Ontology Merging for Federated Ontologies
on the Semantic Web

Gerd Stumme,! Alexander Maedche?

! Institute for Applied Informatics and Formal Description Methods (AIFB)
University of Karlsruhe, D-76128 Karlsruhe, Germany;
www.aifb.uni-karlsruhe.de/WBS /gst
2 FZI Research Center for Information Technologies
Haid-und-Neu-Strasse 10-14, D-76131 Karlsruhe, Germany; www.fzi.de/wim

Abstract. One of the core challenges for the Semantic Web is the aspect
of decentralization. Local structures can be modeled by ontologies. How-
ever, in order to support global communication and knowledge exchange,
mechanisms have to be developed for integrating the local systems. We
adopt the database approach of autonomous federated database systems
and consider an architecture for federated ontologies for the Semantic
Web as starting point of our work.

We identify the need for merging specific ontologies for developing feder-
ated, but still autonomous web systems. We present the method FCA-
MERGE for merging ontologies following a bottom-up approach which
offers a structural description of the merging process. The method is
guided by application-specific instances of the given source ontologies
that are to be merged. We apply techniques from natural language pro-
cessing and formal concept analysis to derive a lattice of concepts as a
structural result of FCA-MERGE. The generated result is then explored
and transformed into the merged ontology with human interaction.

1 Introduction

The current WWW is a great success with respect to the amount of stored doc-
uments and the number of users. One of the main reasons for the success of
the current WWW is the principle of decentralization [Be99]. Currently the Se-
mantic Web, developed as a “metaweb” for the WWW, is being established by
standards for syntax (e.g. XML) and semantics (RDF(S), DAML+OIL, etc.).
Ontologies have been established for knowledge sharing and are widely used as
a means for conceptually structuring domains of interest. One of the core chal-
lenges for the Semantic Web is the aspect of decentralization.! Local structures
can be modeled by ontologies. However, in order to support global communica-
tion and knowledge exchange, mechanisms have to be developed for integrating
the local systems.

L cf. http://www.w3.org/DesignIssues/Principles.html

A number of proposals are available from the database community for de-
veloping multi-database systems and, more specific, federated database systems,
that resemble the decentralized structures required in the Semantic Web. We
adopt the database approach of federated databases and consider an architec-
ture for federated ontologies on the Semantic Web as motivation and starting
point of our work.

A bottleneck for federated ontologies in the Semantic Web is the process of
integrating or merging specific ontologies. The process of ontology merging takes
as input two (or more) source ontologies and returns a merged ontology based on
the given source ontologies. Manual ontology merging using conventional edit-
ing tools without support is difficult, labor intensive and error prone. Therefore,
several systems and frameworks for supporting the knowledge engineer in the on-
tology merging task have recently been proposed [Ho98,Ch00,NM00,MFRWQ0].
The approaches rely on syntactic and semantic matching heuristics which are
derived from the behavior of ontology engineers when confronted with the task of
merging ontologies, i.e. human behaviour is simulated. Although some of them
locally use different kinds of logics for comparisons, these approaches do not offer
a structural description of the global merging process.

We propose the new method FCA-MERGE for merging ontologies follow-
ing a bottom-up approach which offers a global structural description of the
merging process. For the source ontologies, it extracts instances from a given
set of domain-specific text documents by applying natural language processing
techniques. Based on the extracted instances we apply mathematically founded
techniques taken from Formal Concept Analysis [Wi82,GW99] to derive a lat-
tice of concepts as a structural result of FCA-MERGE. The produced result
is explored and transformed to the merged ontology by the ontology engineer.
The extraction of instances from text documents circumvents the problem that
in most applications there are no objects which are simultaneously instances of
the source ontologies, and which could be used as a basis for identifying similar
concepts.

The remainder of the paper is as follows. We start our paper introducing a
generic architecture for federating ontologies for the Semantic Web in Section 2.
There we also identify the need for merging specific ontologies for developing
federated, autonomous systems. We briefly introduce some basic definitions con-
centrating on a formal definition of what an ontology is and recall the basics
of Formal Concept Analysis in Section 3. In Sections 4 to 6, we present our
method FCA-MERGE for merging ontologies following a bottom-up approach
which offers a global structural description of the merging process. We present
our generic method for ontology merging in Section 4. Section 5 provides a de-
tailed description of FCA-MERGE. Section 6 gives an overview over related
work, and Section 7 summarizes the paper and concludes with an outlook on
future work.

2 An Architecture for Federated Ontologies in the
Semantic Web

Figure 1 depicts the 5—-layer architecture of federated ontologies on the Semantic
Web. It adopts the approach of [SLI0] for federated databases.

App. 1 (view on App. N (view on
merged ontology) merged ontology)
Merged
Ontology
Export Export
ontology ontology
e A
- - Normalized ------ pemmee Normalized b----- _
ontology H ontology

Local
ontology

Local
ontology

Fig. 1. Architecture for Federated Ontologies

The architecture extends the standardized 3-layer schema architecture ANSI/
SPARC with two additional layers. The adopted architecture mainly consists of:

1. local ontologies (the conceptual models of the autonomous systems), each of
them with its specific underlying ontology/metadata repository or database,

2. normalized ontologies (transformation of the local ontologies into a common
data model),

3. export ontologies (view on the normalized ontology that describes the rele-
vant parts of the ontology for the federation),

4. one merged ontology (global ontology derived from the combination of the
two export schemas), and

5. different applications in the upper layer (external schema layer), which use
the merged ontology with their specific views on it.

In the following we will not go into further details of the organizational and
architectural structure. As already mentioned, the following sections and the rest
of this paper are dedicated to the task of generating a merged ontology from the
two (or more) given export ontologies of the autonomous web systems.

3 Ontologies and Formal Concept Analysis

In this section, we briefly introduce some basic definitions. We thereby concen-
trate on a formal definition of what an ontology is and recall the basics of Formal
Concept Analysis.

3.1 Ontologies

There is no common formal definition of what an ontology is. However, most
approaches share a few core items: concepts, a hierarchical IS-A-relation, and
further relations. For sake of generality, we do not discuss more specific features
like constraints, functions, or axioms here. We formalize the core in the following
way.

Definition: A (core) ontology is a tuple O := (C,is_a, R,0), where C is a set
whose elements are called concepts, is_a is a partial order on C (i.e., a binary
relation is_.a C C x C which is reflexive, transitive, and anti-symmetric), R
is a set whose elements are called relation names (or relations for short), and
0:R — C* is a function which assigns to each relation name its arity.

As said above, the definition considers the core elements of most languages for
ontology representation only. It is possible to map the definition to most types
of ontology representation languages. Our implementation, for instance, is based
on Frame Logic [KLW95]. Frame Logic has a well-founded semantics, but we do
not refer to it in this paper.

3.2 Formal Concept Analysis

We recall the basics of Formal Concept Analysis (FCA) as far as they are needed
for this paper. A more extensive overview is given in [GW99]. To allow a mathe-
matical description of concepts as being composed of extensions and intensions,
FCA starts with a formal context defined as a triple K := (G, M,), where G is
a set of objects, M is a set of attributes, and I is a binary relation between G
and M (i.e. I CG x M). (g,m) € I is read “object g has attribute m”.

Definition: For A C G, we define A’ := {m € M |Vg € A:(g,m) € I} and, for
B C M, we define B' :={g € G |Vm € B:(g,m) € I}.

0, Ry

D ‘—’ Linguistic K
Processing | —— 1 .
Fea- | B,(K) | Lattice
Merge |~ | Exploration
>
Processing El_p
\

Oz R,

new

Fig. 2. Ontology Merging Method

A formal concept of a formal context (G, M,I) is defined as a pair (4, B)
with A C G, BC M, A’ = B and B’ = A. The sets A and B are called the
extent and the intent of the formal concept (A, B). The subconcept—superconcept
relation is formalized by (41, B;) < (A2, Bs) <= A;CAy (<= B; D Bs).
The set of all formal concepts of a context K together with the partial order < is
always a complete lattice,? called the concept lattice of K and denoted by B(IK).

A possible confusion might arise from the double use of the word ‘concept’
in FCA and in ontologies. This comes from the fact that FCA and ontologies
are two models for the concept of ‘concept’ which arose independently. In or-
der to distinguish both notions, we will always refer to the FCA concepts as
‘formal concepts’. The concepts in ontologies are referred to just as ‘concepts’
or as ‘ontology concepts’. There is no direct counter-part of formal concepts in
ontologies. Ontology concepts are best compared to FCA attributes, as both can
be considered as unary predicates on the set of objects.

4 Bottom-Up Ontology Merging

As said above, we propose a bottom-up approach for ontology merging. Our
mechanism is based on application-specific instances of the two given ontologies
O; and O, that are to be merged. The overall process of merging two? ontologies
is depicted in Figure 2 and consists of three steps, namely () instance extraction
and computing of two formal contexts K; and Ks, (7) the FCA-MERGE core
algorithm that derives a common context and computes a concept lattice, and
(iii) the generation of the final merged ontology based on the concept lattice.
Our method takes as input data the two ontologies and a set D of natural
language documents. The documents have to be relevant to both ontologies, so

2 I.e., for each set of formal concepts, there is always a greatest common subconcept
and a least common superconcept.

? The approach can easily be extended for merging n instead of two ontologies simul-
taneously.

that the documents are described by the concepts contained in the ontology.
The documents may be taken from the target application which requires the
final merged ontology. From the documents in D, we eztract instances. The
mechanism for instance extraction is further described in Subsection 5.1. This
automatic knowledge acquisition step returns, for each ontology, a formal context
indicating which ontology concepts appear in which documents.

The extraction of the instances from documents is necessary because there
are usually no instances which are already classified by both ontologies. However,
if this situation is given, one can skip the first step and use the classification of
the instances directly as input for the two formal contexts.

The second step of our ontology merging approach comprises the FCA—
MERGE core algorithm. The core algorithm merges the two contexts and com-
putes a concept lattice from the merged context using FCA techniques. More
precisely, it computes a pruned concept lattice which has the same degree of
detail as the two source ontologies. The techniques applied for generating the
pruned concept lattice are described in Subsection 5.2 in more detail.

Instance extraction and the FCA-MERGE core algorithm are fully automatic.
The final step of deriving the merged ontology from the concept lattice requires
human interaction. Based on the pruned concept lattice and the sets of relation
names R; and R,, the ontology engineer creates the concepts and relations
of the target ontology. We offer graphical means of the ontology engineering
environment OntoEdit for supporting this process.

For obtaining good results, a few assumptions have to be met by the input
data: Firstly, the documents have to be relevant to each of the source ontologies.
A document from which no instance is extracted for each source ontology can
be neglected for our task. Secondly, the documents have to cover all concepts
from the source ontologies. Concepts which are not covered have to be treated
manually after our merging procedure (or the set of documents has to be ex-
panded). And last but not least, the documents must separate the concepts well
enough. If two concepts which are considered as different always appear in the
same documents, FCA-MERGE will map them to the same concept in the tar-
get ontology (unless this decision is overruled by the knowledge engineer). When
this situation appears too often, the knowledge engineer might want to add more
documents which further separate the concepts.

5 The FCA-Merge Method

In this section, we discuss the three steps of FCA-MERGE in more detail. We
illustrate FCA—MERGE with a small example taken from the tourism domain,
where we have built several specific ontology-based information systems. Our
general experiments are based on tourism ontologies that have been modeled in
an ontology engineering seminar. Different ontologies have been modeled for a
given text corpus on the web, which is provided by a WWW provider for tourist
information.* The corpus describes actual objects, like locations, accommoda-

* URL: http://www.all-in-all.com

tions, furnishings of accommodations, administrative information, and cultural
events. For the scenario described here, we have selected two ontologies: The first
ontology contains 67 concepts and 31 relations, and the second ontology contains
51 concepts and 22 relations. The underlying text corpus consists of 233 nat-
ural language documents taken from the WWW provider described above. For
demonstration purposes, we restrict ourselves first to two very small subsets O
and O, of the two ontologies described above; and to 14 out of the 233 doc-
uments. These examples will be translated in English. In Subsection 5.3, we
provide some examples from the merging of the larger ontologies.

5.1 Linguistic Analysis and Context Generation

The aim of this first step is to generate, for each ontology O;,i€{1,2}, a formal
context K; := (G;, M;, I;). The set of documents D is taken as object set (G; :=
D), and the set of concepts is taken as attribute set (M; := C;). While these sets
come for free, the difficult step is generating the binary relation I;. The relation
(9,m) € I; shall hold whenever document ¢ contains an instance of m.

The computation uses linguistic techniques as described in the sequel. We
conceive an information extraction-based approach for ontology-based extrac-
tion, which has been implemented on top of SMES (Saarbriicken Message Ex-
traction System), a shallow text processor for German (cf. [NBB+97]). The
architecture of SMES comprises a tokenizer based on regular expressions, a lez-
iscal analysis component including a word and a domain lexicon, and a chunk
parser. The tokenizer scans the text in order to identify boundaries of words
and complex expressions like “$20.00” or “Mecklenburg—Vorpommern”,®> and to
expand abbreviations.

The lexicon contains more than 120,000 stem entries and more than 12,000
subcategorization frames describing information used for lexical analysis and
chunk parsing. Furthermore, the domain-specific part of the lexicon contains
lexical entries that express natural language representations of concepts and
relations. Lexical entries may refer to several concepts or relations, and one
concept or relation may be referred to by several lexical entries.

Lezical analysis uses the lexicon to perform (1) morphological analysis, i.e.
the identification of the canonical common stem of a set of related word forms
and the analysis of compounds, (2) recognition of named entities, (3) part-of-
speech tagging, and (4) retrieval of domain-specific information. While steps (1),
(2), and (3) can be viewed as standard for information extraction approaches,
step (4) is of specific interest for our instance extraction mechanism. This step
associates single words or complex expressions with a concept from the ontology
if a corresponding entry in the domain-specific part of the lexicon exists. For
instance, the expression “Hotel Schwarzer Adler” is associated with the concept
Hotel. If the concept Hotel is in ontology O; and document g contains the
expression “Hotel Schwarzer Adler”, then the relation (g,Hotel) €I; holds.

% a region in the north east of Germany

o

o

A

)

K
g o o~
s] HEg
£ - L 0O 28 p

I, |Ro" 0w I,

1 |lup 0o go uggo
d O > O O :g<:§
SmMmo R

docl [X X X X X docl |X X X X
doc2 [X X X X X doc2 |X X X X
doc3 [X X X X doc3 (X X X
docd X X X X X doc4 |X X X X
doch X X X docb X X
doc6 X X X X doc6 [X X X X
doc7 X X doc7 X X X
doc8 X X X X X doc8 |X X X X
doc9 [X X X X doc9 X X X
doc10|x X x X docl10|x x X
docll|{x X X X X docll|x X X X
doc12 X X docl2|{x X% X
doc13 X X X X docl13|{X X X X
docl4|x x x X docl4|x x X

Fig. 3. The contexts K; and K as result of the first step

Finally, the transitivity of the is_a-relation is compiled into the formal con-
text, i.e. (g,m)€l and mis_an implies (g, n) €. This means that if (g,Hotel) €I}
holds and Hotel is_a Accommodation, then the document also describes an in-
stance of the concept Accommodation: (g,Accommodation)€l;.

Figure 3 depicts the contexts K; and Ky that have been generated from
the documents for the small example ontologies. E. g., document doc5 contains
instances of the concepts Event, Concert, and Root of ontology Oy, and Musical
and Root of ontology Os. All other documents contain some information on
hotels, as they contain instances of the concept Hotel both in O; and in Os,.

5.2 Generating the Pruned Concept Lattice

The second step takes as input the two formal contexts K; and Ky which were
generated in the last step, and returns a pruned concept lattice (see below), which
will be used as input in the next step.

First we merge the two formal contexts into a new formal context K, from
which we will derive the pruned concept lattice. Before merging the two for-
mal contexts, we have to disambiguate the attribute sets, since C; and C; may
contain the same concepts: Let M; := {(m,i) | m € M;}, for i€{1,2}. The in-
dexation of the concepts allows the possibility that the same concept exists in
both ontologies, but is treated differently. For instance, a Campground may be

Root _1

Root 2

Hotel 1

Hotel _2
Acconmodat i on_2

Event _1

Concert_1
Musi cal _2

Vacation_1

Fig. 4. The pruned concept lattice

considered as an Accommodation in the first ontology, but not in the second one.
Then the merged formal context is obtained by K := (G, M, I) with G := D,
M := My U Ms, and (g, (m,i)) € I :< (g,m) € I; .

We will not compute the whole concept lattice of K, as it would provide
too many too specific concepts. We restrict the computation to those formal
concepts which are above at least one formal concept generated by an (ontology)
concept of the source ontologies. This assures that we remain within the range
of specificity of the source ontologies. More precisely, the pruned concept lattice
is given by B, (K) := {(4, B)eB(K) | ImeM: ({m}', {m}") < (4, B)} (with -
as defined in Section 3.2).

For our example, the pruned concept lattice is shown in Figure 4. It consists
of six formal concepts. Two formal concepts of the total concept lattice are
pruned since they are too specific compared to the two source ontologies. In
the diagram, each formal concept is represented by a node. The empty nodes
are the pruned concepts and are usually hidden from the user. A concept is a
subconcept of another one if and only if it can be reached by a descending path.
The intent of a formal concept consists of all attributes (i.e., in our application,
the ontology concepts) which are attached to the formal concept or to one of its
superconcepts. As we are not interested in the document names, the extents of
the contexts are not visualized in this diagram.

The computation of the pruned concept lattice is done with the algorithm
T1TaNic [STB+00]. It is modified to allow the pruning. The modified algorithm
is described below.

Compared to other algorithms for computing concept lattices, TITANIC has
— for our purpose — the advantage that it computes the formal concepts via

their key sets (or minimal generators). A key set is a minimal description of a
formal concept:

Definition 1. K C M is a key set for the formal concept (A, B) if and only if
(K',K") = (A,B) and (X', X") # (A, B) for all X C K with X # K.

In our application, key sets serve two purposes. Firstly, they indicate if the
generated formal concept gives rise to a new concept in the target ontology or
not. A concept is new if and only if it has no key sets of cardinality one. Secondly,
the key sets of cardinality two or more can be used as generic names for new
concepts and they indicate the arity of new relations.

The Titanic Algorithm. We recall the algorithm T1TANIC and discuss how it
is modified to compute the pruned concept lattice. In the following, we will use
the composed function "': B(M) — R (M) which is a closure operator on M (i.e.,
it is extensive, monotonous, and idempotent). The related closure system (i. e.,
the set of all B C M with B"” = B) is exactly the set of the intents of all concepts
of the context. The structure of the concept lattice is already determined by this
closure system. Hence we restrict ourselves to the computation of all concept
intents in the sequel. The computation makes extensive use of the following
support function:

Definition 2. The support of X C M is defined by s(X) := % .

We follow a pruning strategy given in [AS94]. Originally this strategy was
presented as a heuristic for determining all frequent sets only (i.e., all sets with
supports above a user-defined threshold). The algorithm traverses the powerset
of M in a level-wise manner. At the kth iteration, all subsets of M with car-
dinality k& (called k-sets) are considered, unless we know in advance that they
cannot be key sets.

The pseudo-code of the modified TITANIC algorithm is given in Algorithm 1.
A list of notations is provided in Table 1.

Table 1. Notations used in TITANIC

k is the counter which indicates the current iteration. In the kth iteration, all
key k-sets are determined.

K contains after the kth iteration all key k-sets K together with their weight K.s
and their closure K.closure.

C stores the candidate k-sets C together with a counter C.p_s which stores the
minimum of the weights of all (k — 1)-subsets of C. The counter is used in
step 8 to prune all non-key sets.

6 In other words: K generates the formal concept (A, B).

Algorithm 1 TITANIC

1) B.s + 1;
2) Ko « {0};
3) k«1;
4) forall m € M do {m}.p_s < 1;
5) C {{m} |me M};
6) loop begin
7) Count(C);
8) Ki+{X€eC|Xs#Xps and (k=1 or 3m € M: X C m.closure)};
9) forall X € K} do X.closure <~ CLOSURE(X);
10) if K = 0 then exit loop ;
1) k++;
12) € + TITANIC-GEN(Kk-1);
13) end loop ;
14) return |J*~) {X.closure | X € K;}.

The algorithm starts with stating that the empty set is always a key set, and that
its support is always equal to 1 (steps 1+2). Then all 1-sets are candidate sets by
definition (steps 4+5). In later iterations, the candidate k-sets are determined
by the function TITANIC-GEN (step 12/Algorithm 2) which is (except step 5)
equivalent to the generating function of Apriori. (The result of step 5 will be
used in step 8 of Algorithm 1 for pruning the non-key sets.)

Once the candidate k-sets are determined, the function COUNT(X) is called
to compute, for each X € X, the support of X. It is stored in the variable X.s
(step 7).

In step 8 of Algorithm 1, the second condition prunes all candidate k-sets
which are out of the range of the two source ontologies. I.e., it implements the
condition of the definition of the pruned concept lattice 3B, (KK). This additional
condition makes the difference to the algorithm presented in [STB+00]. The first
condition in step 8 prunes all candidate k-sets which are not key sets according
to Proposition 1.

Proposition 1 ([STB400]). X C M is a key set if and only if
s(X) # minpex (s(X \ {m})).

For the remaining sets (which are now known to be key sets) their closures are
computed (step 9). The CLOSURE function (Algorithm 3) is a straight-forward
implementation of Proposition 2 (beside an additional optimization (step 2)).

Proposition 2 ([STB+00]).

1. Let X CM. Then h(X)=XU{me M\ X |s(X) =s(XU{m})} .
2. If X is not a key set, then s(X) = min{s(K) | K € K,K C X} where K is
the set of all key sets.

Algorithm 1 terminates, if there are no key k-sets left (step 10+14). Otherwise
the next iteration begins (steps 11+12).

Algorithm 2 TiTANIC-GEN

‘We assume that there is a total order > on M.
Input: Ki_1, the set of key (k — 1)-sets K with their support K.s.

Output: C, the set of candidate k-sets C
with the values C.p_s := min{s(C \ {m} | m € C}.

The variables p_s assigned to the sets {p1,...,pr} which are generated in step 1 are
initialized by {p1,...,pr}.p-s < 1.

1) C+{{pr,...,ox} i <j=pi <pj, {pr,. - Pr—2,0k=1}, {P1, ..., Pr—2, Dk} € K1 };
2) forall X € C do begin

3) forall (k — 1)-subsets S of X do begin

4) if S ¢ Kr—1 then begin C + C\ {X}; exit forall ; end;

5) X.p_s < min(X.p_s, S.s);

6) end;

7) end;

8) return C.

Algorithm 3 CLOSURE(X) for X € Ky

1) YV« X;

2) forallme X do Y + Y U (X \ {m}).closure;

3) forall m € M \Y do begin

4) if XU {m} € C then s + (X U {m}).s

5) else s +— min{K.s | K e K, K C XU {m}};
6) if s=X.sthenY « Y U{m}

7) end;

8) return Y.

5.3 Generating the new Ontology from the Concept Lattice

While the previous steps (instance extraction, context derivation, context merg-
ing, and TITANIC) are fully automatic, the derivation of the merged ontology
from the concept lattice requires human interaction, since it heavily relies on
background knowledge of the domain expert.

The result from the last step is a pruned concept lattice. From it we have to
derive the target ontology. Each of the formal concepts of the pruned concept
lattice is a candidate for a concept, a relation, or a new subsumption in the
target ontology. There is a number of queries which may be used to focus on the
most relevant parts of the pruned concept lattice. We discuss these queries after
the description of the general strategy — which follows now. Of course, most of
the technical details are hidden from the user.

As the documents are not needed for the generation of the target ontology,
we restrict our attention to the intents of the formal concepts, which are sets
of (ontology) concepts of the source ontologies. For each formal concept of the

pruned concept lattice, we analyze the related key sets. For each formal concept,
the following cases can be distinguished:

1. It has exactly one key set of cardinality 1.
2. It has two or more key sets of cardinality 1.
3. It has no key sets of cardinality 0 or 1.

4. Tt has the empty set as key set.”

The generation of the target ontology starts with all concepts being in one of the
two first situations. The first case is the easiest: The formal concept is generated
by exactly one ontology concept from one of the source ontologies. It can be
included in the target ontology without interaction of the knowledge engineer.
In our example, these are the two formal concepts labeled by Vacation_1 and
by Event_1.

In the second case, two or more concepts of the source ontologies generate the
same formal concept. This indicates that the concepts should be merged into one
concept in the target ontology. The user is asked which of the names to retain. In
the example, this is the case for two formal concepts: The key sets {Concert_1}
and {Musical 2} generate the same formal concept, and are thus suggested to
be merged; and the key sets {Hotel_1}, {Hotel 2}, and {Accommodation 2} also
generate the same formal concept.? The latter case is interesting, since it includes
two concepts of the same ontology. This means that the set of documents does
not provide enough details to separate these two concepts. Either the knowledge
engineer decides to merge the concepts (for instance because he observes that
the distinction is of no importance in the target application), or he adds them
as separate concepts to the target ontology. If there are too many suggestions
to merge concepts which should be distinguished, this is an indication that the
set of documents was not large enough.” In such a case, the user might want to
re-launch FCA-MERGE with a larger set of documents.

When all formal concepts in the first two cases are dealt with, then all con-
cepts from the source ontologies are included in the target ontology. Now, all
relations from the two source ontologies are copied into the target ontology.
Possible conflicts and duplicates have to be resolved by the ontology engineer.

In the next step, we deal with all formal concepts covered by the third case.
They are all generated by at least two concepts from the source ontologies, and
are candidates for new ontology concepts or relations in the target ontology.
The decision whether to add a concept or a relation to the target ontology (or
to discard the suggestion) is a modeling decision, and is left to the user. The
key sets provide suggestions either for the name of the new concept, or for the
concepts which should be linked with the new relation. Only those key sets with

" This implies (by the definition of key sets) that the formal concept does not have
another key set.

8 {Root_1} and {Root_2} are no key sets, as each of them has a subset (namely the
empty set) generating the same formal concept.

 The same holds for suggested subsumptions. This is for instance the case for the
concept Vacation_1, which is always mentioned in the documents whenever Hotel_1
is mentioned, and which is thus suggested to become a subconcept of the latter.

minimal cardinality are considered, as they provide the shortest names for new
concepts and minimal arities for new relations, resp.

For instance, the formal concept in the middle of Figure 4 has {Hotel 2,
Event_1}, {Hotel 1, Event_1}, and {Accommodation 2, Event_1} as key sets.
The user can now decide if to create a new concept with the default name
HotelEvent (which is unlikely in this situation), or to create a new relation
with arity (Hotel, Event), e.g., the relation organizesEvent.

Key sets of cardinality 2 serve yet another purpose: {mi, ms} being a key
set implies that neither miis_amsy nor mois_am; currently hold. Thus when
the user does not use a key set of cardinality 2 for generating a new concept or
relation, she should check if it is reasonable to add one of the two subsumptions
to the target ontology. This case does not show up in our small example. An
example from the large ontologies is given at the end of the section.

There is exactly one formal concept in the fourth case (as the empty set is
always a key set). This formal concept gives rise to a new largest concept in the
target ontology, the Root concept. It is up to the knowledge engineer to accept
or to reject this concept. Many ontology tools require the existence of such a
largest concept. In our example, this is the formal concept labeled by Root_1
and Root_2.

Finally, the is_a order on the concepts of the target ontology can be derived
automatically from the pruned concept lattice: If the concepts ¢; and ¢y are
derived from the formal concepts (A, B1) and (As, Bs), resp., then ¢iis_a ¢y if
and only if By D Bj (or if explicitly modeled by the user based on a key set of
cardinality 2).

Querying the pruned concept lattice. In order to support the knowledge
engineer in the different steps, there is a number of queries for focusing his
attention to the significant parts of the pruned concept lattice.

Two queries support the handling of the second case (in which different
ontology concepts generate the same formal concept). The first is a list of all
pairs (mqy,ma) € Cy x Cy with {m;}' = {ms}'. It indicates which concepts from
the different source ontologies should be merged.

In our small example, this list contains for instance the pair (Concert_1,
Musical_2). In the larger application (which is based on the German language),
pairs like (Zoo_1, Tierpark.2) and (Zoo_1, Tiergarten 2) are listed. We decided
to merge Zoo [engl.: zoo] and Tierpark [zoo], but not Zoo and Tiergarten
[zoological garden].

The second query returns, for ontology O; with i € {1,2}, the list of pairs
(ms,n;) € C; x C; with {m;}' = {n;}'. It helps checking which concepts out of a
single ontology might be subject to merge. The user might either conclude that
some of these concept pairs can be merged because their differentiation is not
necessary in the target application; or he might decide that the set of documents
must be extended because it does not differentiate the concepts enough.

In the small example, the list for O; contains only the pair (Hotel_1, Accommo-
dation_1). In the larger application, we had additionally pairs like (R¨iches,
Gebiet) and (Auto, Fortbewegungsmittel). For the target application, we

merged Riumliches [spatial thing] and Gebiet [region], but not Auto [car] and
Fortbewegungsmittel [means of travel].

The number of suggestions provided for the third situation can be quite high.
There are three queries which present only the most significant formal concepts
out of the pruned concepts. These queries can also be combined.

Firstly, one can fix an upper bound for the cardinality of the key sets. The
lower the bound is, the fewer new concepts are presented. A typical value is
2, which allows to retain all concepts from the two source ontologies (as they
are generated by key sets of cardinality 1), and to discover new binary relations
between concepts from the different source ontologies, but no relations of higher
arity. If one is interested in having exactly the old concepts and relations in
the target ontology, and no suggestions for new concepts and relations, then the
upper bound for the key set size is set to 1.

Secondly, one can fix a minimum support. This prunes all formal concepts
where the cardinality of the extent is too low (compared to the overall number
of documents). In Algorithm 1, this is achieved by adding the condition “[...]
and X.s > minsupp” to step 8. The default is no pruning, i.e., with a minimum
support of 0%. It is also possible to fix different minimum supports for different
cardinalities of the key sets. The typical case is to set the minimum support
to 0% for key sets of cardinality 1, and to a higher percentage for key sets of
higher cardinality. This way we retain all concepts from the source ontologies,
and generate new concepts and relations only if they have a certain (statistical)
significance.

Thirdly, one can consider only those key sets of cardinality 2 in which the
two concepts come from one ontology each. This way, only those formal concepts
are presented which give rise to concepts or relations linking the two source
ontologies. This restriction is useful whenever the quality of each source ontology
per se is known to be high, i.e., when there is no need to extend each of the
source ontologies alone.

In the small example, there are no key sets with cardinality 3 or higher.
The three key sets with cardinality 2 (as given above) all have a support of
% ~ 78.6%. In the larger application, we fixed 2 as upper bound for the
cardinality of the key sets. We obtained key sets like (Telefon_1 [telephone],
(ffentliche Einrichtung 2 [public institution]) (support = 24.5%), (Unter-
kunft_1 [accommodation], Fortbewegungsmittel 2 [means of travel]) (1.7 %),
(SchloB_1 [castle], Bauwerk 2 [building]) (2.1 %), and (Zimmer_1 [room], Biblio-
thek 2 [library]) (2.1%). The first gave rise to a new concept Telefonzelle
[public phone], the second to a new binary relation hatVerkehrsanbindung
[hasPublicTransportConnection], the third to a new subsumption Schlof is.a
Bauwerk, and the fourth was discarded as meaningless.

6 Related Work

A first approach for supporting the merging of ontologies is described in [Ho98].
There, several heuristics are described for identifying corresponding concepts in

different ontologies, e.g. comparing the names and the natural language defini-
tions of two concepts, and checking the closeness of two concepts in the concept
hierarchy.

The OntoMorph system [Ch00] offers two kinds of mechanisms for translating
and merging ontologies: syntactic rewriting supports the translation between two
different knowledge representation languages, semantic rewriting offers means for
inference-based transformations. It explicitly allows to violate the preservation
of semantics in trade-off for a more flexible transformation mechanism.

In [MFRWO0O0] the Chimaera system is described. It provides support for
merging of ontological terms from different sources, for checking the coverage
and correctness of ontologies and for maintaining ontologies over time. Chimaera
offers a broad collection of functions, but the underlying assumptions about
structural properties of the ontologies at hand are not made explicit.

Prompt [NMOO] is an algorithm for ontology merging and alignment embed-
ded in Protg 2000. It starts with the identification of matching class names.
Based on this initial step an iterative approach is carried out for performing au-
tomatic updates, finding resulting conflicts, and making suggestions to remove
these conflicts.

The tools described above offer extensive merging functionalities, most of
them based on syntactic and semantic matching heuristics, which are derived
from the behaviour of ontology engineers when confronted with the task of merg-
ing ontologies. OntoMorph and Chimarea use a description logics based approach
that influences the merging process locally, e. g. checking subsumption relation-
ships between terms. None of these approaches offers a structural description of
the global merging process. FCA-MERGE can be regarded as complementary
to existing work, offering a structural description of the overall merging process
with an underlying mathematical framework.

There is also much related work in the database community, especially in the
area of federated database systems. The work closest to our approach is described
in [SS98] and [C097]. They apply Formal Concept Analysis to a related problem,
namely database schema integration. As in our approach, a knowledge engineer
has to interpret the results in order to make modeling decisions. Our technique
differs in two points: There is no need of knowledge acquisition from a domain
expert in the preprocessing phase; and it additionally suggests new concepts and
relations for the target ontology.

7 Conclusion and Future Work

We have motivated our work with the issue of decentralization, one of the main
challenges for the Semantic Web. We have adopted the database point of view
and consider an architecture for federating ontologies in the Semantic Web as
motivation of our work. We discussed especially the process of integrating or
merging specific ontologies which is a bottleneck for federated ontologies in the
Semantic Web.

In this paper we have presented FCA—MERGE, a bottom-up technique for
merging ontologies based on a set of documents. We have described the three
steps of the technique: the linguistic analysis of the texts which returns two
formal contexts; the merging of the two contexts and the computation of the
pruned concept lattice; and the semi-automatic ontology creation phase which
supports the user in modeling the target ontology. The paper described the
underlying assumptions and discussed the methodology.

Future work includes the closer integration of the FCA-MERGE method in
the ontology engineering environment ONTOEDIT. In particular, we will offer
views on the pruned concept lattice based on the queries described in Subsec-
tion 5.3. It is also planned to further refine our information-extraction based
mechanism for extracting instances. This refinement goes hand in hand with
further improvements concerning the connection between ontologies and natural
language (cf. [MSS+01]).

The evaluation of ontology merging is an open issue [NM00]. We plan to
use FCA-MERGE to generate independently a set of merged ontologies (based
on two given source ontologies). Comparing these merged ontologies using the
standard information retrieval measures as proposed in [NMO00] will allow us to
evaluate the performance of FCA—MERGE.

On the theoretical side, an interesting open question is the extension of the
formalism to features of specific ontology languages, like for instance functions or
axioms. The question is (i) how they can be exploited for the merging process,
and (i7) how new functions and axioms describing the interplay between the
source ontologies can be generated for the target ontology.

Future work also includes the implementation of the framework of federated
ontologies as introduced in Section 2. We refer the interested reader to the re-
cently started EU-IST funded project OntoLogging'®, where the development
and management of federated web systems consisting of multiple ontologies and
associated knowledge bases will be studied and implemented.

Acknowledgements

This research was partially supported by DFG and BMBF.

References

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc.
VLDB Conf., 1994, 478-499 (Expanded version in IBM Report RJ9839)

[Ch00] H. Chalupsky: OntoMorph: A translation system for symbolic knowledge.
Proc. Tth Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR’2000), Breckenridge, Colorado, USA, April 2000, 471-482

[Co97] S. Conrad: Fdderierte Datenbanksysteme: Konzepte der Datenintegration.
Informatik-Lehrbuch, Springer, Berlin—Heidelberg 1997

19 http:/ /www.ontologging.com

[GW99] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Berlin—Heidelberg 1999

[Be99] T. Berners-Lee: Weaving the Web. Harper, Berlin-Heidelberg 1999

[Ho98] E. Hovy: Combining and standardizing large-scale, practical ontologies for ma-
chine translation and other uses. Proc. 1st Intl. Conf. on Language Resources and
Evaluation, Granada, Spain, May 1998.

[KLW95] M. Kifer, G. Lausen, J. Wu: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4) 1995, 741-843

[MSS+01] A. Maedche, S. Staab, N. Stojanovic, R. Studer, Y. Sure: SEAL - A Frame-
work for Developing SEmantic Web PortALs. In: Brian J. Read (ed.): Advances
in Databases, Proc. 18th British National Conference on Databases, BNCOD 18,
LNCS 2097, Springer, Heidelberg 2001, 1-22

[MFRWO00] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder: An environment
for merging and testing large Oontologies. Proc. 7th Intl. Conf. on Principles
of Knowledge Representation and Reasoning (KR’2000), Breckenridge, Colorado,
USA, April 2000, 483-493.

[NBB+97] G. Neumann, R. Backofen, J. Baur, M. Becker, C. Braun: An information
extraction core system for real world German text processing. Proc. ANLP-97,
Washington, USA, 1997

[NMO00] N. Fridman Noy, M. A. Musen: PROMPT: algorithm and tool for automated
ontology merging and alignment. Proc. 17th Natl. Conf. on Artificial Intelligence
(AAAI’2000), Austin, TX, July/August 2000, 450-455

[SS98] I. Schmitt, G. Saake: Merging inheritance hierarchies for database integration.
Proc. 8rd Int. Conf. on Cooperative Information Systems (CoopIS’98), IEEE Com-
puter Science Press 1998, 322-331.

[STB+00] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal: Fast computa-
tion of concept lattices using data mining techniques. Proc. KRDB ’00, CEUR-
Workshop Proc. http://CEUR-WS.org/Vol-29, 129-139.

[SL90] A. Sheth, J. Larsen: Federated database systems for managing distributed,
heterogeneous and autonomous databases. ACM Computing Surveys, 22(3), 1990

[Wi82] R. Wille: Restructuring lattice theory: an approach based on hierarchies of
concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht—Boston 1982, 445-470.

