
Creation and Merging of Ontology Top-Levels

Bernhard Ganter,1 Gerd Stumme2

1 Institute for Algebra, TU Dresden, D{01062 Dresden, Germany;

ganter@math.tu-dresden.de
2 Institute for Applied Informatics and Formal Description Methods (AIFB),

University of Karlsruhe, D{76128 Karlsruhe, Germany;

www.aifb.uni-karlsruhe.de/WBS/gst

Abstract. We provide a new method for systematically structuring the

top-down level of ontologies. It is based on an interactive, top{down

knowledge acquisition process, which assures that the knowledge engi-

neer considers all possible cases while avoiding redundant acquisition.

The method is suited especially for creating/merging the top part(s) of

the ontologies, where high accuracy is required, and for supporting the

merging of two (or more) ontologies on that level.

1 Introduction

Ontologies have been established as a means for conceptually structuring do-

mains of interest and are increasingly used for knowledge sharing. EÆcient sup-

port in the creation, maintenance and interoperability of ontologies is an essential

aspect for their success. Manual ontology engineering using conventional editing

tools without support is diÆcult, labor intensive and error prone. Therefore,

several systems and frameworks for supporting the knowledge engineer in the

ontology engineering task have been proposed (see Section 2). These approaches

often rely on syntactic and semantic matching heuristics which are derived from

the behavior of ontology engineers when confronted with the task of creating and

manipulating ontologies, i. e. human behaviour is simulated. Although some of

them locally use di�erent kinds of logics for comparisons, they do not provide a

formal guarantee that the knowledge engineer has considered all relevant aspects

in the acquisition phase.

We propose a new method, called OntEx (Ontology Exploration), for sup-

porting the two tasks of creating and merging ontologies. It relies on the knowl-

edge acquisition technique of Attribute Exploration [5] as developed in the math-

ematical framework of Formal Concept Analysis [21, 7]. OntEx guarantees that

the knowledge engineer considers all relevant combinations of concepts for the

creation/merging process but avoids redundant acquisition.

The �rst task we address is the creation of a new ontology. When ontologies

have to be created from scratch, the user needs some guidance how to start.

Especially the very �rst decisions have strong impact on the result, as they de-

termine the overall structure of the ontology. Creation of ontologies from scratch

is usually performed top{down. First the most general concepts of the ontology

are selected. More speci�c concepts are then added by classifying them in the

already present structure. OntEx supports one part of this creation process,

namely the structuring of the conceptual hierarchy on the top{level concepts,

and the creation of new concepts on the next level by providing suggestions

based on an interactive exploration of the existing structure.

The second task we address is ontology merging. With the growing usage of

ontologies, the problem of overlapping ontologies occurs more often and becomes

critical. It is impossible in practice to provide a single ontology satisfying all users

with regard to coverage, precision, actuality, and individualization. Hence the

balance between the two conicting objectives of providing a common knowledge

core on the one hand and a representation which reects closely the respective

view of every of the users on the other hand has to be maintained. A solution to

this problem is to provide multiple ontologies. But when the need for communi-

cation arises, the di�erent ontologies have to be made compatible. Compatibility

can be obtained by merging the ontologies into a single one. Merging two on-

tologies means creating a new ontology in a semi-automatic manner by merging

concepts of the source ontologies. OntEx provides an interactive knowledge ac-

quisition technique for merging of the top{level concepts, where design decisions

have the most impact on the overall structure of the target ontology.

The use of OntEx guarantees that the knowledge engineer considers all rel-

evant possibilities both for the creation and for the merging task. However, this

guarantee is paid with a certain workload for the knowledge engineer, making it

applicable only to relatively small parts of the ontologies at hand. Therefore we

propose a two{step, top{down approach. The �rst step aims at reliably creat-

ing/merging the top{part(s) of the ontologies with high accuracy, using OntEx.
In the second step, any heuristics{based approach can be used for creating the

remainder of the target ontology with less user interaction. This two{step ap-

proach allows for high accuracy for the design of the top{level ontology, which

has large impact on the global structure of the resulting ontology, as it is more

diÆcult to modify in a later phase than local decisions on a lower level of detail.

On the other hand, it restricts the comparatively high workload on the user to

the �rst, critical phase.

In this paper, we restrict ourselves to the construction of the concept hier-

archy. The extension of this approach to relations (based on [23]) is planned

for the immediate future. Our approach allows to make use of any background

knowledge encoded in propositional logic; especially of axioms which come along

with source ontologies that are to be merged.

This paper is organized as follows. In Section 3, we briey introduce some

basic de�nitions concentrating on a formal de�nition of what an ontology is

and recall the basics of Formal Concept Analysis. In Section 4, the approach is

sketched. Technical details are given in Section 5. It is illustrated in Section 6

by an example. Section 7 discusses how the approach is adopted to the task of

ontology merging, and illustrates it by an example. In Section 2, related work

is discussed. Section 8 summarizes the paper and concludes with an outlook on

future work.

2

2 Related Work

A �rst approach for supporting the merging of ontologies is described in [8].

There, several heuristics are described for identifying corresponding concepts in

di�erent ontologies, e. g. comparing the names and the natural language de�ni-

tions of two concepts, and checking the closeness of two concepts in the concept

hierarchy.

The OntoMorph system [3] o�ers two kinds of mechanisms for translating

and merging ontologies: syntactic rewriting supports the translation between two

di�erent knowledge representation languages, semantic rewriting o�ers means for

inference-based transformations. It explicitly allows to violate the preservation

of semantics in trade-o� for a more exible transformation mechanism.

In [12] the Chimaera system is described. It provides support for merging of

ontological terms from di�erent sources, for checking the coverage and correct-

ness of ontologies and for maintaining ontologies over time. Chimaera o�ers a

broad collection of functions, but the underlying assumptions about structural

properties of the ontologies at hand are not made explicit.

Prot�eg�e-2000 [13] is a knowledge acquisition tool and ontology editor which

can be used for creating ontologies. Prompt [14] is an algorithm for ontology

merging and alignment embedded in Prot�eg�e 2000. It starts with the identi�ca-

tion of matching class names. Based on this initial step an iterative approach

is carried out for performing automatic updates, �nding resulting conicts, and

making suggestions to remove these conicts.

OilEd [2] is an editor for ontologies based on the description language FaCT.

OntoEdit [17] is an ontology editor based on Frame Logic. These tools make use

of inferences for checking the consistency and for deriving new facts from the

knowledge base.

About merging, there is also much related work in the database community,

especially in the area of federated database systems. The work closest to our

approach is described in [15]. There, Formal Concept Analysis is applied to a

related problem, namely database schema integration.

FCA{Merge [19] is a technique for merging ontologies based on Formal

Concept Analysis. It o�ers a structural description of the overall merging pro-

cess with an underlying mathematical framework. It relies on the existence of

instances annotated in both ontologies, and provides alternatively a way to use

documents as such instances. Concepts are suggested to be merged i� they have

the same extent.

EÆcient support for creating ontologies from scratch is topic of current re-

search. In [9{11], for instance, text mining techniques have been discussed for

supporting the user in creating ontologies.

Most of the tools described above o�er extensive functionalities, often based

on syntactic and semantic matching heuristics, which are derived from the be-

haviour of ontology engineers when confronted with the task of creating/merging

ontologies. OntoMorph, Chimarea, OilEd, and OntoEdit use a (description) log-

ics based approach that inuences the creation and merging process locally, e. g.

3

checking subsumption relationships between terms and checking for inconsis-

tencies. However, none of these approaches o�ers a guarantee that all relevant

relationships have been considered for modeling during the acquisition phase.

3 Basic Notions

In this section, we briey introduce some basic de�nitions. We thereby concen-

trate on a formal de�nition of ontologies and recall the basics of Formal Concept

Analysis.

3.1 Ontologies

There is no common formal de�nition of what an ontology is. However, most

approaches share a few core items: concepts, a hierarchical IS-A-relation, and

further relations. For sake of generality, we do not discuss more speci�c features

like constraints, functions, or axioms here. We follow the de�nition provided

in [19]:

De�nition: A (core) ontology is a tuple O := (C; is a; R; �), where C is a set

whose elements are called concepts, is a is a partial order on C (i. e., a binary

relation is a � C � C which is reexive, transitive, and antisymmetric), R

is a set whose elements are called relation names (or relations for short), and

�:R! C+ is a function which assigns to each relation name its arity.

As said above, the de�nition considers the core elements of most languages for

ontology representation only. It is possible to map the de�nition to most types

of ontology representation languages.

In this paper, we allow additionally a set A of propositional logic axioms

describing dependencies between the concepts.

3.2 Formal Concept Analysis

We recall the basics of Formal Concept Analysis (FCA) as far as they are needed

for this paper. A more extensive overview is given in [7]. To allow a mathematical

description of concepts as being composed of extensions and intensions, FCA

starts with a formal context:

De�nition: A formal context is a triple K := (G;M; I), where G is a set of

objects, M is a set of attributes, and I is a binary relation between G and M

(i. e. I � G�M). (g;m) 2 I is read \object g has attribute m".

From a formal context, (formal) concepts can be derived:

De�nition: For A � G, we de�ne AI := fm 2M j 8g 2 A: (g;m) 2 Ig and, for
B �M , we de�ne BI := fg 2 G j 8m 2 B: (g;m) 2 Ig.

A formal concept of a formal context (G;M; I) is de�ned as a pair (A;B)

with A � G, B � M , AI = B and BI = A. The sets A and B are called the

4

extent and the intent of the formal concept (A;B). The subconcept{superconcept

relation is formalized by

(A1; B1) � (A2; B2) :() A1�A2 (() B1 � B2) :

The set of all formal concepts of a context K together with the partial order � is

always a complete lattice,1 called the concept lattice of K and denoted by B(K).

In what follows, we will make use of the fact that a set B �M of attributes

is a concept intent i� B = BII .

A possible confusion might arise from the double use of the word `concept'

in FCA and in ontologies. This comes from the fact that FCA and ontologies

are two models for the concept of `concept' which arose independently. In or-

der to distinguish both notions, we will always refer to the FCA concepts as

`formal concepts'. The concepts in ontologies are referred to just as `concepts'

or as `ontology concepts'. There is no direct counter-part of formal concepts in

ontologies. Ontology concepts are best compared to FCA attributes, as both can

be considered as unary predicates on the set of objects.

4 Creating Ontologies with OntEx

Our approach is based on the knowledge acquisition technique called Attribute

Exploration [5]. For a given set of ontology concepts, it determines the lattice

of all conjunctions of these concepts. In an interactive process, it asks the user

questions of the kind \Is the conjunction of the concepts c1, c2, . . . , and cn a

subconcept of all of the concepts c01, c
0

2, . . . , and c
0

m?" with n;m � 1. The user

can either accept or reject the subsumption. If she rejects, she has to provide

a counter-example, i. e., a new object [or a new concept] which belongs to the

extent of [is a subconcept of, resp.] all concepts c1, c2, . . . , and cn but not to at

least one of the concepts c01, c
0

2, . . . , and c
0

m
. In this way, the list of subsumptions

as well as the list of counter-examples grows iteratively, until all pairs of concepts

are either in a subconcept{superconcept{relation or there is a counter-example

prohibiting this.

The set of counter{examples can be empty at the beginning, or it can already

contain some elements, if they are known from the beginning. The same holds for

the subsumptions. If subsumptions are known from the beginning, they may be

entered before starting the exploration.2 The algorithm also allows to add further

background knowledge expressible in propositional logic. A piece of information

is for instance that two (or more) concepts are mutually exclusive.

1 I. e., for each set of formal concepts, there exists always a greatest common subcon-

cept and a least common superconcept.
2 This is especially important for the merging task, where each ontology already comes

along with its own subsumption hierarchy.

5

The OntEx approach can be split into three steps:

1. initialization of the exploration contexts,

2. the exploration process,

3. further processing.

In the initialization step, the user has to provide an initial set of concepts

she considers to be relevant. How to obtain this initial set is beyond the scope

of this paper. It may be determined by other knowledge acquisition techniques

as for instance described in [18]. Then one formalizes both the background

knowledge (especially the known subsumptions) and the (possibly empty) set of

counter{examples. The exploration process comprises the exploration dialogue

with the user, consisting of questions as described above. At the end of this

process, the lattice of all conjunctions of the input concepts is determined. It

contains all input concepts and some new concepts constructed during the pro-

cess. In the third phase, the user can modify the resulting hierarchy using any

ontology editor, eventually supported by some heuristic approach as described

in Section 2.

5 The OntEx Method

In this section, we discuss in detail the three steps for creating the concept

hierarchy of the (top{level of the) ontology in detail. An example is provided in

the next section.

In order to simplify notations, we will not distinguish between objects (in-

stances) and sub-concepts as counter-examples in what follows. In practice, of

course this distinction will be tracked, and will be used as additional information

for further processing of the exploration results.

5.1 Initialization of the Exploration Contexts

In the initialization step, we formalize both the background knowledge (es-

pecially the known subsumptions) and the (possibly empty) set of counter{

examples in form of formal contexts. We assume that the user has already �xed

some initial set C of ontology concepts (without necessarily any hierarchy infor-

mation on it) which she considers important. Further concepts may be added at

later iterations of the process.

In order to simplify notations, we will not encode the background knowledge

in form of axioms, but rather as a list of potential examples.3 This list contains

thus all combinations of attributes which are not excluded by the background

3 Here and in what follows we will not address performance issues { which are of

course important { but rather try to keep the explanation as simple as possible.

The performance of attribute exploration with background knowledge is analyzed

in detail in [6]. There it is shown that the fact that the exploration is restricted to

implicational logic (whereas the background knowledge may be given by arbitrary

propositional formulae) makes the approach computationally feasible.

6

knowledge. It is stored as a context P := (G;C; I), called frame context, where

C is the initial set of concepts. The set G consists at the �rst stage of dummy

concepts. They will be replaced by concrete concept names (or will be deleted)

during the exploration. There is one g 2 G for each attribute combination B � C

with fggI = B unless the combination is known to be impossible according to

the eventually given background knowledge.4

If we already know of some instances of ontology concepts at the very be-

ginning, then we code this information in two more contexts, O+ := (O;C; I+)

and O
? := (O;C; I?) with O � G. O+ encodes which of the objects are known

to belong to which concepts, i. e., (o; c) 2 I+ i� we know that object o belongs

to concept c. O? encodes which of the objects are not known not to belong to

certain concepts, i. e., (o; c) 2 I? i� we cannot exclude that object o belongs to

concept c. In this encoding, we have I+ � I \ (O � C) � I?.

5.2 The Exploration Process

In the exploration process, the set G of possible objects will decrease, and the set

O of counter{examples will increase, based on the answers given by the user, until

the implicational theory of the contexts is equal. Then the exploration process

ends; and the resulting implicational theory is the one of the target ontology. In

particular, it describes the subsumption hierarchy of the target ontology.

At each step in the interactive process, OntEx checks if there is any set

X � C of concepts with X = XII 6= X??.5 If so, then such a set is chosen and

the user is asked if the implication
V
X !

V
(X??) is universally valid for the

ontology (see details below). If no such X exists then the implicational theory of

the ontology is completely determined, and there are no more \open questions".

The concept lattice of P will contain the full concept order. But even more: we

then know all cases where a conjunction of concepts subsumes another concept.

The conjunctions can be understood as implicit encodings of new concepts, and

will be used later as seeds for new concepts for the target ontology.

When there still exists a set X � C of concepts with X = XII 6= X??,

then `the next such set' is chosen6 and the user is asked if the conjunction of

all concepts in X is a subconcept of all concepts in X?? (i. e., if
V
X !

V
(X??)

is universally valid). Then the user has to provide a counter-example or has to

accept the implication.7

Each single input to the exploration process can be given in form of a clauseV
A !

W
N (with A;N � C), which is marked either as valid or as non-valid.

4 The fact that in the worst case card(G) = 2card(C) holds, indicates the importance

of formalizing as much background knowledge as possible in order to reduce the size

of P.
5 We write X? and X+ instead of XI

?

and XI
+

, resp. (see Section 3.2).
6 In [4] (see also [7]), an eÆcient strategy is described.
7 Depending on the underlying ontology language, the user can be supported in this

task by some additional inference mechanism, for instance a description logics infer-

ence engine (see [1]).

7

The input of a \valid" clause (i. e., the partial acceptance of a subsumption

suggested by the system) will cause modi�cations of P, O+ , and of O? . From

P all objects not consistent with
V
A !

W
N are removed, and the partial

description of the objects o 2 O, encoded by O+ and O
? , is updated according

to
V
A!

W
N .

A clause
V
A !

W
N which is marked as \non{valid" is interpreted as a

partial description of a counter{example, i. e. of a new object o 2 O with fog+ :=

A and fog? := C nN . The consistency of the description of the given counter{

example with the background knowledge and the results already obtained has to

be checked. This can be done using standard methods of propositional logics and

will not be described in this paper. If the user says that the counter{example is

a concept, then it may additionally be added to the set C. In this case, it will

be considered during the subsequent exploration phase. This optional extension

of the set C of concepts provides higher accuracy, as also all combinations with

this new concept are considered, but it extends the duration of the knowledge

acquisition.

When the user has given his answer, and the exploration contexts are modi-

�ed as described, the `next' set X � C with X = XII 6= X?? (according to the

modi�ed contexts) is determined8 and the user is asked the next question.

In the worst case (i. e., when all subsumptions are rejected without exception)

and with the worst answering strategy, the number of questions is exponential in

the cardinality of the initial set of concepts. In practice, however, this worst{case

complexity is far from being reached, since there are numerous dependencies

between the concepts. On the other hand, the underlying theory guarantees

that the number of accepted subsumptions is minimal, and can thus not be

outperformed by any other technique.

5.3 Further Processing

Having �nished the exploration process, we have now completely determined the

subsumption order on the initial set of concepts, and we know all constraints be-

tween these concepts which can be described in implicational logic. This includes

in particular the information which combinations of concepts any instances can

have, and which combinations are excluded. This information is added to the

set of axioms of the ontology.

At this point the highly accurate part of the creation of the target ontology is

�nished. Now heuristics{based approaches may take over. They may be selected

out of the list of tools as described in Section 2.

An additional aspect resulting from our approach is that the possible combi-

nations (conjunctions) of initial concepts are seeds for new concepts. A name for

a newly generated concept can be derived from its minimal generators (i. e., the

minimal subsets of the set of initial concepts whose conjunctions are equal to the

new concept) as described in detail in [19]. The knowledge engineer may accept

8 The technique described in [4, 7] guarantees that the order on the sets X � C is

compatible with the modi�cation of the contexts.

8

Fig. 1. Sowa's top{level ontology. The bottom concept is not shown for sake of read-

ability.

some or all of the new concepts. Accepting all of them has the advantage that the

resulting ontology is a lattice which allows for computation with the concepts

(i. e., for any given set of concepts, the computation of its unique least common

superconcept and its unique greatest common subconcept; and the computation

of implications (functional dependencies) between the concepts). On the other

hand, the resulting ontology may become too large. It depends on the individual

application how this trade{o� will be resolved.

6 An Example Application

In [16], J. F. Sowa elaborated a top{level ontology, based on a careful study of the

ontology work of the philosophers Heraclitus, Aristotle, Kant, Peirce, Husserl,

Whitehead, and Heidegger. Using the three distinctions `Physical | Abstract'

of Heraclitus, `Thing | Relation | Mediation' of Peirce, and `Continuant |

Occurrent' of Whitehead, Sowa established the top{level ontology shown in Fig-

ure 1. In this section, we show how OntEx could have helped Sowa in this

approach.9

We initialize the exploration by setting C := fPhysical, Abstract, Thing,
Relation, Mediation, Continuant, Occurrentg, G := P(C) (i. e., we do

not exclude any combinations of concepts at the beginning), and I := f(g; c) 2
G� C j c 2 gg. Finally, we let O := ; and I+ := I? := ;. The contexts are now
determined, and the exploration dialogue can begin:

The empty set is the �rst set satisfying X = XII 6= X??. For X = ;, we have
XII = ; and X?? = C.

Q: Is the conjunction of no concepts at all (i. e., the top concept) a subconcept of

all of the concepts Physical, Abstract, Thing, Relation, Mediation,
Continuant, and Occurrent?

9 In [22], the same example has been used to explain `Simply Implicational Theories', a

formalism for supporting empirical theory building within the framework of Formal

Concept Analysis.

9

A: No. A counter{example is the new concept Object, which is subconcept of

the top concept, but beside that only of the concepts Continuant, Thing,
and Physical.

The set O is extended by Object,10 and I+ and I? are extended to f(Object,
Continuant),(Object,Thing),(Object,Physical)g. One might also add the

new concept Object to the set C, but we do not make use of this option here.11

We choose again X := ;, since now XII = ; and X?? =fContinuant,
Thing, Physicalg.

Q: Is the conjunction of no concepts (i. e., the top concept) a subconcept of all

of the concepts Physical, Thing, and Continuant?
A: No. A counter{example is the new concept Purpose, which is subconcept of

the top concept, but beside that only of the concepts Occurrent, Medi-

ation, and Abstract (and is hence not subconcept of any of the concepts

mentioned).

The set O is extended by Purpose, and I+ and I? are extended by the three

tuples (Purpose,Occurrent), (Purpose,Mediation), and (Purpose,Ab-
stract).

Now we have XII = ; = X?? for X = ;, hence the next set has to be

chosen. With the strategy described in [5], we obtain X =fOccurrentg (with
XII =fOccurrentg and X?? =fOccurrent, Mediation, Abstractg).

Q: Is Occurrent a subconcept of all of the concepts Mediation and Ab-
stract?

A: No. A counter{example is the new concept Description, which is sub-

concept of Occurrent, but beside that only of the concepts Thing and

Physical (and is hence not subconcept of any of the concepts mentioned).

Again O, I+, and I? are extended according to the rules. The exploration con-

tinues this manner. The �rst question we encounter which will be accepted is

the following:

Q: Is the conjunction of Relation and Mediation a subconcept of all other

concepts?
A: Yes (because these two concepts are considered to be disjoint and their con-

junction is thus equal to the \absurd" bottom element).

Now the set G is decreased by subtracting all its elements g with fRelation,
Mediation� g; and from the relation I are subtracted all tuples having these

sets as �rst component.

This way, the exploration takes on, until no sets X remain ful�lling the

condition X = XII 6= X??. After 23 questions in total, we obtain the concept

hierarchy shown in Figure 2.

10 In the set G, Object is identi�ed with fContinuant, Thing, Physicalg2 G.
11 Choosing this option would lead to some more questions, and would in the end

result in the additional observation that Object is in fact the conjunction (i. e.,

the greatest common subconcept) of the three concepts Continuant, Thing, and

Physical, and not just an arbitrary subconcept of them.

10

Fig. 2. The result of OntEx based on the categories of Heraclitus, Peirce, and White-

head. The bottom concept is not shown for sake of readability.

In the �rst level, we see the concepts we started with. In the second and

third level, we see the concepts which were given as counter-examples. We can

for instance see that Behavior is a subconcept of the three concepts Contin-
uant, Abstract, and Mediation. (If we had decided to add Behavior to

the set C during the exploration, we would additionally know that it is indeed

equal to their greatest common subsumer.) The ten concepts without label are

formal concepts in the sense of FCA. If we discard them, then we obtain exactly

Sowa's top{level ontology in Figure 1. However, they can also be used as further

concepts of the top{level ontology. It is then up to the knowledge engineer to

provide names for them. If all these concepts are accepted, we have the additional

advantage that one can compute with the concepts, since the resulting concept

hierarchy is a lattice: each pair of concepts has a meet (i. e., a unique greatest

common subconcept) and a join (i. e., a unique least common superconcept).

In the diagram, we can see that none of the concepts we started with is

subsumed by any other one. By studying the diagram closer, we discover that

all possible combinations of concepts out of each of the sets of categories of

Heraclitus, Peirce, and Whitehead are realized as a new concept. Hence the

sets of categories of the three philosophers are truly orthogonal to each other.

According to Sowa (see Figure 1), though, the combination of one category of

Whitehead with one category of either Heraclitus or Peirce (e. g., Occurrent
and Mediation) is not a concept of its own. This is of course a philosophical

question, and cannot be solved by our algorithm. However, OntEx makes these

potential concepts explicit and accessible to discussion.

7 Ontology Merging with OntEx

In this section, we discuss the use of OntEx for ontology merging. The main dif-

ference to the task of creating an ontology from scratch is the initialization phase.

The input of the merging process are two12 ontologies O1 := (C1; is a1; R1; �1)

12 The approach is applicable to more than two ontologies simultanuously.

11

and O2 := (C2; is a2; R2; �2), eventually together with two sets A1 and A2

of propositional logics axioms. The output is then a target ontology OT :=

(CT ; is aT ; RT ; �T) together with a set of axioms AT . As said above, we will

not deal with the exploration of the relations here. Their treatment by OntEx
is subject to further research. We simply let RT := R1 [R2.

We illustrate the approach with a small example. It consists of the two mini-

ontologies shown in Figure 3. The two ontologies come along with two sets of

axioms, namely A1 := f; ! Root1;:(Area1 ^ Hotel1)g and A2 := f; !
Root2;:(Region2 ^Accommodation2)g.

Fig. 3. The two examples of source ontologies.

7.1 Initialization of the Exploration Contexts

We have to initialize the frame context P := (G;C; I) and the two contexts

O
+ := (O;C; I+) and O

? := (O;C; I?) according to the given knowledge. Let

�rst of all C := C1 _[C2, O := ;, and I+ := I? := ;. The set G �rst contains

2card(C) objects such that, for each B � C, there exists exactly one g 2 G with

fgg0 = B.

Then the sets A1 and A2 of axioms are turned into a set of clauses marked

as valid resp. invalid (using standard logic techniques). For each pair (c; c0) 2
(C1�C1)[(C2�C2) of concepts in the two ontologies where c is an immediate

subconcept of c0 (i. e., a lower cover in the is a hierarchy), we add c ! c0 as

valid and c0 ! c as invalid clause. The contexts P, O+ and O? are then modi�ed

as described in the fourth paragraph of Section 5.2. If the two ontologies (or one

of them) come along with instances, then they are added to the set O, and I+

and I? are updated as described for new counter{examples in Section 5.2. With

the three contexts initialized this way, the exploration starts.

7.2 The Exploration Process

The exploration dialogue follows the same rules as described in Section 5.2. For

our example, this means that the �rst question is as follows:

12

Q: Is Hotel1 a subconcept of all of Region2, Campground2 and Accom-
modation2?

A: No. A counter{example is `Ra�es Hotel'.

The sets O and I+ are extended accordingly: The set O is extended by the object

`Ra�es Hotel', and the relations I+ and I? by f`Ra�es Hotel'g�fRoot1;Ho-
tel1;Root2;Accommodation2; g.

Q: Is Hotel1 a subconcept of Accommodation2?
A: Yes.

Hence the set G of the frame context P is pruned by deleting all objects g 2 G
where fgg0 contradicts Hotel1 ! Accommodation2 .

The exploration continues until all open questions are solved. Finally, the set

AT of axioms of the target ontology is obtained (without any further user interac-

tion) byAT := A1[A2[fc1 $ c2 j c1 2 C1 and c2 2 C2 are merged in the target

ontologyg. In our example, we have

AT := A1 [A2 [fRoot1$ Root2;Campsite1$ Campground2g :

The is aT hierarchy is shown in Figure 4, together with the �rst counter{

example acquired during the exploration process. In total, there are two more

counter{examples: `Yosemite Camping', being a counter{example to bothCamp-
site1 ! Region2 and Campground2 ! Hotel1; and `Tuscany', being a

counter{example to Region2 ! Hotel1.

Fig. 4. The target ontology obtained by OntEx.

7.3 Further Processing

For this third step, all remarks made in Section 5.3 are valid. Additionally,

OntEx may have determined pairs of concepts of the source ontologies which

are merged in the target ontology (as Root1/Root2 and Campsite1/Camp-
ground2 in our example). In the preprocessing step, these concepts can serve as

starting point for further merging of concepts and relations by addressing next

concepts which are close to them in the source ontologies. This approach is for

instance realized in Prompt [14] (but with a simpler, more straightforward way

of obtaining the initially merged concepts).

13

8 Conclusion and Future Work

In this paper, we presented OntEx (Ontology Exploration), a technique for cre-

ating/merging ontologies with high accuracy. The technique is suited especially

for small parts of the ontologies | especially its top parts | where high quality

results are required. Its results can be used as starting point for heuristics{based

approaches for dealing with the remainder of the ontologies.

In the paper, we described the three steps of the technique: the initialization

of the exploration contexts, the exploration process, and the further processing.

We also discussed how the approach can be used for merging (the top levels of)

ontologies. The paper described the underlying assumptions and discussed the

overall methodology.

Future work includes the closer integration of the method in the KAON

ontology engineering environment.13 It is also planned to extend this approach

to the creation/merging of the ontology relations by combining the Attribute

Exploration technique with Rule exploration [23], which allows for �rst order

literals instead of binary attributes. Here, decidability will be an important issue,

hinting at the use of some description logic.

References

1. F. Baader: Computing a minimal representation of the subsumption lattice of all

conjunctions of concept de�ned in a terminology. In: G. Ellis, R. A. Levinson,

A. Fall, V. Dahl (eds.): Proc. Intl. KRUSE Symposium, August 11{13, 1995,

UCSC, Santa Cruz 1995, 168{178
2. S. Bechhofer, I. Horrocks, C. Goble, R. Stevens: OilEd: A Reason-able Ontology

Editor for the Semantic Web, In: KI{2001: Advances in Arti�cial Intelligence,

LNAI 2174, Springer, Heidelberg 2001, 396{408
3. H. Chalupsky: OntoMorph: A translation system for symbolic knowledge.

Proc. KR '00, Breckenridge, CO, USA,471{482.
4. B. Ganter: Algorithmen zur Formalen Begri�sanalyse. In: B. Ganter, R.

Wille, K. E. Wol� (eds.): Beitr�age zur Formalen Begri�sanalyse, B. I.{

Wissenschaftsverlag, Mannheim 1987, 241{254
5. B. Ganter: Attribute Exploration with Background Knowledge. TCS 217(2),

1999, 215{233
6. B. Ganter, R. Krau�e: Pseudo models and propositional Horn inference. Preprint

MATH-AL-15-1999, TU Dresden 1999
7. B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.

Springer, Berlin{Heidelberg 1999
8. E. Hovy: Combining and standardizing large-scale, practical ontologies for ma-

chine translation and other uses. Proc. 1st Intl. Conf. on Language Resources and

Evaluation, Granada, Spain, May 1998.
9. A. M�adche: Ontology Learning for the Semantic Web. PhD thesis, Universit�at

Karlsruhe. Kluwer, Dordrecht 2002
10. A. M�adche, S. Staab: Semi-automatic engineering of ontologies from Text.

Proc. 12th Intl. Conf. on Software Engineering and Knowledge Engineering

(SEKE'2000)

13 kaon.semanticweb.org

14

11. A. M�adche, S. Staab: Discovering conceptual relations from text. Proc. 14th Euro-

pean Conference on Arti�cial Intelligence (ECAI 2000), IOS Press, Amsterdam,

2000

12. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder: An environment for merging

and testing large Ontologies. Proc. KR '00, 483{493.

13. N. F. Noy, R. Fergerson, M. Musen: The Knowledge Model of Prot�eg�e-2000: Com-

bining Interoperability and Flexibility, Proc. EKAW 2000, LNCS 1937, Springer,

Heidelberg 2000, 17{32

14. N. F. Noy, M. A. Musen: PROMPT: algorithm and tool for automated ontology

merging and alignment. Proc. AAAI '00, 450{455

15. I. Schmitt, G. Saake: Merging inheritance hierarchies for database integration.

Proc. CoopIS'98, IEEE Computer Science Press, 322{331.

16. J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks Cole Publ., Paci�c Grove, CA, 2000

17. S. Staab, A. M�adche: Ontology engineering beyond the modeling of concepts and

relations. Proc. ECAI'2000 workshop on application of ontologies and problem-

solving methods, IOS Press, Amsterdam 2000

18. S. Staab, H.-P. Schnurr, R. Studer, Y. Sure: Knowledge Processes and Ontologies.

IEEE Intelligent Systems 16(1), 2001

19. G. Stumme, A. M�adche: FCA{Merge: Bottom-Up Merging of Ontologies. Proc.

17th Intl. Conf. on Arti�cial Intelligence (IJCAI '01). Seattle, WA, USA, 2001,

225{230

20. Y. Sure, C. Boyens: OntoKick { Ignition for Ontologies. Poster Session at: WI{IF

2001 | 5th International Conference WirtschaftsInformatik, Sep. 19{21, 2001,

Augsburg, Germany

21. R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht 1982, 445{470

22. S. Strahringer, R. Wille, U. Wille: Mathematical Support for Empirical Theory

Building. In: H. Delugach, G. Stumme (Eds.): Conceptual Structures: Broadening

the Base. Proc. ICCS '01. LNAI 2120, Springer, Heidelberg 2001, 169{186

23. M. Zickwol�: Rule Exploration: First Order Logic in Formal Concept Analysis.

PhD thesis, TH Darmstadt 1991

15

