
Document Retrieval for Email Search and

Discovery using Formal Concept Analysis

Richard Cole1 and Peter Eklund1 and Gerd Stumme2

1 School of Information Technology and Electrical Engineering

The University of Queensland, St. Lucia QLD 4072, Australia

2 Institute of Applied Informatics and Formal Description Methods (AIFB)

University of Karlsruhe

D{76128 Karlsruhe, Germany

Abstract. This paper discusses an document discovery tool based on

conceptual clustering by formal concept analysis. The program allows

users to navigate email using a visual lattice metaphor rather than a tree.

It implements a virtual �le structure over email where �les and entire

directories can appear in multiple positions. The content and shape of the

lattice formed by the conceptual ontology can assist in email discovery.

The system described provides more
exibility in retrieving stored emails

than what is normally available in email clients. The paper discusses

how conceptual ontologies can leverage traditional document retrieval

systems and aid knowledge discovery in document collections.

1 Introduction

Traditional email management systems provide the user with a tree structure of

folders which is an analog of the directories provided in traditional �le systems

and folders in �ling cabinets. The advantage of such a system is that, by analogy,

any user familiar with lexical ordering and �ling cabinets is also familiar with

a �le-system. The disadvantage is that documents are placed in a single folder

only. To be retrieved, the user must determine the correct folder, and then locate

the document within that folder.

Placing an email in a folder while using an email-reading program is an act

of classi�cation. Its purpose is to aid in the later retrieval of that email. It makes

sense to classify an email document according to multiple orthogonal criteria, for

example according to the author, the recipients, the content of the document,

the type of the email (incoming or outgoing, read/unread etc) and the context

of the email. Traditional �le handling systems are often accompanied by a text

search capabilities based on keyword retrieval via an index or via grep style

stream search. As well as classifying email we are also required to search it.

For example, consider looking for an email from Carol Goble about the pro-

gram committee of the WWW11 conference. Neither the folder of all emails

from Carol Goble nor the folder of all emails about WWW11 are good places

to look, as they contain too many irrelevant emails. Rather, the intersection of

these two folders is likely to recover your email. By encouraging classi�cation

and the creation of a large number of folders, rather than discouraging it by

forcing the user to select a single folder, one increases the chance that a folder

2

will correspond to a user's query. This is the aim of our HierMail system1. The

system also provides the facility to create folders whose content is decided by

information retrieval techniques like keyword search and machine learning clas-

si�ers developed for automatic classi�cation of texts [4, 2]. Such folders can be

dynamically created and combined with existing folders to aid in email search.

HierMail associates email documents with descriptors arranged in a multiple

inheritance hierarchy (ontology) using an inverted �le index. Descriptors replace

the concept of folders. More than one descriptor can (and should) be assigned

to an email.

In the example earlier, the client need not decide where on the �le-system to

store the email from Carole Goble about the program committee of WWW11.

He simply assigns all relevant descriptors to the email. HierMail displays folder

contents (i. e., sets of emails related to a selection of descriptors) as conceptual

views via concept lattices.

Concept lattices are de�ned in the mathematical theory of Formal Concept

Analysis [13]. Formal Concept Analysis is an unsupervised KDD technique which

allows for conceptual clustering [18, 3, 16]. Cluster Analysis in general comprises

a set of unsupervised machine learning techniques which split sets of objects

into clusters (subsets) such that objects within a cluster are as similar as possi-

ble while objects from di�erent clusters are as di�erent as possible. Conceptual

Clustering techniques additionally aim at determining not only clusters but to

provide at the same time intensional descriptions of these extensions [15].

1 see http://www.hiermail.com

3

In our case, the clusters are considered as the content of an email folder, while

the intensional description provides means for locating and retrieving it within

the multiple cluster hierarchy (i. e., the concept lattice). The concept lattice

is derived from the binary relation which assigns descriptors like `conferences',

`goble', or `organization' to emails. The exploitation of the resulting model (the

concept lattice) can then be used for discovery of new knowledge out of the

emails (in particular discovering interesting associations between email content),

but can also be exploited for information retrieval purposes.

There are a number of related approaches. For instance, the concept of a

virtual folder was introduced in a program called View Mail (VM) [14]. A virtual

folder is a collection of email documents retrieved in response to a query. The

virtual folder concept has more recently been popularized by a number of open-

source projects [17]. Other search tools for email are also available, 80-20 is one

such product.2

HierMail di�ers from those systems in the understanding of the underlying

structure { via formal concept analysis { and in the details of its implemen-

tation. It therefore extends the virtual or associative �le system idea to email

management and discovery. HierMail is designed with an open architecture to

accommodate information extraction techniques for text, images or multimedia

content. The regular expressions used in HierMail to associate emails to labels

in an ontology can therefore be swapped for neural networks or other classi�ers

2 see http://www.80-20.com

4

that identify features in the source documents [1, 2, 4]. Our approach is thus

complementary to these machine learning techniques.

In our approach, emails can be stored any place, in a relational database, in

a legacy �le hierarchy or on di�erent distributed �le systems later federated ac-

cording to the context of an inquiry. In HierMail, email retrieval is independent

of the physical organization of the �le-system.

In this paper, we pro�leHierMail (previously referred to in various stages of

development as Cem, ECA orWarp9) that follows from earlier work in medical

document retrieval reported in [9, 6]. We consolidate elements of work presented

previously in various conference papers [10, 8, 7] in this treatment. In the next

section, we will give an introduction to the basic notions of Formal Concept

Analysis. In Section 3, we describe the mathematical structures employed in

HierMail. Requirements for their maintenance are discussed in Section 4. We

describe how they are ful�lled by our implementation in Section 5. Section 6

illustrates HierMail by an application scenario, and Section 7 concludes the

article.

2 Mathematical Structure

Formal Concept Analysis (FCA) [13] has a long history as a technique for data

analysis. Two software tools, Toscana [21] and Anaconda embody a stan-

dard methodology for data-analysis based on FCA. Recently, a Java-based open-

source version of Toscana, called ToscanaJ has also been developed3. Following

3 see http://toscanaj.sourceforget.net

5

WWW 11 submission
hi!
ICCS location, PKDD reference
Re: WWW 11 submission
ICCS room reservation
ICCS camera ready/thanks to PC
Un petit garcon !!!
Re: Summary of ICCS 2001 Arrangements
Re: hi!
Invitation to IIP ’02 PC

C
on

fe
re

nc
e

R
el

at
ed

C
on

fe
re

nc
es

 w
ith

 p
ap

er
s

C
on

fe
re

nc
e

O
rg

an
is

at
io

n
P

ro
gr

am
 C

om
m

itt
ee

Fig. 1. Descriptors assigned to emails in a formal context.

the FCA methodology, data is organized as a table in a relational database and

is modeled mathematically as a formal context.

De�nition 1. A (formal) context is a triple K := (G;M; I) where G and M

are sets and I is a relation between G and M . The elements of G and M are

called objects and attributes, respectively, and (g;m) 2 I is read \object g has

attribute m".

In the relational database table there is one row for each object and one

column for each (Boolean) attribute.

We illustrate the de�nition by an example (see Fig. 1). The set G of objects

consists of 10 emails, the set M of attributes of four descriptors. The binary

relation I indicates which descriptors are assigned to each email.

6

De�nition 2. For A � G, we de�ne A0 := fm 2 M j 8g 2 A: (g;m) 2 Ig.

Dually, for B � M , we de�ne B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig. Now

a (formal) concept is a pair (A;B) such that A � G, B � M , A0 = B and

B0 = A. (This is equivalent to A and B being maximal with A � B � I.) The

set A is called the extent and the set B the intent of the concept (A;B).

Resulting from the context in Fig. 1 there are in total six formal concepts.

One of these concepts has for instance intent equal to the set of descriptors

fConference Related, Program Committeeg, and extent equal to the set of doc-

uments fRe: Summary of ICCS 2001 arrangements, Invitation to IIP '02 PC,

ICCS camera ready/thanks to PC.g

De�nition 3. Each formal context K gives rise to a conceptual hierarchy, called

concept lattice of K , and denoted by B(K). The hierarchical subconcept{super-

concept{relation on the concepts is formalized by

(A;B) � (C;D) :() A � C (() B � D) :

The concept lattice of the context of Fig. 1 is shown in Fig. 2. Each node

stands for a formal concept, and the subconcept-superconcept hierarchy can

be read by following ascending paths of straight line segments. The intent of

each concept is given by all attributes reachable from that concept by ascending

paths of straight line segments, and its extent is given by all objects reachable

by descending paths of straight line segments. The concept mentioned above is

the one labeled by `Program Committee'. In the diagram, one can �nd above it

the descriptors `Conference Related' and `Program Committee', hence its intent.

7

Conference Related

Conferences with papers

Conference Organisation

Program Committee

Un petit garcon !!!

WWW 11 submission

hi!

ICCS location, PKDD reference

Re: WWW 11 submission

ICCS room reservation

ICCS camera ready/thanks to PC

Re: hi!

Re: Summary of ICCS 2001 Arrangements

Invitation to IIP ’02 PC

Fig. 2. Concept lattice of the formal context in Fig. 1

Its extent are the three emails found below: namely the emails with the subjects

\Re: Summary of ICCS 2001 Arrangements", \Invitation to IIP `02 PC" and

\ICCS camera ready/thanks to PC". In the diagram one can also see that two

of the three emails have exactly the descriptors of the intent, while the third

email additionally has the descriptor `Conference with papers' and so appears

at the base of the lattice.

3 Mathematical Structures for Conceptually Managing

Emails

Mixed initiative is a process from human-computer interaction involving humans

and machines sharing tasks best suited to their individual abilities [12]. The com-

puter performs computationally intensive tasks and prompts human-clients to

intervene when either the machine is unsuited to make a decision or resource lim-

8

itations demand human intervention. Mixed initiative requires that the client be

able to determine trade-o�s between di�erent descriptors and alter search con-

straints to locate objects that satisfy an information requirement. Nesting and

zooming [21, 22] are two well established techniques used in FCA (see Figures 9

and 10). Together these techniques allow users to wander around in a conceptual

landscape [23] attempting to �nd concepts that satisfy their constraints.

Given this background we now describe the system on a structural level;

we abstract from implementation details which are discussed in Section 4. We

distinguish three fundamental structures:

1. a formal context that assigns to each email a set of descriptors;

2. a hierarchy over the set of descriptors in order to de�ne more general de-

scriptors;

3. a mechanism for creating conceptual scales used as a graphical interface for

email retrieval.

3.1 Assigning Descriptors to Emails

In HierMail, we use a formal context (G;M; I) for storing email and assigning

descriptors. The setG contains all emails stored in the system, the setM contains

all descriptors. For the moment, we considerM to be unstructured | in the next

subsection we will introduce a hierarchy over it.

The relation I indicates the assignment of descriptors to emails. In the exam-

ple given in the introduction, the client might want to assign all the descriptors

`goble, `www11', `program committee', `conferences', `www', and `organization'

9

to a new email. The incidence relation is generated in a semi-automatic process:

(i) a string-search algorithm recognizes words within sections of an email and

suggests relations between email attributes, (ii) the client may accept the sug-

gestion of the string-search algorithm or otherwise modify it, and (iii) the client

may attach his own attributes to the email. In Section 4, we discuss how the user

is supported in this assignment. For the moment, we suppose that the relation

between a document and its attributes is already provided.

A major interest in the information retrieval learning community is how

this assignment of labels to emails can occur automatically. In HierMail, we

simplify this problem by assuming these assignments are given by the user. It is

however possible using the system to construct complex regular expressions to

classify incoming email. However, the quality of the label assignment task is a

critical feature of the process we described.

Instead of a tree of disjoint folders and sub-folders, we consider the concept

lattice B(G;M; I) as the navigation space. The formal concepts replace the

folders. In particular, this means that the same email can appear in di�erent

concepts and therefore in di�erent folders. The most general concept contains all

emails in the collection. The deeper the user moves into the multiple inheritance

hierarchy, the more speci�c are the concepts, and the fewer emails they contain.

3.2 Hierarchies of Descriptors

To support the semi-automatic assignment of descriptors to emails, we provide

the set M of descriptors with a partial order �. For this subsumption hierarchy,

10

we assume that the following compatibility condition holds:

8g 2 G; m; n 2M : (g;m) 2 I; m � n) (g; n) 2 I (z)

i.e., the assignment of descriptors respects inheritance along the hierarchy. Hence,

when assigning descriptors to emails, it is suÆcient to assign the most speci�c

descriptors only. The more general descriptors are automatically added.

For instance, the hierarchy may contain the fact that `www' is a more speci�c

descriptor than `conferences', and that `www11' is more speci�c than `www' (i. e.,

`www11'�`www'�`conferences'). An email concerning the creation of a paper

for the WWW11 conference is assigned to `www11' only (and possibly also to

some additional descriptors like `cole', `eklund' and `stumme'). When the client

wants to retrieve this email, she is not required to recall the complete pathname.

Instead, the email also appears under the more general descriptor `conferences'.

If `conferences' provides too large a list of email, the client can re�ne the search,

by choosing a sub-term like `www', or adding a new descriptor, for instance

`cole'.

Notice that even though we impose no speci�c structure on the subsumption

hierarchy (M;�), it naturally splits three ways. One relates the contents of

the emails, e. g., if an email is related to `conference' (or not) or classi�ed to

`organization' etc. A second relates to the sender or receiver of the email. The

third describes aspects of the emailing process (for instance if it is inbound or

outbound mail, or if it is read and answered). An example of a hierarchy is given

in Fig. 3. The partially ordered set is displayed both in the style of a folding

editor and as a connected graph. The hierarchy displayed in Fig. 3 is a forest

11

Fig. 3. Partially ordered set of descriptors: as a folding editor and connected graph.

(i. e., a union of trees), but the resulting concept lattice | used as the search

space | is by no means a forest: it can be any lattice. Consider for example

the concept generated by the conjunction of the two descriptors `WWW11' and

`conference organization'. It will have at least two incomparable super-concepts,

namely the one generated by the descriptor `WWW11' and the one generated

by the descriptor `conference organization'. In general, all we know is that the

resulting concept lattice is embedded as a join-semi-lattice in the lattice of all

order ideals (i. e., all subsets X � M s. t. x 2 X and x � y imply y 2 X) of

(M;�).

12

3.3 Conceptual Scales and Navigating Email

Conceptual scaling deals with many-valued attributes [11]. Often attributes are

not one-valued, as are the string descriptors given above, but allow a range of

values. This is modeled by amany-valued context which is roughly equivalent to a

relation in a relational database with one �eld being a primary key. As one-valued

contexts are special cases of many-valued contexts, conceptual scaling can also

be applied to one-valued contexts to reduce the complexity of the visualization.

In this paper, we only deal with one-valued formal contexts. Readers who

are interested in many-valued contexts and the use of conceptual scaling in the

general case are referred to [13]. Applied to one-valued contexts, conceptual

scales are used to determine the concept lattice that arises from one vertical

`slice' of a large context:

De�nition 4. A conceptual scale for a subset B � M of attributes is a (one-

valued) formal context SB := (GB ; B;3) with GB � P(B). The scale is called

consistent wrt K := (G;M; I) if fgg0 \B 2 GB for each g 2 G. For a consistent

scale SB, the context SB(K) := (G;B; I \ (G�B)) is called its realized scale.

Conceptual scales are used to group together related attributes. They can be

considered as di�erent points of view, which can be combined by the user when

she is browsing/exploring the email collection. Conceptual scales can be derived

automatically (as described at the end of this section) or can be de�ned without

any restriction by the user.

Realized scales are derived from the conceptual scales when a diagram is

requested by the user. One of them is the scale Conference Related which is

13

Conference Related

Conferences with papers

Conference Organisation

Program Committee

body: conference
header: CFP

body: submission

body: organisation

header: PC

body: PC

Fig. 4. Conceptual Scale `Conference Related'.

displayed in Fig. 4. Its realized scale is the one we already saw in Fig. 2. In the

conceptual scale, the attributes are strings that are displayed later as attribute

names in the realized scale. The objects are queries (see Section 5.3) which

determine the set of emails to be displayed in the realized scale (`body: PC' is

for instance a query that selects emails containing the string `PC' in their body).

HierMail stores all scales that the client has de�ned in previous sessions.

For each scale the client assigns a unique name. This is modeled by a mapping:

De�nition 5. Let S be a set, whose elements are called scale names. The map-

ping

�:S ! P(M)

de�nes for each scale name s 2 S a scale Ss := S�(s).

14

For instance, the user may introduce a new scale which classi�es emails according

to being related to a conference by adding a new element `Conference' to S and

by de�ning:

�(Conference) := fWWW11; IJCAI `01;K-CAP `01;ADCS `01 ;PKDD 2000g

Observe that S andM need not be disjoint. This allows the following default

construction deducing conceptual scales directly from the subsumption hierar-

chy: Let S :=M , and de�ne, for s 2 S, �(s) := fm 2 M jm � sg (with x � y if

and only if x < y and there is no z s. t. x < z < y in the partially ordered set

(M;�) de�ned in Section 3.2). This means that all descriptors m 2M are con-

sidered as the name of scale Sm and as a descriptor of another scale Sn (where

m � n) [20]. A result of this de�nition is that descriptors with no lower covers

lead to trivial scales containing no other descriptors.

4 Requirements of HierMail

In this section, we discuss requirements for conceptual email management with

HierMail. In the following section we will then explain how our implementation

responds to these requirements. The requirements may be divided along the

underlying mathematical structures de�ned in Section 3:

1. assist the user in editing and browsing a descriptor hierarchy;

2. help the client visualize and modify the scale function �;

3. allow the client to manage the assignment of descriptor to emails;

15

4. assist the client search the conceptual space of emails for both individual

emails and conceptual groupings of emails.

Additional to the requirements stated above, a good email client needs to be able

to send, receive and display emails, process the various email formats and inter-

act with the current email protocols. Since these requirements are already well

understood and implemented by existing email programs they are not discussed

further. This does not mean they are not important, rather that the normal

feature set of an email client is implicit in the description of HierMail.

4.1 Editing and Modifying the Descriptor Hierarchy

The descriptor hierarchy is a partially ordered set (M;�) where each element

of M is a descriptor. The requirements for editing and browsing the descriptor

hierarchy are:

{ graphically display the structure of the the partially ordered set. The order-

ing relation must be evident to the client.

{ make accessible to the client a series of direct manipulations to alter the

ordering relation. It should be possible to create any partial order to a rea-

sonable size limit.

4.2 Visualizing and Modifying the Scale Function �

The program must be able to visualize the scale function, �, explained in Sec-

tion 3, and to support its modi�cation. It must allow an overlap between the set

of scale labels, S, and the set of descriptors M .

16

4.3 Managing the Descriptor Assignments

The program should store the formal context (G;M; I) and ensure that the

compatibility condition is always satis�ed. It is inevitable that the program will

have to sometimes modify the formal context in order to satisfy the compatibility

condition after a change is made to the descriptor hierarchy.

The program must support two mechanisms for the association of descriptors

to emails. Firstly, a mechanism is needed in which emails are automatically

associated with descriptors based on the email content. Secondly, the user should

be able to view and modify the association of descriptors with emails.

4.4 Navigating the Conceptual Space

The program must allow the navigation of the conceptual space of the emails

by drawing line diagrams of concept lattices derived from conceptual scales [13].

These line diagrams should extend to (locally [19]) nested line diagrams. The

program must allow for retrieval and display of emails forming the extension of

concepts displayed in the line diagrams.

5 Speci�cation and Implementation of HierMail

This section presents, in mathematical terms, the speci�cation of the behavior

of the HierMail system, and discusses speci�c aspects of its implementation.

It is divided into a similar structure as Section 4.

17

5.1 Classi�er Hierarchy

Browsing the Hierarchy. The user is presented with a view of the hierarchy

(M;�) as a tree widget shown in Fig. 3. The tree widget has the advantage

that most users are familiar with its behavior and it provides a compact repre-

sentation (in the sense of screen space used) of a tree structure. The descriptor

hierarchy, being a partially ordered set, allows for multiple inheritance. Although

the example given in Fig. 3 is a forest, no limitation is placed by the program

on the structure other than that it must be a partial order.

The following is the de�nition of the tree derived from the descriptor hi-

erarchy for the purpose of visualization in the tree widget. Let (M;�) be a

partially ordered set and denote the set of all sequences of elements from M by

M� (including the empty sequence "). Then the labeled tree derived from the

descriptor hierarchy is comprised by (T;v; label) where T := f(m1; : : : ;mn) 2

M� j mi � mi+1; mn 2 max(M)g [f"g, w1 v w2 i� w2 is a suÆx of w1, and

label:T n f"g !M is the function de�ned by label(m1; : : : ;mn) := mn.

Each tree node is hence identi�ed by a path from a descriptor to the top

of the descriptor hierarchy. An example of a tree is given on the left side for

Figure 3. The hierarchy displayed is just the one encoded in (T;v), and the

function label provides the labeling.

The tree representation has the disadvantage that elements with multiple

parents occur multiple times in the tree and the tree can become large. The tree

is however manageable if the user keeps the number of elements with multiple

parents in the partial order small.

18

Modifying the Hierarchy (M;�). The program provides four operations

for modifying the hierarchy: insert & remove descriptor and insert & remove

ordering. More complex operations provided to the client, for instance moving

an item in the taxonomy, are resolved internally to a sequences of these basic

operations. In this section we denote the order �lter (or up-set) of m as [m) :=

fx 2M j m � xg, the order ideal (or down-set) ofm as (m] := fx 2M j x � mg,

the lower cover of m as �m:= fx 2 M j x � mg, and the upper cover of m as

�m:= fx 2M j x � mg.

The operation of insert descriptor adds a new descriptor toM , and leaves the

� relation unchanged. The remove descriptor operation takes a single parameter

a 2M for which the lower cover is empty, and removes a from M and [a)�fag

from the ordering relation.

The operation of insert ordering takes two parameters a; b 2 M and inserts

into the relation �, the set [a)� (b]. The operation of remove ordering takes two

parameters a; b 2 M where a is an upper cover of b. The operation has been

drawn in the left diagram in Fig. 5. The shading gives an indication of the up-

sets and down-sets of a and b before and after the insert operation. The remove

ordering operation removes from � the set ((b] n (�a nfbg])� ([a) n [�b nfag)).

The right diagram in Fig. 5 shows the remove ordering operation.

Inserting the ordering b � a into � requires the insertion of set ([a) n [b))�

fg 2 G j (g; b) 2 Ig into I . Such an insertion into an inverted �le index is

O(nm) where n is the average number of entries in the inverted index in the

shaded region, and m is the number of elements in the shaded region. The real

19

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

insert a b

a

remove

b

a b

a

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������ bb

Fig. 5. Insert and removal ordering operation

complexity of this operation is best determined via experimentation with a large

document sets and a large user de�ned hierarchy [5]. Similarly the removal of the

ordering b � a from � will require a re-computation of the inverted �le entries

for elements in [a).

5.2 Visualization and Maintenance of the Scale Function �

The set of scales S, according to the mathematization in Section 3, is not disjoint

fromM , thus the tree representation ofM already presents a view of a portion of

S. In order to reduce the complexity of the graphical interface, we make S equal

to M , i. e., all descriptors are scale names, and all scale names are descriptors.

Such an assumption is made possible by the de�nition of the default scale for a

descriptor given in Section 3.

The function � maps each descriptor m to a set of descriptors. The program

displays this set of descriptors, when requested by the user, using a dialog box

(see Fig. 6). The dialog box contains, for all descriptors in the down-set of m, an

icon (either a tick, or a cross) to indicate membership in the set of descriptors

given by �(m). Clicking on the icon changes the membership of �(m).

20

Fig. 6. Scale function and concept lattice. The central dialogue box shows how � can

be edited.

By only displaying the down-set of m in the dialog box, the program restricts

the de�nition of � to �(m) � (m]. This has an e�ect on the \remove ordering

operation" de�ned on (M;�). When the ordering of a � b is removed, the image

of attributes in [a) under � must be checked and possibly modi�ed.

5.3 Associating Emails with Classi�ers

Recall that G is the set of email documents, M the set of descriptors, and I the

binary relation between them. We make use of four intermediate relations Q, R,

R+, and R� as de�ned below for managing the di�erent ways in which email

21

documents may be associated with descriptors in relation I . The relations Q and

R associate emails with descriptors via an automatic process based on content

and queries attached to descriptors, R+ and R� associate email based on user

input, and I combines these two sources with the hierarchy de�ned over the

descriptors. By separating the relations for automatic associations of descriptors

to emails from the relations for user de�ned associations, the program maintains

a pure keyword index into the email collection. Relations R and I are derived

from Q, R+, and R�, and so need not be stored. However, computing storing I

greatly reduces the time complexity of the program.

Each member of (M;�) is associated with a query term,: in this application

is a set of section/word pairs. A section of an email is either a header �eld, e. g.

the \From:" �eld, or the section \body" which is composed of the parts4 of the

email directly encoding text. More formally stated: Let H be the set of sections

found in the email documents,W the set of words found in the email documents,

then the function query:M ! P(H �W) attaches to each attribute a set of

section/word pairs.

Q � G� (H �W) is a relation between documents and section/word pairs.

The relation member (g; (h;w)) 2 Q indicates that document g has word w in

section h. Q is stored via an inverted �le index and is only updated when new

email is presented to the system. The relation R � G �M is derived from the

relation Q and the function query via: (g;m) 2 R i� (g; (h;w)) 2 Q for some

4 The MIME extension to the email format allows an email document to have multiple

parts. These multiple parts are sometimes referred to as attachments.

22

(h;w) 2 query(m). The relation R is only used as an intermediate step and is

calculated from Q as required by the program.

The relations R+ and R� store user judgments saying whether or not an

email should have a descriptor m. These judgments will \over-rule" the relation

R. We impose the constraint

8g 2 G; m; n 2M : m � n =) :((g;m) 2 R�
^ (g; n) 2 R+)) (#)

on the two relations R+ and R�, saying that a user is not allowed to contradict

himself, i. e., he is not allowed, for m � n, to assign (g;m) to R� and (g; n) to

R+. The handling of the user judgments is discussed below.

Maintaining the Compatibility Condition. The relation I has to respect

the compatibility condition (z). It is derived from the relations R, R+ and R�

using the following operator: For any relation J � G � M , we de�ne Jz :=

f(g;m) 2 G�M j 9n 2 M : (g; n) 2 J; n � mg. We obtain the binary relation

I by I := ((R nR�) [R+)z.

Processing new Emails. When a batch of new emails, Gb, is presented to the

program, the relation Q is updated automatically by inserting new pairs, Qb,

into the relation. The modi�cation of Q into Q [Qb will cause an insertion of

pairs Rb into R according to query(m) and then subsequently an insertion of

new pairs Ib into I . The de�nitions are:

Qb � Gb � (H �W)

Rb = f(g;m) j 9 (h;w) 2 query(m) and (g; (h;w)) 2 Qbg

23

Ib = f(g;m) j 9m1 � m with (g;m1) 2 Rbg

When new emails presented to the system for indexing, the modi�cation to

the inverted �le index consists of inserting new entries which is a very eÆcient

operation. Each pair inserted is O(1).

Integrating User Judgments. The user can modify the association of emails

with descriptors in two ways. Firstly, by changing the relations R+ and R�, and

secondly, by making modi�cations to the query function. In order to explain

the user interface for making modi�cations to R+ and R� we introduce the

following notation. For an email g 2 G, we de�ne the restriction of any relation

J � G�M to this email by Jg := J \ (fgg�M). For the purpose of brevity we

say m belongs to Jg if (g;m) 2 Jg .

The user is able to view individual emails as shown in Fig. 7. In this mode,

icons are attached to descriptors in the tree widget displayed to the left of the

email. These icons indicate to the user how each of the descriptors is related to

the displayed email by R, R�, and R+. The user is able to change the relations

R� and R+ by toggling the icons.

1. If m is not in Rz
g , (R

+
g)

z, or R�
g then no icon is displayed. This is the case

when the descriptorm is not assigned to the email g and this non-assignment

was not forced by the user.

2. If m is in Rz
g then a yellow tick (shown as white in Fig. 7) is displayed. It

indicates that m was assigned to the email automatically.

24

Fig. 7. Interface for viewing emails and associating them with descriptors

3. If m is in R�
g then a red cross is displayed. It means that the user explicitly

decided not to assign the descriptor to the email (overruling eventually the

automatic assignment).

4. If m is in (R+
g)

z then a green (shown as black in Fig. 7) tick is displayed.

This is the case when the user explicitly decided to assign the descriptor to

the email (overruling eventually the automatic non-assignment).

All combinations that exclude simultaneous red cross and green tick (i. e., which

do not contradict the (#) constraint) are possible.

The user can then determine that the displayed email has a descriptor in I if

there is either a green tick or a yellow tick in the absence of a red cross. The pro-

gram provides two basic operations, associate attribute and disassociate

attribute from which more complex operations for use in the user interface

25

may be constructed. The associate attribute operation takes two parame-

ters, an email document, and a descriptor m. The operation inserts the pair

(g;m) into R+, and removes, for all n � m, (g; s) from R�. Similarly the opera-

tion disassociate attribute takes two parameters, an email and a descriptor.

The operation inserts (g;m) in R� and removes, for all n � m, (g; n) from R+.

The construction of the two operators guarantees that the constraint (#) is

always satis�ed.

The user is also able to in
uence the way that R is derived from Q by

modifying the query function. The user is able to modify the query using the

Scale Query �eld in the dialog box shown in Fig. 6. After any such modi�cation

to the query function the relations R and I are modi�ed accordingly.

When the user makes a judgment that an indexed email should be associated

with a descriptor m, then an update must be made to R+, which in turn causes

updates to all attributes in the order �lter of m to be updated in I . The expense

of such an update depends on the implementation of the inverted �le index

and could be as bad as O(n) where n is the average number of documents per

descriptor. The case that a client retracts a judgment, saying that an email is

no longer be associated with an attribute m, requires a possible update to each

attribute n in the order �lter of m.

It is useful for the system to maintain the relation R+ for special descriptors

dependent on observation by the program of the users behavior. Two examples

of such descriptors are \read" for emails that the user has already read, and

\new" for emails that the user has not yet been noti�ed of.

26

5.4 Navigating the Conceptual Space

When the user requests that the concept lattice derived from the scale with

name s 2 S be drawn, the program computes S�(s) from De�nition 1 via the

algorithm reported in [5]. In the case that the user requests a diagram combining

two scales with names labels s and t, then the scale SB[C with B = �(s) and

C = �(t) is calculated by the program and its concept lattice B(SB[C) is drawn

as a projection into the lattice product B(SB)�B(SC).

To assist the user in navigating the conceptual space of emails, the program

draws simple line diagrams and (locally) nested line diagrams. A simple line

diagram is used to visualize a single scale (see Fig. 8), while nested line diagrams

are used to visualize combinations of scales (see Fig. 9). The concept lattices,

from which the nested line diagrams are drawn, are computed from the contexts

given by S�(s). Figure 10 shows a locally nested line diagram according to [19],

where the complexity of the visualization is reduced by displaying the inner scale

only when it re�nes the concept of the outer scale.

In the next Section, the navigation in the conceptual space by means of

(nested) line diagrams is illustrated by two examples.

6 Two Application Scenarios for HierMail

The user may navigate the conceptual space of emails documents for di�erent

purposes:

1. to retrieve previously stored emails; and

27

Fig. 8. Top-left-center shows the text input �eld allowing keywords to be entered in the

style of a classic search engine. The explorer-like structure to the left is the user-de�ned

descriptor hierarchy (ontology). To the right is the concept lattice.

2. to discover knowledge in the email collection, for instance to �nd collec-

tions of emails thematically linked (i. e., conceptual clustering), to discover

patterns of communication between di�erent groups, or to detect upcoming

topics.

6.1 Email Retrieval with HierMail

Imagine a researcher who was in the Program Committee (PC) of ICCS '97 and

was at that time co-authoring with other members of the PC for the same confer-

28

Fig. 9. This screenshot shows a nested concept lattice with a conceptual scale nested

within the outer scale.

ence. For the organization of a conference in the year 2002, she wants to retrieve

some facts about the organization of ICCS '97. However, she only remembers

that she exchanged this information with one of the people she was co-authoring

with for ICCS '97, and that it was only one small part of a correspondence cov-

ering various topics.

The researcher may begin her search by requesting a line diagram for the

scale named \Conference Related". This scale is shown in Fig. 11. It shows

that from her 2345 emails in total, there are 222 emails related to conferences,

145 of which are related to conferences with papers submitted, 115 related to

29

Fig. 10. Nesting and Zooming. Here we see local scaling as a way of reducing com-

plexity. The inner scale is displayed only when it di�erentiates the concept of the outer

scale.

conference organization, 110 of which in their turn are related to both conference

organization and program committees. 38 emails are related to all those topics.

The researcher decides that the email she is looking for is likely to be under

the descriptor \Conferences with Papers". As there are too many emails in its

extent to be read through, she may for instance want to expand the concept and

narrow the search. By choosing the scale SConferences 1997, she obtains Fig. 12.

Now the researcher can for instance check the 19 mails related to \ICCS '97" and

30

Fig. 11. Concept Lattice derived from the Scale for \Conference Related".

Fig. 12. Concept Lattice derived from the Scales for \Conference Related" and \Con-

ferences with Papers".

\Conference Organization/Program Committee" as in a conventional mailing

program (see Fig. 7).

31

If she still doesn't �nd the email she is looking for there, then she has to

check either the 86 papers related to \ICCS '97" or even all 115 emails under

the descriptor \Conference Organization". Before doing this, however, she might

want to di�erentiate these concepts further, e. g., by zooming into them with the

scale \Members of ICCS '97 Program Committee". If this scale doesn't exist yet,

then she can create it on the
y using the widget for modifying the scale function

(see Fig. 6) and eventually store the new scale for further use.

Note that with a classical, tree-structured search hierarchy, for instance one

where the names of the correspondents are on the highest level, one would be

forced to search all branches individually.

6.2 Knowledge Discovery with HierMail

We now look at how HierMail supports knowledge discovery based on the lat-

tice metaphor, uncovering relationships inherent in the data. Suppose we want

insights about the working behavior of the KVO research group and analyze a

collection of emails of the group leader. We are particularly interested in the

emails exchanged between the group leader, the PhD students and Research

Scientists in the group. In order to select relevant emails, we consider the con-

ceptual scale `Groups'. Fig. 8 shows that among his 1,786 emails about `Groups',

there are 1,130 related to the KVO group (Fig. 8 centre) and 739 emails from

members of the KVO group. Interestingly, 124 of those mails are also assigned to

the descriptor `From Darmstadt'. This is due to PhD students traveling to Eu-

32

rope, and indicates extensive exchange between the KVO group and Darmstadt

University of Technology.

This corpus of 739 emails will be subject to further analysis. We zoom into

the middle concept, using the scale KVO group. The result is shown in Fig. 10. It

reveals that Richard Cole is the group member who exchanged the most emails

with the group leader. In order to derive new knowledge out of this information,

further implicit background knowledge of the group leader is needed, as there

may be di�erent reasons for this observation. For instance, it may be that Cole is

the most active student, or he simply prefers email as a means of communication,

or it may be that he is the longest serving member of the research group and

has therefore accumulated the most email traÆc.

Let us now analyze how the group members are related to projects. We zoom

into the middle of Fig. 10 with the scale KVO Projects, and swap inner and outer

scales. The result is shown in Fig. 9. The inner scale distinguishes the emails

by team members and the outer scale by project names. The e�ect is that we

can immediately see from the number of emails attached to each node how team

members' interests are partitioned across projects. The gray nodes in the middle

left ellipse show that only Richard Cole shows interest in the project named

ECA; there is no email traÆc on ECA from any other team member.

A tool like HierMail might have been useful for instance for the law suit

of the U. S. government against a major software company in 2000, where the

public prosecutor had to check the company's emails on eventually unlawful

cartel agreements. Another possible use is the discovery of new trends on mailing

33

lists and newsgroup servers. As in most other KDD applications, of course data

privacy regulations have to be considered for such applications.

7 Conclusion

This paper gives a mathematical description of the algebraic structures used to

create a lattice-based view of email. The structure, its implementation, and its

operation aid the process of knowledge discovery in large collections of emails.

The paper illustrates the mathematical treatment through the development of a

useful document management, retrieval and knowledge discovery tool for emails.

By using a conceptual multi-hierarchy, the content and shape of the lattice view is

varied via the process of mixed-initiative interaction. An eÆcient implementation

of the index promotes client iteration. The work shows that the principles of

Formal Concept Analysis can be supported by an inverted �le index and that a

useful and scalable email management system results.

Acknowledgment. The work reported in this paper forms part of the GoDa

(Gold-Coast/Darmstadt) project and is supported by the Australian Research

Council and the Deutsche Forschungsgemeinschaft. This research also bene�ts

from the support of the Distributed Systems Technology Research Centre (DSTC

Pty Ltd) which operates as part of the Australian Government's CRC program.

34

References

1. I. Androutsopoulus, J. Koutsias, K.V. Chandrinos, D. Spryropoulos: An Experi-

mental Comparison of Naive Bayesian and Keyword-Based Anti-Spam Filtering,

In Proceedings of the 23rd SIGIR Conference, ACM Press, 2000, 160{167

2. J. Brutlag, J. Meek: Challenges of the email domain for text classi�cation, In

Proceedings of the 17th International Conference on Machine Learning, Morgan

Kaufmann, 2000, 103{110

3. C. Carpineto, G. Romano: GALOIS: An Order-Theoretic Approach to Conceptual

Clustering. Machine Learning. Proc. ICML 1993, Morgan Kaufmann Publishers

1993, 33{40

4. W. Cohen: Learning Rules that Classify E-mail, In Proceedings of the AAAI Spring

Symposium on Machine Learning in Information Access, Standford, CA, 1996.

5. R. Cole, P. Eklund: Scalability in Formal Concept Analysis: A Case Study using

Medical Texts. Computational Intelligence, 15(1), 1999, 11{27

6. R. Cole, P. Eklund: Analyzing an Email Collection using Formal Concept Analysis.

Proceedings of the European Conf. on Knowledge and Data Discovery (PKDD99),

LNAI 1704, Springer, Heidelberg 1999, 309{315

7. R. Cole, P. Eklund: Browsing Semi-Structured Web Texts using Formal Concept

Analysis, in Proceedings of the 9th International Conference on Conceptual Struc-

tures (ICCS'2001), LNAI 2120, Springer, Heidelberg 2001, 319{332

8. R. Cole, P. Eklund, G. Stumme: CEM | A Program for Visualization and Dis-

covery in Email, In D.A. Zighed, J. Komorowski, J. Zytkow (Eds), in Proceedings

of the European Conf. on Knowledge and Data Discovery (PKDD00), LNAI 1910,

Springer, Heidelberg 2000, 367{374

35

9. R. Cole, P. W. Eklund, D. Walker: Using Conceptual Scaling in Formal Con-

cept Analysis for Knowledge and Data Discovery in Medical Texts, Proceedings of

the Second Paci�c Asian Conference on Knowledge Discovery and Data Mining

(PAKDD98), World Scienti�c, 1998, 378{379

10. R. Cole, G. Stumme: CEM: A Conceptual Email Manager, in Proceedings of the

8th International Conference on Conceptual Structures (ICCS'2000), LNAI 1867,

Springer, Heidelberg 2000, 438{453

11. B. Ganter, R. Wille: Conceptual scaling. In: F.Roberts (ed.): Applications of com-

binatorics and graph theory to the biological and social sciences. Springer, New

York 1989, 139{167

12. E. Horvitz: Uncertainty, Action and Interaction: In pursuit of Mixed-

initiative Computing Intelligent Systems IEEE, September, 1999, 17{20

http://research.microsoft.com/~horvitz/mixedinit.HTM

13. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.

Springer, Heidelberg 1999

14. K. Jones: View Mail Users Manual. http://www.wonderworks.com/vm. 1999

15. R. S. Michalski: Knowledge acquisition through conceptual clustering: a theoretical

framework and an algorithm for partitioning data into conjunctive concepts. Policy

Analysis and Information Systems 4(3), 1980, 219{244

16. G. Mineau, R. Godin: Automatic Structuring of Knowledge Bases by Conceptual

Clustering. IEEE Transactions on Knowledge and Data Engineering 7(5),1995,

824{829

17. W. Schuller: http://gmail.linuxpower.org/. 1999

18. S. Strahringer, R. Wille: Conceptual clustering via convex-ordinal structures. In: O.

Opitz, B. Lausen, R. Klar (eds.): Information and Classi�cation. Springer, Berlin-

36

Heidelberg 1993, 85{98

19. G. Stumme: Local Scaling in Conceptual Data Systems. In Proceedings of the

5th International Conference on Conceptual Structures (ICCS96), LNAI 1115,

Springer, Heidelberg 1996, 308{320

20. G. Stumme: Hierarchies of Conceptual Scales. Proceedings of the Knowledge Acqui-

sition Workshop: Modeling and Management (KAW99). Ban� 1999. Vol. 2, 78{95

21. F. Vogt, R. Wille: TOSCANA: A Graphical Tool for Analyzing and Exploring

Data. In: R. Tamassia, I.G. Tollis (eds.): Graph Drawing '94, LNCS 894, Springer,

Heidelberg 1995, 226{233

22. F. Vogt, C. Wachter, R. Wille: Data Analysis based on a Conceptual File, In:

Hans-Hermann Bock, W. Lenski and P. Ihm (eds.): Classi�cation, Data Analysis

and Knowledge Organization, Springer, Heidelberg Berlin, 1991, 131{140

23. R. Wille: Conceptual Landscapes of Knowledge: A Pragmatic Paradigm for Knowl-

edge Processing In: W. Gaul, H. Locarek-Junge (eds.): Classi�cation in the Infor-

mation Age, Springer, Heidelberg 1999.

37

