
EÆient Data MiningBased on Formal Conept AnalysisGerd StummeInstitut f�ur Angewandte Informatik und Formale Beshreibungsverfahren AIFB,Universit�at Karlsruhe, D{76128 Karlsruhe, Germanywww.aifb.uni-karlsruhe.de/WBS/gst; stumme�aifb.uni-karlsruhe.deAbstrat. Formal Conept Analysis is an unsupervised learning teh-nique for oneptual lustering. We introdue the notion of ieberg on-ept latties and show their use in Knowledge Disovery in Databases(KDD). Ieberg latties are designed for analyzing very large databases.In partiular they serve as a ondensed representation of frequent pat-terns as known from assoiation rule mining.In order to show the interplay between Formal Conept Analysis andassoiation rule mining, we disuss the algorithm Titani. We show thatieberg onept latties are a starting point for omputing ondensed setsof assoiation rules without loss of information, and are a visualizationmethod for the resulting rules.1 IntrodutionKnowledge disovery in databases (KDD) is de�ned as the non-trivial extrationof valid, impliit, potentially useful and ultimately understandable informationin large databases [17℄. For several years, a wide range of appliations in variousdomains have bene�ted from KDD tehniques and many work has been on-duted on this topi. The problem of mining frequent patterns arose �rst as asub-problem of mining assoiation rules [1℄, but it then turned out to be presentin a variety of problems [18℄: mining sequential patterns [3℄, episodes [26℄, assoi-ation rules [2℄, orrelations [10, 37℄, multi-dimensional patterns [21, 22℄, maximalpatterns [8, 53, 23℄, losed patterns [47, 31{33℄. Sine the omplexity of this prob-lem is exponential in the size of the binary database input relation and sine thisrelation has to be sanned several times during the proess, eÆient algorithmsfor mining frequent patterns are required.The task of mining frequent patterns an be desribed as follows: Given a setG of objets, a setM of attributes (or items), a binary relation I � G�M (where(g;m) 2 I is read as \objet g has attribute m"), and a threshold minsupp 2[0; 1℄, determine all subsets X ofM (also alled patterns here) where the supportsupp(X) := ard(X0)ard(G) (with X 0 := fg 2 G j 8m 2 X : (g;m) 2 Ig) is above thethreshold minsupp.The set of these frequent patterns itself is usually not onsidered as a �nalresult of the mining proess, but rather an intermediate step. Its most prominent



use are ertainly assoiation rules. The task of mining assoiation rules is to de-termine all pairsX ! Y of subsets ofM suh that supp(X ! Y ) := supp(X[Y )is above the threshold minsupp, and the on�dene onf(X ! Y ) := supp(X[Y )supp(X)is above a given threshold minonf 2 [0; 1℄. Assoiation rules are for instane usedin warehouse basket analysis, where the warehouse management is interested inlearning about produts frequently bought together.Sine determining the frequent patterns is the omputationally most expen-sive part, most researh has foused on this aspet. Most algorithms follow theway of the well-known Apriori algorithm [2℄. It is traversing iteratively the setof all patterns in a levelwise manner. During eah iteration one level is onsid-ered: a subset of andidate patterns is reated by joining the frequent patternsdisovered during the previous iteration, the supports of all andidate patternsare ounted, and the infrequent ones are disarded. A variety of modi�ationsof this algorithm arose [11, 29, 34, 48℄ in order to improve di�erent eÆieny as-pets. However, all of these algorithms have to determine the supports of allfrequent patterns and of some infrequent ones in the database.Other algorithms are based on the extration of maximal frequent patterns,from whih all supersets are infrequent and all subsets are frequent. They om-bine a levelwise bottom-up traversal with a top-down traversal in order to quikly�nd the maximal frequent patterns. Then, all frequent patterns are derived fromthese ones and one last database san is arried on to ount their support. Themost prominent algorithm using this approah is Max-Miner [8℄. Experimen-tal results have shown that this approah is partiularly eÆient for extratingmaximal frequent patterns, but when applied to extrating all frequent patterns,performanes drastially derease beause of the ost of the last san whih re-quires roughly an inlusion test between eah frequent pattern and eah objetof the database. As for the �rst approah, algorithms based on this approahhave to extrat the supports of all frequent patterns from the database.While all tehniques mentioned so far ount the support of all frequent pat-terns, this is by no means neessary. In the next setion, we will show that theknowledge of some supports is suÆient for deriving all other supports. Thisway, we are able to derease omputation time. An additional result is the vi-sualization of representative frequent patterns in ieberg onept latties, whihis disussed in Setion 3. In Setion 4, we sketh the priniple of one of the al-gorithms, alled Titani. Last but not least, ieberg onept latties allow todrastially redue the number of rules that are to be presented to the user, with-out any information loss. This is the topi of Setion 5. The paper summarizesjoint work with Lot� Lakhal, Yves Bastide, Niolas Pasquier, and Ra�k Taouilas presented in [5, 6, 42, 43℄.2 Mining Frequent Patterns with Formal ConeptAnalysisConsider two patterns X and Y suh that both desribe exatly the same set ofobjets, i. e., X 0 = Y 0. So if we know the support of one of them, we do not need



to ount the support of the other one in the database. In fat, we an introduean equivalene relation � on the powerset P(M) of M by X�Y () X 0 = Y 0.If we knew the relation from the beginning, it would be suÆient to ount thesupport of one pattern of eah lass only | all other supports an then bederived.Of ourse one does not know � in advane, but one an determine it alongthe omputation. It turns out that one usually has to ount the support of morethan one pattern of eah lass, but normally not of all of them. The perentageof patterns to be onsidered depends on how orrelated the data are: The moreorrelated the data are, the fewer ounts have to be performed.This observation was independently made by three researh groups around1997/98, inspired by the theory of Formal Conept Analysis: L. Lakhal and hisdatabase group in Clermont{Ferrand, M. Zaki in Troy, NY, and the author inDarmstadt. The �rst algorithm based on this idea was Close [31℄, followed byA-Close [32℄, ChARM [55℄, Pasal [6℄, Closet [33℄, and Titani [41, 42℄, eahhaving its own way to exploit the equivalene relation whih is hidden in thedata. In Setion 4, we will sketh the Titani algorithm as an example.All these algorithms make use of the theory of Formal Conept Analysis(FCA). Introdued in the early 1980ies as a formalization of the onept of`onept' [51℄, FCA has over the years grown to a powerful theory for dataanalysis, information retrieval, and knowledge disovery [45℄. In Arti�ial Intel-ligene (AI), FCA is used as a knowledge representation mehanism [46℄ and asoneptual lustering method [38, 12, 27℄. In database theory, FCA has been ex-tensively used for lass hierarhy design and management [28, 52, 14, 50, 36, 16℄.Its usefulness for the analysis of data stored in relational databases has beendemonstrated with the ommerially used management system TOSCANA forConeptual Information Systems [49℄.FCA has been applied in a wide range of domains, inluding mediine, psy-hology, soial sienes, linguistis, information sienes, mahine and ivil en-gineering et. (f. [45℄). Over all, FCA has been used in more than 200 projets,both on the sienti� and the ommerial level. For instane, FCA has been ap-plied for analyzing data of hildren with diabetes [35℄, for developing qualitativetheories in musi esthetis [25℄, for managing emails [13℄, for database marketing[19℄, and for an IT seurity management system [9℄.FCA formalizes a onept of `onept' as established in the internationalstandard ISO 704: a onept is onsidered as a unit of thought onstituted oftwo parts: its extension and its intension [51, 15℄. This understanding of `onept'is �rst mentioned expliitly in the Logi of Port Royal [4℄. To allow a formaldesription of extensions and intensions, FCA starts with the same type of dataas assoiation rule mining: a (formal) ontext K := (G;M; I) onsists of a setG of objets [German: Gegenst�ande℄, a set M of attributes [Merkmale℄, and abinary relation I � G�M . As above, we de�ne, for A � G,A0 := fm 2M j 8g 2 A: (g;m) 2 Ig ;



and for B �M , we de�ne duallyB0 := fg 2 G j 8m 2 B: (g;m) 2 Ig :Now, a formal onept is a pair (A;B) with A � G, B � M , A0 = Band B0 = A. A is alled extent and B is alled intent of the onept. Theset B(K ) of all onepts of a formal ontext K together with the partial order(A1; B1) � (A2; B2) :, A1 � A2 (whih is equivalent to B1 � B2) is alledonept lattie of K .It turns out that eah onept intent (here also alled losed pattern) isexatly the largest pattern of the equivalene lass of � it belongs to. For anypattern X � M , the onept intent of its equivalene lass is the set X 00. Theonept intents an hene be onsidered as `normal forms' of the (frequent)patterns. In partiular, the onept lattie ontains all information to derive thesupport of all (frequent) patterns.3 Ieberg Conept LattiesWhile it is not really informative to study the set of all frequent patterns, the sit-uation hanges when we onsider the losed patterns among them only. The on-epts they belong to are alled frequent onepts, and the set of all frequent on-epts is alled ieberg onept lattie of the ontext K for the threshold minsupp.We illustrate this by a small example. Figure 1 shows the ieberg onept lat-tie of the Mushroom database from the UCI KDD Arhive [7℄ for a minimumsupport of 85%.The Mushroom database onsists of 8,416 objets (mushrooms) and 22(nominally valued) attributes. We obtain a formal ontext by reating one (Boo-lean) attribute for eah of the 80 possible values of the 22 database attributes.The resulting formal ontext has thus 8,416 objets and 80 attributes. For aminimum support of 85%, this dataset has 16 frequent patterns, namely all 24possible ombinations of the attributes `veil type: partial', `veil olor: white', `gillattahment: free', and `ring number: one'. Only seven of them are losed. Theseven frequent onepts are shown in Figure 1.In the diagram, eah node stands for formal onept. The intent of eahonept (i. e., eah frequent losed pattern) onsists of the attributes labeled ator above the onept. The number shows its support. One an learly see that allmushrooms in the database have the attribute `veil type: partial'. Furthermorethe diagram tells us that the three next-frequent attributes are: `veil olor: white'(with 97.62% support), `gill attahment: free' (97.43%), and `ring number: one'(92.30%). There is no other attribute having a support higher than 85%. Buteven the ombination of all these four onepts is frequent (with respet to ourthreshold of 85%): 89.92% of all mushrooms in our database have one ring, awhite partial veil, and free gills. This onept with a quite omplex desriptionontains more objets than the onept desribed by the �fth-most attribute,whih has a support below our threshold of 85%, sine it is not displayed in thediagram.



veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %Fig. 1. Ieberg onept lattie of the mushroom database with minsupp = 85%In the diagram, we an detet the impliationfring number: one, veil olor: whiteg) fgill attahment: freeg .It is indiated by the fat that there is no onept having `ring number: one'and `veil olor: white' (and `veil type: partial') in its intent, but not `gill attah-ment: free'. This impliation has a support of 89.92% and is globally valid inthe database (i. e., it has a on�dene of 100%).If we want to see more details, we have to derease the minimum support.Figure 2 shows the Mushroom ieberg onept lattie for a minimum supportof 70%. Its 12 onepts represent all information about the 32 frequent patternsfor this threshold. One observes that, of ourse, its top-most part is just theieberg lattie for minsupp = 85%. Additionally, we obtain �ve new onepts,having the possible ombinations of the next-frequent attribute `gill spaing:lose' (having support 81.08%) with the previous four attributes. The fat thatthe ombination fveil type: partial, gill attahment: free, gill spaing: loseg isnot realized as a onept intent indiates another impliation:fgill attahment: free, gill spaing: loseg ) fveil olor: whiteg (*)This impliation has 78.52% support (the support of the most general on-ept having all three attributes in its intent) and | being an impliation |100% on�dene.By further dereasing the minimum support, we disover more and moredetails. Figure 3 shows the Mushrooms ieberg onept lattie for a minimumsupport of 55%. It shows four more partial opies of the 85% ieberg lattie,and three new, single onepts.The Mushrooms example shows that ieberg onept latties are suitable es-peially for strongly orrelated data. In Table 1, the size of the ieberg oneptlattie (i. e., the number of all frequent losed patterns) is ompared with thenumber of all frequent patterns. It shows for instane, that, for the minimum



veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %Fig. 2. Ieberg onept lattie of the mushroom database with minsupp = 70%Table 1. Number of frequent losed itemsets and frequent itemsets for the Mushroomsexample minsupp # frequent losed itemsets # frequent itemsets85% 7 1670% 12 3255% 32 1160% 32.086 280support of 55%, only 32 frequent losed itemsets are needed to provide all infor-mation about the support of all 116 frequent itemsets one obtains for the samethreshold.4 Computing the Ieberg Conept Lattie with TitaniFor illustrating the priniples underlying the algorithms for mining frequent(losed) patterns using FCA, we sketh one representative alled Titani. Fora more detailed disussion of the algorithm, we refer to [42℄.Titani is ounting the support of so-alled key patterns (and of some an-didates for key patterns) only: A key pattern (or minimal generator) is everyminimal pattern in an equivalene lass of �. Titani makes use of the fatthat the set of all key patterns has the same property as the set of all frequentpatterns: it is an order ideal in the powerset of M . This means that eah subsetof a key pattern is a key pattern, and no superset of a non-key pattern is a keypattern. Thus we an reuse the pruning approah of Apriori for omputing thesupports of all frequent key patterns. One we have omputed them, we haveomputed the support of at least one pattern in eah equivalene lass of �,



veil type: partial
ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %Fig. 3. Ieberg onept lattie of the mushroom database with minsupp = 55%and we know the relation � ompletely. Hene we an dedue the support of allfrequent patterns without aessing the database any more.Figure 4 shows the priniple of Titani. Its basi idea is as the original Apri-ori algorithm: At the ith iteration, we onsider only patterns with ardinality i(alled i{patterns for short), starting with i = 1 (step 1). In step 2, the supportof all andidates is ounted. For i = 1, the andidates are all 1{patterns, laterthey are all i{patterns whih are potential key patterns.One we know the support of all i{andidates, we have enough informationto ompute for all (i�1){key patterns their losure, i. e., the onept intent oftheir equivalene lass. This is done in step 3, using the equation X 00 = X[fx 2M nX j supp(X) = supp(X [ fxg).In step 4, all patterns whih are either not frequent or non-key are pruned.For the latter we use a haraterization of key patterns saying that a pattern isa key pattern i� its support is di�erent from the support of all its immediatesubsets. In strongly orrelated data, this additional ondition helps pruning asigni�ant number of patterns.
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At the end, all supports are known:

• by count for the candidates

• by  calculation for all other patterns:

supp(X) = min { supp(K) | K Í X , K key pattern}Fig. 4. The Titani algorithmAt the end of eah iteration, the andidates for the next iteration are gen-erated in step 5. The generation proedure is basially the same as for Apriori:An (i+1){pattern is a andidate i� all its i{subpatterns are key patterns. Aslong as new andidates are generated, the next iteration starts. Otherwise thealgorithm terminates.It is important to note that | espeially in strongly orrelated data |the number of frequent key patterns is small ompared to the number of allfrequent patterns. Even more important, the ardinality of the largest frequentkey pattern is normally smaller than the one of the largest frequent pattern. Thismeans that the algorithm has to perform fewer iterations, and thus fewer sansof the database. This is espeially important when the database is too large formain memory, as eah disk aess signi�antly inreases omputation time. Atheoretial and experimental analysis of this behavior is given in [42℄, furtherexperimental results are provided in [6℄.5 Bases of Assoiation RulesOne problem in mining assoiation rules is the large number of rules whih areusually returned. But in fat not all rules are neessary to present the infor-
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gill spacing: close
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Fig. 5. Visualization of the Luxenburger basis for minsupp = 70% and minonf= 95%mation. Similar to the representation of all frequent patterns by the frequentlosed patterns, one an represent all valid assoiation rules by ertain subsets,so-alled bases. In [5℄, [56℄, and [43℄, di�erent bases for assoiation rules are in-trodued. The omputation of the bases does not require all frequent patterns,but only the losed ones.Here we will only show by an example (taken from [43℄), how these baseslook like. We have already disussed how impliations (i. e., assoiation ruleswith 100% on�dene) an be read from the line diagram. The Luxenburgerbasis for approximate assoiation rules (i. e., assoiation rules with less than100% on�dene) an also be visualized diretly in the line diagram of an ie-berg onept lattie. It makes use of results of [24℄ and ontains only those rulesB1 ! B2 where B1 and B2 are frequent onept intents and where the onept(B01; B1) is an immediate subonept of (B02; B2). Hene there orresponds toeah approximate rule in the Luxenburger base exatly one edge in the line dia-gram. Figure 5 visualizes all rules in the Luxenburger basis for minsupp=70%and minonf= 95%. For instane, the rightmost arrow stands for the assoia-tion rule fveil olor: white, gill spaing: loseg ! fgill attahment: freeg, whihholds with a on�dene of 99.6%. Its support is the support of the onept thearrow is pointing to: 78.52%, as shown in Figure 2. Edges without label indiatethat the on�dene of the rule is below the minimum on�dene threshold. Thevisualization tehnique is desribed in more detail in [43℄. In omparison withother visualization tehniques for assoiation rules (as for instane implementedin the IBM Intelligent Miner), the visualization of the Luxenburger basis withinthe ieberg onept lattie bene�ts of the smaller number of rules to be repre-
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