Levelwise Search of Frequent Patterns
with Counting Inference

Yves Bastide,! Rafik Taouil,! Nicolas Pasquier,!
Gerd Stumme,? Lotfi Lakhal'

I Laboratoire LIMOS, FRE CNRS 2239, université Blaise Pascal,
complexe scientifique des Cézeaux, 24 av. des Landais,
63177 Aubiere Cedex, France;
{bastide,taouil,pasquier,lakhal }@libd2.univ-bpclermont.fr
2 Technische Universitit Darmstadt, Fachbereich Mathematik,
Schlof8gartenstr. 7, D-64289 Darmstadt, Germany;
stumme@mathematik.tu-darmstadt.de

Abstract

In this paper, we propose the algorithm PASCAL which introduces a novel op-
timization of the well-known algorithm Apriori. Being provided with a given
minsup threshold, PASCAL discovers all frequent patterns by performing as few
counting as possible. In order to derive the support of larger patterns without
accessing the database whenever it is possible, we use the knowledge about the
support of some of their sub-patterns, the so-called key patterns. Experiments
comparing PASCAL to the three algorithms Apriori, Close and Max-Miner, each
of which being representative of a frequent patterns discovery strategy, show
that PASCAL is the most efficient algorithm for extracting patterns from strongly
correlated data. Moreover, its execution times are equivalent to those of Apriori
and Max-Miner when data is weakly correlated.

Keywords: Data mining, database theory, algorithms, performance analysis.

1 Introduction

Knowledge discovery in databases (KDD) is defined as the non-trivial extraction of
valid, implicit, potentially useful and ultimately understandable information in large
databases. For several years, a wide range of applications in various domains have
benefited from KDD techniques and many work has been conducted on this topic.
The problem of mining frequent patterns arose first as a sub-problem of mining
association rules, but then it turned out that frequent patterns solve a variety of
problems: mining sequential patterns [AS95], episodes [MTV97], association rules
[AS94], correlations [BMS97, SBM98], multi-dimensional patterns [KHC97, LSW97],
maximal patterns [ZPOL97, LK98] and several other important knowledge discovery
tasks [HPYO0O0]. Since the complexity of this problem is exponential in the size of the
binary database input relation and since this relation has to be scanned several times
during the process, efficient algorithms for mining frequent patterns are required.

1.1 Related work

Three approaches have been proposed for mining frequent patterns: The first is
traversing iteratively the set of all patterns in a levelwise manner. During each iter-
ation corresponding to a level, a set of candidate patterns is created by joining the
frequent patterns discovered during the previous iteration, the supports of all can-
didate patterns are counted and infrequent ones are discarded. The most prominent
algorithm based on this approach is the Apriori algorithm [AS94], that is identical to
the algorithm OCD [MTV94] proposed concurrently. A variety of modifications of
this algorithm arose [BMUT97, GPW98, PCY95, SON95, Toi96] in order to improve
different efficiency aspects. However, all of these algorithms have to determine the
supports of all frequent patterns and of some infrequent ones in the database.

The second approach is based on the extraction of maximal' frequent patterns,
from which all supersets are infrequent and all subsets are frequent. This approach
combines a levelwise bottom-up traversal with a top-down traversal in order to
quickly find the maximal frequent patterns. Then, all frequent patterns are derived
from these ones and one last database scan is carried on to count their support. The
most prominent algorithm using this approach is Max-Miner [Bay98]. Experimental
results have shown that this approach is particularly efficient for extracting maximal
frequent patterns, but when applied for extracting all frequent patterns performances
drastically decrease because of the cost of the last scan which requires roughly an
inclusion test between each frequent pattern and each object of the database. As
algorithms based on the first approach, algorithms based on this approach have to
extract the supports of all frequent patterns from the database.

The third approach, represented by the Close algorithm [PBTL99], is based
on the theoretical framework introduced in [PBTL98| that uses the closure of the
Galois connection [GW99]. In this approach, the frequent closed patterns (and their
support) are extracted from the database in a levelwise manner. A closed pattern
is a pattern that is common to a set of objects of the database and each non-
closed pattern has the same properties (same set of objects containing it and thus
same support) as the smallest closed pattern containing it that is its closure. Then,
all frequent patterns as well as their support are derived from the frequent closed
patterns and their support without accessing the database. Hence not all patterns are
considered during the most expensive part of the algorithm (counting the supports
of the patterns) and the search space is drastically reduced, especially for strongly
correlated data. Experiments have shown that this approach is much more efficient
than the two previous ones on such data.

1.2 Contribution

In this paper, we present the PASCAL ? algorithm, introducing a novel, effective
and simple optimization of the algorithm Apriori. This optimization is based on
pattern counting inference that relies on the concept of key patterns. A key pattern
is a minimal pattern of an equivalence class gathering all patterns that have the

“Maximal’ means ‘maximal with respect to set inclusion’.
2The French mathematician Blaise Pascal (* Clermont-Ferrand 1623, t 1662 Paris) invented an
early computing device.

same objects. The pattern counting inference allows to determine the supports of
some frequent and infrequent patterns (the key patterns) in the database only. The
supports of all other frequent patterns are derived from the frequent key patterns.
This allows to reduce, at each database pass, the number of patterns considered, and,
even more important, to reduce the number of passes in total. This optimization
is valid since key patterns have a property that is compatible with the pruning of
Apriori: all subsets of a key pattern are key patterns and all supersets of a non-
key pattern are non-key patterns. Then, the counting inference is performed in a
levelwise manner: If a candidate pattern of size k which support has to be determined
is a non-key pattern, then its support is equal to the minimal support among the
patterns of size k-1 that are its subsets. In comparison to most other modifications of
Apriori, this results in a minimal impact on the understandability and simplicity of
implementation of the algorithm. The important difference is to determine as much
support counts as possible without accessing the database by information gathered
in previous passes. As shown by the experiments, the efficiency gain is up to the
order of a magnitude on correlated data.

1.3 Organization of the paper

In the next section, we recall the problem of mining frequent patterns. The essential
notions and the definitions of key patterns and pattern counting inference are given
in Section 3. The PASCAL algorithm is described in Section 4 and experimental
results for comparing its efficiency to those of Apriori, Max-Miner and Close are
presented in Section 5. A summary of the paper and some perspectives of future
work are given in Section 6.

2 Recall: The Problem of Mining Frequent Patterns

Definition 1. Let P be a finite set of items, O a finite set of objects (e. g., transaction
ids) and R C Ox P a binary relation between both (where (0, p) € R may for instance
be read as “item p is included in transaction 0”). The triple D = (O,P,R) is called
dataset.

Each subset P of P is called a pattern. We say that a pattern P is included
in an object o € O if (o,p) € R for all p € P. Let f be the function which
assigns to each pattern P C P the set of all objects which include this pattern:
f(P)={o€ O|oincludes P}.

The support of a pattern P is given by supp(P) = %

minsup € [0, 1], a pattern P is called frequent pattern if supp(P) > minsup.

. For a given threshold

Problem: The task of mining frequent patterns consists in determining all
frequent patterns together with their supports? for a given threshold minsup.

3There are also application where the supports need not be known exactly. We only consider
the case where all supports have to be determined as well.

3 Key Patterns and Pattern Counting Inference

In this section, we give the theoretical basis of the new PASCAL algorithm. This basis
provides at the same time the proof of correctness of the algorithm. The following
theorems are turned into pseudo-code in the Section 4.

As Apriori, PASCAL will traverse the powerset of P levelwise: At the k' iteration,
the algorithm generates first all candidate k-patterns.

Definition 2. A k-pattern P is a subset P of P with card(P) = k. A candidate
k-pattern is a k-pattern where all its proper sub-patterns are frequent.

For the candidate k-patterns one database pass is used to determine their sup-
port. Then infrequent patterns are pruned. This approach works because the well-
known fact that a pattern cannot be frequent if it has an infrequent sub-pattern.

3.1 Key Patterns

Our approach is based on the observation that frequent patterns can be considered
as “equivalent” if they are included in exactly the same objects. We describe this
fact by the following equivalence relation 6 on the frequent patterns.

Definition 3. For frequent patterns P,Q C P, welet PO Q if f(P) = f(Q). The set
of patterns which are equivalent to a pattern P is given by [P] ={Q CP | PHQ}.

In the case of frequent patterns P and Q with P 0 (), both patterns have obviously
the same support:

Lemma 1. Let P and Q) be frequent patterns.
(i) POQ = supp(P) = supp(Q)
(i) P CQAsupp(P) =supp(Q) = POQ

Proof. (i) POQ <= f(P) = f(Q) = supp(P) = i) - «rdl/i@) _
supp(Q).

(#3) Since P C @ and f is monotonous decreasing, we have f(P) 2 f(Q).
supp(P) = supp(Q) is equivalent to card(f(P)) = card(f(Q)) which implies with
the former f(P) = f(Q) and thus P 6 Q. O

Hence if we knew the relation 6 in advance, we would need to count the support
of only one pattern in each equivalence class. Of course we do not know the relation
in advance, but we can construct it step by step.* Thus, we will in general need
to determine the support of more than one pattern in each class, but not of all of
them. If we already have determined the support of a pattern P in the database and
pass later a pattern @) € [P], then we need not access the database for it because
we know that supp(Q) = supp(P).

The first patterns of an equivalence class that we reach using a levelwise approach
are exactly the minimal® patterns in the class:

“In the algorithm, the equivalence relation is not explicitly generated, but is — as the algorithm
is based on the following theorems — implicitly used.
5‘Minimal’ means ‘minimal with respect to set inclusion’.

Definition 4. A frequent pattern P is a key pattern if P € min[P]. A candidate
key pattern is a pattern where all its proper sub-patterns are key patterns.

Observe that all candidate key patterns are obviously also candidate patterns.

3.2 Pattern Counting Inference

In the algorithm we apply the pruning strategy both for candidate patterns and to
candidate key patterns. This is justified by the following theorem.

Theorem 2. (i) If Q is a key pattern and P C Q, then P is also a key pattern.
(i) If P is not a key pattern and P C Q, then Q is not a key pattern either.S

Proof. (ii) Let P C @ and P be not a key pattern. Then exists P’ € min[P]
with P € P. From f(P') = f(P) it follows f(Q) = f(Q\ (P \ P')). Hence Q is
not minimal in [Q] and thus by definition not a key pattern. (i) is a direct logical
consequence of (7). O

The algorithm determines, at each iteration, the key patterns among the candi-
date key patterns by using (i) of the following theorem:

Theorem 3. Let P be a frequent pattern.
(¢) Letpe P. Then P € [P\ {p}] if and only if supp(P) = supp(P \ {p}).
(it) P is a key pattern if and only if supp(P) # minycp(supp(P \ {p})).

Proof. (i) The “if” part follows from Lemma 1 (i7). The “only if” part is obvious.
(#7) From (i) we deduce that P is a key pattern if and only if supp(P) # supp(P \
{p}), for all p € P. Since supp is a monotonous decreasing function, this is equivalent
to (4i). O

Since all candidate key patterns are also candidate patterns, when generating
all candidate patterns for the next level we can at the same time determine the
candidate key patterns among them.

If we reach a candidate k-pattern which is not a candidate key pattern, then we
already passed along at least one of the key patterns in its equivalence class in an
earlier iteration. Hence we already know its support. Using the following theorem,
we determine this support without accessing the database:

Theorem 4. If P is a non-key pattern, then
supp(P) = min(supp(P \ {p})) .
peEP

Proof. “<” follows from the fact that supp is a monotonous decreasing function.
“>7: If P is not a key pattern then exists p € P with P60 P\{p}. Hence supp(P) =

supp(P \ {p}) > mingep(supp(P \ {g}). O

5In mathematical terms, (i) and (ii) state that the set of key patterns is an order ideal (or
down-set) of (2F, C).

Thus the database pass needs to count the supports of the candidate key patterns
only. Knowing this, we can summarize PASCAL as follows: It works exactly as
Apriori, but counts only those supports in the database pass which cannot be derived
from supports already computed. Thus we can, on each level, restrict the expensive
count in the database to some of the candidates. But even better, from some level
on, all candidate pattern may be known to be non-key patterns. Then all remaining
frequent patterns and their support can be derived without accessing the database
any more. In the worst case (i. e., in weakly correlated data), all candidates patterns
are also candidate key patterns. Then the algorithm behaves exactly as Apriori
without any overhead.

4 The PASCAL algorithm

In this section, we transform the theorems given in the last section into an algorithm.
The pseudo-code is given in Algorithm 1. A list of notations is provided in Table 1.
We assume that P is linearly ordered, e.g., P = {1,...,n}. This will be used in
PAsScAL-GEN.

Table 1: Notations used in PASCAL

k is the counter which indicates the current iteration. In the kth iteration,
all frequent k-patterns and all key patterns among them are determined.

Pr contains after the kth iteration all frequent k-patterns P together with
their support P.supp, and a boolean variable P.key indicating if P is a
(candidate) key pattern.

Cr stores the candidate k-patterns together with their support (if known),
the boolean variable P.key, and a counter P.pred_supp which stores the
minimum of the supports of all (k — 1)-sub-patterns of P.

The algorithm starts with the empty set, which always has a support of 1 and
which is (by definition) a key pattern (steps 1+2). In step 3, frequent 1-patterns are
determined. They are marked as key patterns unless their support is 1 (steps 4-6).
The main loop is similar to the one in Apriori (steps 7 to 21). First, PASCAL-GEN
is called to compute the candidate patterns. The support of key ones is determined
via a database pass (steps 10-14).

Then (steps 15-20) the ‘traditional’ pruning (step 16) is done. At the same time,
for all remaining candidate key patterns, it is determined whether they are key or
not (steps 17+18).

The way that PASCAL-GEN operates is basically known from the generator func-
tion Apriori-Gen which was introduced in [AS94]. When called at the kth iteration,
it uses as input the set of frequent (k— 1)-patterns Py_;. Its output is the set of can-
didate k-patterns. Additionally to Apriori-Gen’s join and prune steps, PASCAL-GEN
makes the new candidates inherit the fact of being or not a candidate key pattern
(step 9) by using Theorem 2; and it determines at the same time the support of all
non key candidate patterns (step 12) by using Theorem 4.

Algorithm 1 PAscAL

1
2
3
4

(=2

7

© oo

[a—y
[

[N T e e e e
O © 0 ~J O U i W N
N Z2NEP NN 2NN NS AN IS AN NN N NN SN AN IS N NN

N

1
22

(.supp < 1; 0.key < true;
Po {(Z)},
Py + {frequent 1-patterns};
forall p € P; do begin
p.pred_supp < 1; p.key < (p.supp # 1);
end;
for (k =2; Pr_1 # 0; kK ++) do begin
Cr < PASCAL-GEN(Py_1);
if 3¢ € Ci, | ckey then
forall 0 € D do begin
Co + subset(Cg, 0);
forall c € C, | ckey do
c.supp + +;
end;
forall ¢ € C;, do
if c.supp > minsup then begin
if c.key and c.supp = c.pred_supp then
c.key < false;
Pr +— Pr U {C};
end;
end;
return J, Py.

Running example.

for minsup = 2/5:

ID Items

We illustrate the PASCAL algorithm on the following dataset

F
B F
E

B
A

S RO
BN

D E QA

QM QEm U

E

F

F

The algorithm performs first one database pass to count the support of the 1-

patterns. The candidate pattern {D} is pruned because it is infrequent. As {F'}

has the same support as the empty set, {F'} is marked as a non-key pattern:

P1 | supp key
{A} | 3/5 &
(B} | 4/5 ¢
{C}]| 4/5 ¢
(EY| 4/5 ¢
{F}| 1 f

At the next iteration, all candidate 2-patterns are created and stored in C,.

At the same time, the support of all patterns containing {F} as sub-pattern is

Algorithm 2 PASCAL-GEN
Input: Pj_1, the set of frequent (k — 1)-patterns p with their support p.supp and

the p.key flag.

Output: C, the set of candidate k-patterns ¢ each with the flag c.key, the value
c.pred_supp, and the support c.supp if ¢ is not a key pattern.

1) insert into Cj

select p.itemq, p.itemo, ..., p.item;_q, g.itemy_4
from Py 1 p, Pr1 ¢
where p.item; = q.itemy, ..., p.itemy_o = ¢.itemy,_o, p.itemy_; < g.itemy_q;
2) forall c € Ci do begin
3) ckey « true; c.pred_supp + +oo;
4) forall (k — 1)-subsets s of ¢ do begin
5) if s ¢ Pr_1 then
6) delete c from Cy;
7) else begin
8) c.pred_supp ¢ min(c.pred_supp, s.supp);
9) if not s.key then c.key < false;
10) end;
11) end;
12) if not c.key then c.supp « c.pred_supp;
13) end;
14) return Cy

computed. Then a database pass is performed to determine the supports of the
remaining six candidate patterns:

Co pred_supp key supp Py | supp key
{AB} 3/5 t 7 {AB} | 2/5 ¢t
{AC} 3/5 t ? {AC} | 3/5 f
{AE} 4/5 t ? {AE} | 2/5 t
{AF} 3/5 f 3/5 {AF} | 3/5 f
{BC} 4/5 t ? {BC}| 3/5 t
{BE} 4/5 t ? {BE} | 4/5 f
{BF} 4/5 f 4/5 {BF} | 4/5 f
{CE} 4/5 t 7 {CE} | 3/5 t
{CF} 4/5 f 4/5 {CF} | 4/5 f
{EF} 4/5 f 4/5 {EF} | 4/5 f

At the third iteration, it turns out in PASCAL-GEN that each newly generated
candidate pattern contains at least one sub-pattern which is not a key pattern.
Hence all new candidate patterns are no candidate key patterns. All their supports
are determined directly in PASCAL-GEN. From that moment on, the database will
not be accessed any more.

Cs pred_supp key supp Ps supp key
{ABF} 2/5 f 2/5 {ABF} | 2/5 f
{ABC} 2/5 f 2/5 {ABC} | 2/5 f
{ABE} 2/5 f 2/5 {ABE} | 2/5 f
{ACE} 2/5 f 3/5 {ACE} | 2/5 f
{ACF} 3/5 f 3/5 {ACF} | 3/5 f
{AEF} 2/5 f 2/5 {AEF} | 2/5 f
{BCE} 3/5 f 3/5 {BCE} | 3/5 f
{BCF} 3/5 f 3/5 {BCF} | 3/5 f
{BEF} 4/5 f 4/5 {BEF} | 4/5 f
{CEF} 3/5 f 3/5 {CEF} | 3/5 f

In the fourth and fifth iteration, all supports are determined directly in PASCAL-
GEN. In the sixth iteration, PASCAL-GEN generates no new candidate patterns,
thus no frequent 6-patterns are computed and the algorithm stops:

Cy pred_supp key supp Py supp key
{ABCE} 2/5 f 2/5 {ABCE} | 2/5 f
{ABCF} 2/5 f 2/5 {ABCF} | 2/5 f
{ABEF} 2/5 f 2/5 {ABEF} | 2/5 f
{ACEF} 2/5 f 3/5 {ACEF} | 2/5 f
{BCEF} 3/5 f 3/5 {BCEF} | 3/5 f

Cs ‘ pred_supp key supp Ps ‘ supp key
{ABCEF}| 2/5 f 2/5 {ABCEF}| 2/5 f

Hence PASCAL needs two database passes in which the algorithm counted the
supports of 6 + 6 = 12 patterns. Apriori would have needed five database passes for
counting the supports of 6 + 10+ 10+ 5+ 1 = 32 patterns for the same dataset. All
other current algorithms (with the only exception of Close) may need less then five
passes, but they all have to perform the 32 counts.

5 Experimental Evaluation

We evaluated PASCAL against three algorithms, each representative of one frequent
patterns discovery strategy: Apriori, Close, and Max-Miner. This Max-Miner im-
plementation was kindly provided by Roberto Bayardo, and retrieving the frequent
patterns’ support from the maximal frequent ones was done using a brute-force
method”. PASCAL, Apriori, Close and this final step to Max-Miner all shared the
same data structures and general organization. Optimizations such as special han-
dling of pass two were disabled.

Characteristics of the datasets used are given in Table 2. These datasets are
the C20D10K and C73D10K census datasets from the PUMS sample file®, the
T2016D100K, T25I10D10K and T25120D100K® synthetic dataset that mimics mar-

"In the following tables, we distinguished the time spent by Max-Miner itself and the support
retrieval step.

8ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip

“http://www.almaden.ibm.com/cs/quest/syndata.html

ket basket data, and the MusHrOOMS!? dataset describing mushrooms character-
istics [UCI99]. In all experiments, we attempted to choose significant minimum
support threshold values: we observed threshold values used in other papers for
experiments on similar data types.

Name Number of objects Average size of objects Number of items
C20D10K 10,000 20 386
C73D10K 10,000 73 2,178

MUSHROOMS 8,416 23 128
T2016D100K 100,000 20 1,000
T25110D10K 10,000 25 1,000
T25120D100K 100,000 25 10,000

Table 2: Datasets.

C20D10K
Support # frequents Pascal Apriori Close Max-Miner
20.0 20,239 9.44 57.15 14.36 0.17 77.40
15.0 36,359 12.31 85.35 18.99 0.26 113.22
10.0 89,883 19.29 164.81 29.58 0.34 201.33
7.5 153,163 23.53 232.40 36.02 0.35 268.80
5.0 352,611 33.06 395.32 50.46 0.48 428.65

2.5 1,160,363 55.33 754.64 78.63 0.81 775.56

900 ‘ ; ‘
Pascal

ol Apriori — o

| Close - /]
0 Max-Miner+
600 r

500 |
400 f
300 |
200 ¢ =

]

Time (s)

\X;g

\h

Minimum Support (%)

¢tp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/agaricus-lepiota.
data

10

Time (s)

0 ‘ ‘ ‘
20 15 10 5
Minimum Support (%)
C73D10K

Support # frequents Pascal Apriori Close Max-Miner
80 109,159 177.49 3,661.27 241.91 0.87 3,717.99
75 235,271 392.80 7,653.58 549.27 1.06 7,730.36
70 572,087 786.49 17,465.10 1,112.42 2.28 17,618.40

60 4,355,543 3,972.10 109,204.00 5,604.91 7.72

0 | " Pascal
Apriori
100000 | Close —+
Max-Miner+ e~
—~ 80000 r)
)
2 60000 |
=
40000 t
20000 | E
O — >w [IS
? I 70 65 60

Minimum Support (%)

11

6000 | | | Pascal ——
Close - ~

5000 r

4000 r

3000 r

Time (s)

2000 r

1000 |

80 75 70 65 60
Minimum Support (%)

On these two databases, PASCAL and Close outperform Apriori and Max-Miner
by a wide margin. On C73D10K with minsup = 60%, for instance, they both
make 13 passes while the largest frequent patterns are of size 19.

T20I6D100K
Support # frequents Pascal Apriori Close Max-Miner
1.00 1,534 13.14 13.51 25.91 2.60 5.03
0.75 4,710 20.41 20.67 35.29 4.44 11.06
0.50 26,950 44.00 4438 67.82 6.87 35.37
0.25 155,673 117.97 11779 18295 15.64 109.14
200 | | Pascal
Apriori ——x—-)
Close "
150 | Max-Miner+ =~
£ 100 |
=
50 t
O L L
1 0.75 0.5 0.25

Minimum Support (%)

This T20I6D100K database is a typical case where all frequents patterns are key.
Here, PASCAL, Apriori and Max-Miner are on a par, while Close spends much time

computing intersections.

12

T25110D10K
Support # frequents Pascal Apriori Close Max-Miner

1.00 3,300 3.24 3.62 6.67 0.63 1.05
0.75 17,583 0.17 6.95 9.38 1.09 3.83
0.50 331,280 17.82 41.06 26.43 2.76 35.53

0.25 2,270,573 7037 187.92 86.08 6.99 154.89

Pascal
200 | Apriori —- o)
C_:Iose """" x
- + Bt
150 | Max-Miner
D
(]
£ 100
|_

1 0.75 0.5 0.25
Minimum Support (%)

T25I10D10K is a basket market database with lots of non key patterns: hence,
PAscAL is faster than Close, Apriori and Max-Miner.

T25I120D100K
Support # frequents Pascal Apriori Close Max-Miner
1.00 583 5.15 5.76 11.15 1.24 1.3
0.75 1,155 9.73 11.13 35.67 1.99 1.77

0.50 1,279,254 968.64 935.14 2,151.34 24.94 879.85

2500
Pascal ——
Apriori —— "
2000 1 Close =
Max-Miner+ =
@ 1500)
(&)
S
= 1000
500
0
1

Minimum Support (%)

T25120D100K is like T20I6D100K: Nearly all frequent patterns are key, thus
PAscaAL suffers a slight performance loss over Max-Miner and Apriori while Close is
by far the worst performer.

13

Mushrooms

Support # frequents Pascal Apriori Close Max-Miner

20.0 93,337 6.48 115.82 9.63 0.31 134.31
15.0 99,079 9.81 190.94 14.57 0.50 218.93
10.0 600,817 23.12 724.35 29.83 0.89 745.72

7.5 936,247 32.08 1,023.24 41.05 1.25 1,035.48

5.0 4,140,453 97.12 2,763.42 98.81 1.99 2,752.05

3000 ¢ | Pascal
Apriori —- ST
2500 | Close -~ /]
@ 2000 ¢
(]
£ 1500 ¢
|_ /'//
1000 r X
500 ¢ ’
ol . . I
20 15 10 c

Time (s)

20 15 10 5
Minimum Support (%)

On the MUSHROOMS database, as the census databases, PASCAL and Close are
an order of magnitude faster than the two other algorithms.

6 Conclusion

We presented a new algorithm, called PASCAL, for efficiently extracting frequent
patterns in large databases. This algorithm is a novel, effective and simple opti-
mization of the Apriori algorithm, thus easy to implement or to integrate in an
existing implementation based on the Apriori approach. This optimization is based
on the notion of key patterns of equivalence classes of patterns. Using these key

14

patterns we propose a method, called pattern counting inference, that allows to de-
termine the support of some frequent patterns, the frequent key patterns, rather
than counting the support of all frequent patterns as in algorithms based on the
levelwise extraction of frequent patterns or on the extraction of maximal frequent
patterns.

We conducted performance evaluations to compare the efficiency of PASCAL with
those of optimized versions of Apriori, Max-Miner and Close, each one representative
of an approach for extracting frequent patterns. The results showed that PAscAL
gives response times equivalent to those of Apriori and Max-Miner when extracting
all frequent patterns and their support from weakly correlated, and that it is the
most efficient among the four algorithms when data are correlated.

We think that an important perspective of future work is the integration of
pattern counting inference in Database Management Systems. The integration of
data mining methods in relational and object database systems is an important
research topic [STA98]. Implementing the PASCAL algorithm in SQL or OQL, we
can benefit from database indexing and query processing capabilities, parallelization
of the process (e. g., in a SMP environment) and using support for checkpointing
and space management offered by DBMS for instance.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-
tween sets of items in large databases. Proc. SIGMOD conf., pp 207-216,
May 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. Proc. VLDB conf., pp 478-499, September 1994.

[AS95] R. Agrawal, and R. Srikant. Mining sequential patterns. Proc. ICDE
conf., pp 3—14, March 1995.

[Bay98] R.J. Bayardo. Efficiently mining long patterns from databases. Proc.
SIGMOD conf., pp 85-93, June 1998.

[BMUT97] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset count-
ing and implication rules for market basket data. Proc. SIGMOD conf.,
pp 255—264, May 1997.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Gener-
alizing association rules to correlation. Proc. SIGMOD conf., pp 265-276,
May 1997.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical foun-
dations. Springer, 1999.

[GPW98] G. Gardarin, P. Pucheral, and F. Wu. Bitmap based algorithms for
mining association rules, Proc. BDA conf., pp 157-175, October 1998.

[HPYO00] J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate
generation. Proc. SIGMOD conf., May 2000. to appear.

15

[KHCY7]

[LSW97]

[LKOS]

[MTV94]

IMTV97]

[PCY95]

[PBTLYS]

[PBTL99]

[STA9S]

[SONY5]

[SBMYS]

[To0i96]

[UCI99)]

[ZPOLYT]

M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-
dimensional association rules using data cubes. Proc. KDD conf., pp
207-210, August 1997.

B. Lent, A. Swami, and J. Widom. Clustering association rules. Proc.
ICDE conf., pp 220-231, March 1997.

D. Lin and Z. M. Kedem. Pincer-Search: A new algorithm for discovering
the maximum frequent set. Proc. EBDT conf., pp 105-119, March 1998.

H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for
discovering association rules. Proc. AAAI KDD workshop, pp 181-192,
July 1994.

H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259-289, September 1997.

J.S. Park, M.-S. Chen, and P.S. Yu, An efficient hash based algorithm
for mining association rules. Proc. SIGMOD conf., pp 175-186, May
1995.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset
lattices for association rules. Proc. BDA conf., pp 177-196, October 1998.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining
of association rules using closed itemset lattices. Information Systems,
24(1):25-46, March 1999.

S. Sarawagi, S. Thomas, R. Agrawal. Integrating Mining with Relational
Database Systems: Alternatives and Implications. Proc. SIGMOD conf.,
pp 343-354, May 1998.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. Proc. VLDB conf., pp 432-
444, September 1995.

C. Silverstein, S. Brin, and R. Motwani. Beyond market baskets: Gener-
alizing association rules to dependence rules. Data Mining and Knowl-
edge Discovery, 2(1):39-68, January 1998.

H. Toivonen. Sampling large databases for association rules, Proc. VLDB
conf., pp 134-145, September 1996.

S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine,
CA: University of California, Department of Information and Computer
Science.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New algorithms
for fast discovery of association rules. Proc. KDD conf., pp 283-286,
August 1997.

16

