥ u-minsup, |B|
|T | ≥ t-minsup, and

|C|
|R| ≥ r-minsup.

This is actually a harder problem than the direct adapta-
tion of frequency to one more dimension: In classical fre-
quent itemset mining, one has a constraint – the frequency –
only on one dimension (the number of transactions). Thus
the equivalent triadic version of the problem would need
two minimum support thresholds only (say u-minsupp and
t-minsupp). However, this seems not natural as it breaks the
symmetry of the problem. Hence we decided to go for the
harder problem directly (which equals in the dyadic case
the addition of a minimal length constraint on the itemsets).
The lighter version with only two constraints is then just a
special case (e. g., by letting r-minsupp:= 0).

As in the classical case, our thresholds are antimonotonic
constraints: If (A1, B1, C1) with A1 being maximal for
A1 × B1 × C1 ⊆ Y is not u-frequent then all (A2, B2, C2)
with B1 ⊆ B2 and C1 ⊆ C2 are not u-frequent either. The
same holds symmetrically for the other two directions.

With the step from two to three dimensions, however, the
direct symmetry between monotonicity and antimonotonic-
ity (which results in the dyadic case from the dual order
isomorphism between the set of concept extents and the set
of concept intents) breaks. All we have in the triadic case
is the following lemma which results (via the three quasi-
orders defined in Section 3) from the triadic Galois connec-
tion [1] induced by a triadic context.

Lemma 1 (cf. [8]). Let (A1, B1, C1) and (A2, B2, C2) be
tri-sets with Ai being maximal for Ai × Bi × Ci ⊆ Y , for



i = 1, 2.6 If B1 ⊆ B2 and C1 ⊆ C2 then A2 ⊆ A1. The
same holds symmetrically for the other two directions.

As the set of all frequent tri-sets is highly redundant, we
will in particular consider a specific condensed represen-
tation, i. e., a subset which contains the same information,
namely the set of all frequent tri-concepts.

Problem 2 (Mining all frequent tri-concepts). Let F :=
(U, T, R, Y ) be a folksonomy/triadic context, and let
u-minsup, t-minsup, r-minsup ∈ [0, 1]. The task of min-
ing all frequent tri-concepts consists in determining all tri-
concepts (A, B, C) of F with |A|

|U| ≥ u-minsup, |B|
|T | ≥

t-minsup, and |C|
|R| ≥ r-minsup.

Sometimes it is more convenient to use absolute rather
than relative thresholds. For this case we let τu := |U | ·
u-minsupp, τt := |T | · t-minsupp, and τr := |R| ·r-minsupp.

Once Problem 2 is solved, we obtain the answer to Prob-
lem 1 in a straightforward enumeration as {(A, B, C) |
∃ frequent tri-concept (Â, B̂, Ĉ) : A ⊆ Â, B ⊆ B̂, C ⊆
Ĉ, |A| ≥ τu, |B| ≥ τt, |C| ≥ τr}.

5 The TRIAS Algorithm for Mining all Fre-
quent Tri-Concepts

Our algorithm for mining all frequent tri-concepts of a
folksonomy F := (U, T, R, Y ) is listed as Algorithm 5.1.
A prior version was used for analysing psychological stud-
ies [7]. That application varied from TRIAS as it aimed at
an iterative pruning of the data set. Furthermore, it did not
take into account any frequency constraints.

We let Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }, and we
identify U , T , and R with natural numbers, i. e. U =
{1, . . . , |U |} (and symmetrically for T , R). In both its
outer and its inner loop, TRIAS calls the pairs of sub-
routines FirstFrequentConcept((G, M, I), τ) and NextFre-
quentConcept((A, B), (G, M, I), τ). These two routines
provide an enumeration of all frequent dyadic concepts
(A, B) of the formal (dyadic) context (G, M, I). The con-
text is passed over as input parameter. FirstFrequentCon-
cept returns in (A, B) the first concept of the enumeration.
NextFrequentConcept takes the current concept (A, B) and
modifies it to the next concept of the enumeration. This
way, we compute all frequent maximal cuboids in the rela-
tion Y by consecutively computing maximal rectangles in
the binary relations Ỹ and I , resp, whereas the condition in
line 10 of Algorithm 5.1 checks if the rectangle layers form
a maximal cuboid. Note that A ⊆ (B×C)Ỹ trivially holds,
because of A = I Ỹ and (B ×C) ⊆ I . Hence only “⊇” has
to be checked.

6 This holds in particular if the tri-sets are tri-concepts.

TRIAS(U, T, R, Y, τu, τt, τr)
Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }
(A, I) := FirstFrequentConcept((U, T × R, Ỹ ), τu)
repeat

if |I| ≥ τt · τr then begin
(B, C) := FirstFrequentConcept((T, R, I), τt)
repeat

if |C| ≥ τr then
if A = (B × C)Ỹ then output(A, B, C)

until not NextFrequentConcept((B, C), (T, R, I), τt)
endif

until not NextFrequentConcept((A, I), (U, T × R, Ỹ ), τu)

Algorithm 5.1: The TRIAS algorithm

FirstFrequentConcept(K, τ)
A := ∅′
B := A′

if |A| < τ then
NextFrequentConcept((A, B), K, τ)

endif
return (A, B)

Algorithm 5.2: The FirstFreqentConcept function

NextFreqentConcept((A, B), (G, M, I), τ)
while defined(i) begin

A := (B ⊕ i)′

if |A| ≥ τ then
D := A′

if B <i D then
B := D
return true

endif
endif
i := max(M \ B ∩ {1, . . . , i − 1}

end
return false

Algorithm 5.3: The NextFreqentConcept function

For computing all (frequent) maximal rectangles in a bi-
nary relation, one can resort to any algorithm for computing
(iceberg) concept lattices. The enumeration can be done in
any convenient way. For the inner and the outer loop, one
could use different algorithms for that task.

In our implementation we equipped the NEXTCLOSURE

algorithm [3, 5] of the fourth author with frequency pruning
for implementing the FirstFrequentConcept and NextFre-
quentConcept routines (see Algorithms 5.2 and 5.3, resp.)
for both the outer and the inner loop. This algorithm has the
advantage that it needs almost only the space for the data in
main memory.



NEXTCLOSURE computes concepts in lectic order. This
means that, for a given concept (A, B), NEXTCLOSURE

computes the concept (C, D) whose intent D is the next
set after B in the so-called lectic order. The lectic order on
sets is a total order and is equivalent to the lexicographic
order of bit vectors representing those sets.

To find the next concept we define for B ⊆ M and i ∈
M : B ⊕ i := (B ∩ {1, . . . , i − 1}) ∪ {i}.

By applying the closure operator X �→ X ′′ to B ⊕ i the
algorithm computes for a given B the set D := (B ⊕ i)′′.
This is the lectically next intent, if B <i D holds, where
B <i D means, that i is the smallest element in which B
and D differ, and i ∈ D.

The method NextFrequentConcept adopts this idea and
additionally checks if the computed extent A := (B ⊕ i)′

fullfills the minimal support criterion before computing the
intent D := A′. This is done in line 5 of Algorithm 5.3 by
considering the extent A only if it is large enough.

6 Evaluation

In order to evaluate our approach, we have analyzed the
popular social bookmarking system del.icio.us. For detect-
ing communities of users which have the same tagging be-
haviour, we ran the TRIAS algorithm on a snapshot con-
sisting of all users, resources, tags and tag assignments we
could download (cf. [6]) that were entered to the system
on or before June 15, 2004. The resulting folksonomy
consists of |U | = 3, 301 users, |T | = 30, 416 different
tags, |R| = 22, 036 resources (URLs), which are linked by
|Y | = 616, 819 triples.

As a first step, we ran TRIAS on the dataset without re-
stricting the minimum supports (i. e., τu := τt := τr := 0).
The resulting concept tri-lattice consists of 246, 167 tri-
concepts.

We then investigated the concepts which contain more
than one user, tag and resource, i. e., with τu := τt := τr :=
2. There were 1, 062 such tri-concepts. Figure 2 shows two
examples. They may be exploited further for extracting re-
lations between tags or for recommending a user to get in
touch with the other one, as they both use the same termi-
nology for the same URLs and are thus likely to be on a
similar line of thought.

As in the dyadic case, the size of the result may grow
exponentially in the worst case. Biedermann has shown
in [2] that the concept tri-lattice of the triadic context of
size n × n × n where only the main diagonal is empty has
size 3n. In typical applications, however, one is far from
this theoretical boundary. Therefore we focus on empirical
evaluations on a large scale real-world dataset.

For measuring the runtime and the number of frequent
concepts we have evaluated the performance of TRIAS on
the del.icio.us dataset described before. From the base set

A fischer gnat
B css design web
C http://www.quirksmode.org/

http://webhost.bridgew.edu/etribou/layouts/
http://www.picment.com/articles/css/funwithforms/
http://www.alistapart.com/articles/sprites/

A bibi poppy
B women cinema film
C http://www.reelwomen.org/

http://www.people.virginia.edu/∼pm9k/libsci/womFilm.html
http://www.lib.berkeley.edu/MRC/womenbib.html
http://www.beaconcinema.com/womfest/
http://www.widc.org/
http://www.wftv.org.uk/home.asp
http://www.feminist.com/resources/artspeech/media/femfilm.htm
http://www.duke.edu/web/film/pioneers/
http://www.womenfilmnet.org/index.htm#top
http://208.55.250.228/

Figure 2. Examples of frequent tri-concepts
of del.icio.us
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Figure 3. Number of frequent tri-sets vs.
number of frequent tri-concepts

we created monthly snapshots as follows. F0 contains all
tag assignments performed on or before Dec 15, 2003, to-
gether with the involved users, tags, and resources; F1 all
tag assignments performed on or before Jan 15, 2004, to-
gether with the involved users, tags, and resources; and
so on until F6 which contains all tag assignments per-
formed on or before June 15, 2004, together with the in-
volved tags, users, and resources. This represents seven
monotonously growing contexts describing the folksonomy
at different points in time. For mining frequent tri-sets and
frequent tri-concepts we used minimum support values of
τu := τt := τr := 2 and measured the run-time of the im-
plementations on a dual-core Opteron system with 2 GHz
and 8 GB RAM.

Figure 3 shows the number of frequent tri-concepts ver-
sus the number of frequent tri-sets on the logarithmically
scaled y-axis, whereas the x-axis depicts the number of
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Figure 4. Runtime of triadic NEXT CLOSURE

and TRIAS algorithm on del.icio.us datasets

triples in Y – which grows from 98,870 triples in Dec 2003
to 616,819 in June 2004. What can be seen is the massive
increase of frequent tri-sets in June 2004 while the num-
ber of frequent tri-concepts grows at a different level. This
can be explained when looking further on the size of the
tri-concepts found which also grows from month to month,
since more and more users appear and start agreeing on
a common vocabulary. Especially such large concepts as
shown in Figure 2 do not appear until June 2004 but they
are responsible for the steep increase of frequent tri-sets.
Overall one can observe that the number of frequent tri-
sets of every snapshot is always at least one magnitude of
size larger than the number of frequent tri-concepts. Conse-
quently, computing frequent tri-sets is much more demand-
ing than computing frequent tri-concepts – without provid-
ing any additional information.

A comparison of the speed improvement gained from
not computing all tri-concepts with an algorithm like NEXT

CLOSURE and afterwards pruning the non-frequent con-
cepts but using the TRIAS algorithm for directly mining
frequent tri-concepts is shown in Figure 4. The logarith-
mically scaled y-axis depicts the runtime of the algorithms
in seconds while the x-axis shows again the size of the Y re-
lation. One can see that computing all tri-concepts is more
than one magnitude more expensive than mining only the
frequent tri-concepts one is interested in.

With the results seen we can conclude that the TRIAS

algorithm provides an efficient method to mine frequent tri-
concepts in large scale conceptual structures.
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ing association rules in folksonomies. In V. Batagelj, H.-
H. Bock, A. Ferligoj, and A. Žiberna, editors, Data Science
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