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tIn this paper, we propose the algorithm Pas
al whi
h introdu
es a novel op-timization of the well-known algorithm Apriori. Being provided with a givenminsup threshold, Pas
al dis
overs all frequent patterns by performing as few
ounting as possible. In order to derive the support of larger patterns withouta

essing the database whenever it is possible, we use the knowledge about thesupport of some of their sub-patterns, the so-
alled key patterns. Experiments
omparing Pas
al to the three algorithms Apriori, Close and Max-Miner, ea
hof whi
h being representative of a frequent patterns dis
overy strategy, showthat Pas
al is the most eÆ
ient algorithm for extra
ting patterns from strongly
orrelated data. Moreover, its exe
ution times are equivalent to those of Aprioriand Max-Miner when data is weakly 
orrelated.Keywords: Data mining, database theory, algorithms, performan
e analysis.1 Introdu
tionKnowledge dis
overy in databases (KDD) is de�ned as the non-trivial extra
tion ofvalid, impli
it, potentially useful and ultimately understandable information in largedatabases. For several years, a wide range of appli
ations in various domains havebene�ted from KDD te
hniques and many work has been 
ondu
ted on this topi
.The problem of mining frequent patterns arose �rst as a sub-problem of miningasso
iation rules, but then it turned out that frequent patterns solve a variety ofproblems: mining sequential patterns [AS95℄, episodes [MTV97℄, asso
iation rules[AS94℄, 
orrelations [BMS97, SBM98℄, multi-dimensional patterns [KHC97, LSW97℄,maximal patterns [ZPOL97, LK98℄ and several other important knowledge dis
overytasks [HPY00℄. Sin
e the 
omplexity of this problem is exponential in the size of thebinary database input relation and sin
e this relation has to be s
anned several timesduring the pro
ess, eÆ
ient algorithms for mining frequent patterns are required.



1.1 Related workThree approa
hes have been proposed for mining frequent patterns: The �rst istraversing iteratively the set of all patterns in a levelwise manner. During ea
h iter-ation 
orresponding to a level, a set of 
andidate patterns is 
reated by joining thefrequent patterns dis
overed during the previous iteration, the supports of all 
an-didate patterns are 
ounted and infrequent ones are dis
arded. The most prominentalgorithm based on this approa
h is the Apriori algorithm [AS94℄, that is identi
al tothe algorithm OCD [MTV94℄ proposed 
on
urrently. A variety of modi�
ations ofthis algorithm arose [BMUT97, GPW98, PCY95, SON95, Toi96℄ in order to improvedi�erent eÆ
ien
y aspe
ts. However, all of these algorithms have to determine thesupports of all frequent patterns and of some infrequent ones in the database.The se
ond approa
h is based on the extra
tion of maximal1 frequent patterns,from whi
h all supersets are infrequent and all subsets are frequent. This approa
h
ombines a levelwise bottom-up traversal with a top-down traversal in order toqui
kly �nd the maximal frequent patterns. Then, all frequent patterns are derivedfrom these ones and one last database s
an is 
arried on to 
ount their support. Themost prominent algorithm using this approa
h is Max-Miner [Bay98℄. Experimentalresults have shown that this approa
h is parti
ularly eÆ
ient for extra
ting maximalfrequent patterns, but when applied for extra
ting all frequent patterns performan
esdrasti
ally de
rease be
ause of the 
ost of the last s
an whi
h requires roughly anin
lusion test between ea
h frequent pattern and ea
h obje
t of the database. Asalgorithms based on the �rst approa
h, algorithms based on this approa
h have toextra
t the supports of all frequent patterns from the database.The third approa
h, represented by the Close algorithm [PBTL99℄, is basedon the theoreti
al framework introdu
ed in [PBTL98℄ that uses the 
losure of theGalois 
onne
tion [GW99℄. In this approa
h, the frequent 
losed patterns (and theirsupport) are extra
ted from the database in a levelwise manner. A 
losed patternis a pattern that is 
ommon to a set of obje
ts of the database and ea
h non-
losed pattern has the same properties (same set of obje
ts 
ontaining it and thussame support) as the smallest 
losed pattern 
ontaining it that is its 
losure. Then,all frequent patterns as well as their support are derived from the frequent 
losedpatterns and their support without a

essing the database. Hen
e not all patterns are
onsidered during the most expensive part of the algorithm (
ounting the supportsof the patterns) and the sear
h spa
e is drasti
ally redu
ed, espe
ially for strongly
orrelated data. Experiments have shown that this approa
h is mu
h more eÆ
ientthan the two previous ones on su
h data.1.2 ContributionIn this paper, we present the Pas
al 2 algorithm, introdu
ing a novel, e�e
tiveand simple optimization of the algorithm Apriori. This optimization is based onpattern 
ounting inferen
e that relies on the 
on
ept of key patterns. A key patternis a minimal pattern of an equivalen
e 
lass gathering all patterns that have the1`Maximal' means `maximal with respe
t to set in
lusion'.2The Fren
h mathemati
ian Blaise Pas
al (*Clermont-Ferrand 1623, y 1662 Paris) invented anearly 
omputing devi
e. 2



same obje
ts. The pattern 
ounting inferen
e allows to determine the supports ofsome frequent and infrequent patterns (the key patterns) in the database only. Thesupports of all other frequent patterns are derived from the frequent key patterns.This allows to redu
e, at ea
h database pass, the number of patterns 
onsidered, and,even more important, to redu
e the number of passes in total. This optimizationis valid sin
e key patterns have a property that is 
ompatible with the pruning ofApriori: all subsets of a key pattern are key patterns and all supersets of a non-key pattern are non-key patterns. Then, the 
ounting inferen
e is performed in alevelwise manner: If a 
andidate pattern of size k whi
h support has to be determinedis a non-key pattern, then its support is equal to the minimal support among thepatterns of size k-1 that are its subsets. In 
omparison to most other modi�
ations ofApriori, this results in a minimal impa
t on the understandability and simpli
ity ofimplementation of the algorithm. The important di�eren
e is to determine as mu
hsupport 
ounts as possible without a

essing the database by information gatheredin previous passes. As shown by the experiments, the eÆ
ien
y gain is up to theorder of a magnitude on 
orrelated data.1.3 Organization of the paperIn the next se
tion, we re
all the problem of mining frequent patterns. The essentialnotions and the de�nitions of key patterns and pattern 
ounting inferen
e are givenin Se
tion 3. The Pas
al algorithm is des
ribed in Se
tion 4 and experimentalresults for 
omparing its eÆ
ien
y to those of Apriori, Max-Miner and Close arepresented in Se
tion 5. A summary of the paper and some perspe
tives of futurework are given in Se
tion 6.2 Re
all: The Problem of Mining Frequent PatternsDe�nition 1. Let P be a �nite set of items, O a �nite set of obje
ts (e. g., transa
tionids) and R � O�P a binary relation between both (where (o; p) 2 R may for instan
ebe read as \item p is in
luded in transa
tion o"). The triple D = (O ;P;R) is 
alleddataset.Ea
h subset P of P is 
alled a pattern. We say that a pattern P is in
ludedin an obje
t o 2 O if (o; p) 2 R for all p 2 P . Let f be the fun
tion whi
hassigns to ea
h pattern P � P the set of all obje
ts whi
h in
lude this pattern:f(P ) = fo 2 O j o in
ludes Pg.The support of a pattern P is given by supp(P ) = 
ard(f(P ))
ard(O) . For a given thresholdminsup 2 [0; 1℄, a pattern P is 
alled frequent pattern if supp(P ) � minsup.Problem: The task of mining frequent patterns 
onsists in determining allfrequent patterns together with their supports3 for a given threshold minsup.3There are also appli
ation where the supports need not be known exa
tly. We only 
onsiderthe 
ase where all supports have to be determined as well.
3



3 Key Patterns and Pattern Counting Inferen
eIn this se
tion, we give the theoreti
al basis of the new Pas
al algorithm. This basisprovides at the same time the proof of 
orre
tness of the algorithm. The followingtheorems are turned into pseudo-
ode in the Se
tion 4.As Apriori, Pas
al will traverse the powerset of P levelwise: At the kth iteration,the algorithm generates �rst all 
andidate k-patterns.De�nition 2. A k-pattern P is a subset P of P with 
ard(P ) = k. A 
andidatek-pattern is a k-pattern where all its proper sub-patterns are frequent.For the 
andidate k-patterns one database pass is used to determine their sup-port. Then infrequent patterns are pruned. This approa
h works be
ause the well-known fa
t that a pattern 
annot be frequent if it has an infrequent sub-pattern.3.1 Key PatternsOur approa
h is based on the observation that frequent patterns 
an be 
onsideredas \equivalent" if they are in
luded in exa
tly the same obje
ts. We des
ribe thisfa
t by the following equivalen
e relation � on the frequent patterns.De�nition 3. For frequent patterns P;Q � P, we let P �Q if f(P ) = f(Q). The setof patterns whi
h are equivalent to a pattern P is given by [P ℄ = fQ � P j P �Qg.In the 
ase of frequent patterns P andQ with P �Q, both patterns have obviouslythe same support:Lemma 1. Let P and Q be frequent patterns.(i) P �Q =) supp(P ) = supp(Q)(ii) P � Q ^ supp(P ) = supp(Q) =) P �QProof. (i) P �Q () f(P ) = f(Q) =) supp(P ) = 
ard(f(P ))
ard(O) = 
ard(f(Q))
ard(O) =supp(Q).(ii) Sin
e P � Q and f is monotonous de
reasing, we have f(P ) � f(Q).supp(P ) = supp(Q) is equivalent to 
ard(f(P )) = 
ard(f(Q)) whi
h implies withthe former f(P ) = f(Q) and thus P �Q.Hen
e if we knew the relation � in advan
e, we would need to 
ount the supportof only one pattern in ea
h equivalen
e 
lass. Of 
ourse we do not know the relationin advan
e, but we 
an 
onstru
t it step by step.4 Thus, we will in general needto determine the support of more than one pattern in ea
h 
lass, but not of all ofthem. If we already have determined the support of a pattern P in the database andpass later a pattern Q 2 [P ℄, then we need not a

ess the database for it be
ausewe know that supp(Q) = supp(P ).The �rst patterns of an equivalen
e 
lass that we rea
h using a levelwise approa
hare exa
tly the minimal5 patterns in the 
lass:4In the algorithm, the equivalen
e relation is not expli
itly generated, but is { as the algorithmis based on the following theorems { impli
itly used.5`Minimal' means `minimal with respe
t to set in
lusion'.4



De�nition 4. A frequent pattern P is a key pattern if P 2 min[P ℄. A 
andidatekey pattern is a pattern where all its proper sub-patterns are key patterns.Observe that all 
andidate key patterns are obviously also 
andidate patterns.3.2 Pattern Counting Inferen
eIn the algorithm we apply the pruning strategy both for 
andidate patterns and to
andidate key patterns. This is justi�ed by the following theorem.Theorem 2. (i) If Q is a key pattern and P � Q, then P is also a key pattern.(ii) If P is not a key pattern and P � Q, then Q is not a key pattern either.6Proof. (ii) Let P � Q and P be not a key pattern. Then exists P 0 2 min[P ℄with P 0 � P . From f(P 0) = f(P ) it follows f(Q) = f(Q n (P n P 0)). Hen
e Q isnot minimal in [Q℄ and thus by de�nition not a key pattern. (i) is a dire
t logi
al
onsequen
e of (ii).The algorithm determines, at ea
h iteration, the key patterns among the 
andi-date key patterns by using (ii) of the following theorem:Theorem 3. Let P be a frequent pattern.(i) Let p 2 P . Then P 2 [P n fpg℄ if and only if supp(P ) = supp(P n fpg).(ii) P is a key pattern if and only if supp(P ) 6= minp2P (supp(P n fpg)).Proof. (i) The \if" part follows from Lemma 1 (ii). The \only if" part is obvious.(ii) From (i) we dedu
e that P is a key pattern if and only if supp(P ) 6= supp(P nfpg), for all p 2 P . Sin
e supp is a monotonous de
reasing fun
tion, this is equivalentto (ii).Sin
e all 
andidate key patterns are also 
andidate patterns, when generatingall 
andidate patterns for the next level we 
an at the same time determine the
andidate key patterns among them.If we rea
h a 
andidate k-pattern whi
h is not a 
andidate key pattern, then wealready passed along at least one of the key patterns in its equivalen
e 
lass in anearlier iteration. Hen
e we already know its support. Using the following theorem,we determine this support without a

essing the database:Theorem 4. If P is a non-key pattern, thensupp(P ) = minp2P (supp(P n fpg)) :Proof. \�" follows from the fa
t that supp is a monotonous de
reasing fun
tion.\�": If P is not a key pattern then exists p 2 P with P � Pnfpg. Hen
e supp(P ) =supp(P n fpg) � minq2P (supp(P n fqg).6In mathemati
al terms, (i) and (ii) state that the set of key patterns is an order ideal (ordown-set) of (2P;�). 5



Thus the database pass needs to 
ount the supports of the 
andidate key patternsonly. Knowing this, we 
an summarize Pas
al as follows: It works exa
tly asApriori, but 
ounts only those supports in the database pass whi
h 
annot be derivedfrom supports already 
omputed. Thus we 
an, on ea
h level, restri
t the expensive
ount in the database to some of the 
andidates. But even better, from some levelon, all 
andidate pattern may be known to be non-key patterns. Then all remainingfrequent patterns and their support 
an be derived without a

essing the databaseany more. In the worst 
ase (i. e., in weakly 
orrelated data), all 
andidates patternsare also 
andidate key patterns. Then the algorithm behaves exa
tly as Aprioriwithout any overhead.4 The PASCAL algorithmIn this se
tion, we transform the theorems given in the last se
tion into an algorithm.The pseudo-
ode is given in Algorithm 1. A list of notations is provided in Table 1.We assume that P is linearly ordered, e. g., P = f1; : : : ; ng. This will be used inPas
al-Gen. Table 1: Notations used in Pas
alk is the 
ounter whi
h indi
ates the 
urrent iteration. In the kth iteration,all frequent k-patterns and all key patterns among them are determined.Pk 
ontains after the kth iteration all frequent k-patterns P together withtheir support P:supp, and a boolean variable P:key indi
ating if P is a(
andidate) key pattern.Ck stores the 
andidate k-patterns together with their support (if known),the boolean variable P:key, and a 
ounter P:pred supp whi
h stores theminimum of the supports of all (k � 1)-sub-patterns of P .The algorithm starts with the empty set, whi
h always has a support of 1 andwhi
h is (by de�nition) a key pattern (steps 1+2). In step 3, frequent 1-patterns aredetermined. They are marked as key patterns unless their support is 1 (steps 4{6).The main loop is similar to the one in Apriori (steps 7 to 21). First, Pas
al-Genis 
alled to 
ompute the 
andidate patterns. The support of key ones is determinedvia a database pass (steps 10{14).Then (steps 15{20) the `traditional' pruning (step 16) is done. At the same time,for all remaining 
andidate key patterns, it is determined whether they are key ornot (steps 17+18).The way that Pas
al-Gen operates is basi
ally known from the generator fun
-tion Apriori-Gen whi
h was introdu
ed in [AS94℄. When 
alled at the kth iteration,it uses as input the set of frequent (k�1)-patterns Pk�1. Its output is the set of 
an-didate k-patterns. Additionally to Apriori-Gen's join and prune steps, Pas
al-Genmakes the new 
andidates inherit the fa
t of being or not a 
andidate key pattern(step 9) by using Theorem 2; and it determines at the same time the support of allnon key 
andidate patterns (step 12) by using Theorem 4.6



Algorithm 1 Pas
al1) ;:supp 1; ;:key true;2) P0  f;g;3) P1  ffrequent 1-patternsg;4) forall p 2 P1 do begin5) p:pred supp 1; p:key (p:supp 6= 1);6) end;7) for (k = 2; Pk�1 6= ;; k ++) do begin8) Ck  Pas
al-Gen(Pk�1);9) if 9
 2 Ck j 
:key then10) forall o 2 D do begin11) Co  subset(Ck; o);12) forall 
 2 Cp j 
:key do13) 
:supp + +;14) end;15) forall 
 2 Ck do16) if 
:supp � minsup then begin17) if 
:key and 
:supp = 
:pred supp then18) 
:key false;19) Pk  Pk [ f
g;20) end;21) end;22) return Sk Pk.Running example. We illustrate the Pas
al algorithm on the following datasetfor minsup = 2=5: ID Items1 A C D F2 B C E F3 A B C E F4 B E F5 A B C E FThe algorithm performs �rst one database pass to 
ount the support of the 1-patterns. The 
andidate pattern fDg is pruned be
ause it is infrequent. As fFghas the same support as the empty set, fFg is marked as a non-key pattern:P1 supp keyfAg 3=5 tfBg 4=5 tfCg 4=5 tfEg 4=5 tfFg 1 fAt the next iteration, all 
andidate 2-patterns are 
reated and stored in C2.At the same time, the support of all patterns 
ontaining fFg as sub-pattern is7



Algorithm 2 Pas
al-GenInput: Pk�1, the set of frequent (k � 1)-patterns p with their support p:supp andthe p:key 
ag.Output: Ck, the set of 
andidate k-patterns 
 ea
h with the 
ag 
:key, the value
:pred supp, and the support 
:supp if 
 is not a key pattern.1) insert into Cksele
t p:item1, p:item2, : : : , p:itemk�1, q:itemk�1from Pk�1 p, Pk�1 qwhere p:item1 = q:item1, : : : , p:itemk�2 = q:itemk�2, p:itemk�1 < q:itemk�1;2) forall 
 2 Ck do begin3) 
:key true; 
:pred supp +1;4) forall (k � 1)-subsets s of 
 do begin5) if s =2 Pk�1 then6) delete 
 from Ck;7) else begin8) 
:pred supp min(
:pred supp; s:supp);9) if not s:key then 
:key false;10) end;11) end;12) if not 
:key then 
:supp 
:pred supp;13) end;14) return Ck.
omputed. Then a database pass is performed to determine the supports of theremaining six 
andidate patterns:C2 pred supp key suppfABg 3=5 t ?fACg 3=5 t ?fAEg 4=5 t ?fAFg 3=5 f 3=5fBCg 4=5 t ?fBEg 4=5 t ?fBFg 4=5 f 4=5fCEg 4=5 t ?fCFg 4=5 f 4=5fEFg 4=5 f 4=5
P2 supp keyfABg 2=5 tfACg 3=5 ffAEg 2=5 tfAFg 3=5 ffBCg 3=5 tfBEg 4=5 ffBFg 4=5 ffCEg 3=5 tfCFg 4=5 ffEFg 4=5 fAt the third iteration, it turns out in Pas
al-Gen that ea
h newly generated
andidate pattern 
ontains at least one sub-pattern whi
h is not a key pattern.Hen
e all new 
andidate patterns are no 
andidate key patterns. All their supportsare determined dire
tly in Pas
al-Gen. From that moment on, the database willnot be a

essed any more. 8



C3 pred supp key suppfABFg 2=5 f 2=5fABCg 2=5 f 2=5fABEg 2=5 f 2=5fACEg 2=5 f 3=5fACFg 3=5 f 3=5fAEFg 2=5 f 2=5fBCEg 3=5 f 3=5fBCFg 3=5 f 3=5fBEFg 4=5 f 4=5fCEFg 3=5 f 3=5
P3 supp keyfABFg 2=5 ffABCg 2=5 ffABEg 2=5 ffACEg 2=5 ffACFg 3=5 ffAEFg 2=5 ffBCEg 3=5 ffBCFg 3=5 ffBEFg 4=5 ffCEFg 3=5 fIn the fourth and �fth iteration, all supports are determined dire
tly in Pas
al-Gen. In the sixth iteration, Pas
al-Gen generates no new 
andidate patterns,thus no frequent 6-patterns are 
omputed and the algorithm stops:C4 pred supp key suppfABCEg 2=5 f 2=5fABCFg 2=5 f 2=5fABEFg 2=5 f 2=5fACEFg 2=5 f 3=5fBCEFg 3=5 f 3=5
P4 supp keyfABCEg 2=5 ffABCFg 2=5 ffABEFg 2=5 ffACEFg 2=5 ffBCEFg 3=5 fC5 pred supp key suppfABCEFg 2=5 f 2=5 P5 supp keyfABCEFg 2=5 fHen
e Pas
al needs two database passes in whi
h the algorithm 
ounted thesupports of 6+6 = 12 patterns. Apriori would have needed �ve database passes for
ounting the supports of 6+10+10+5+1 = 32 patterns for the same dataset. Allother 
urrent algorithms (with the only ex
eption of Close) may need less then �vepasses, but they all have to perform the 32 
ounts.5 Experimental EvaluationWe evaluated Pas
al against three algorithms, ea
h representative of one frequentpatterns dis
overy strategy: Apriori, Close, and Max-Miner. This Max-Miner im-plementation was kindly provided by Roberto Bayardo, and retrieving the frequentpatterns' support from the maximal frequent ones was done using a brute-for
emethod7. Pas
al, Apriori, Close and this �nal step to Max-Miner all shared thesame data stru
tures and general organization. Optimizations su
h as spe
ial han-dling of pass two were disabled.Chara
teristi
s of the datasets used are given in Table 2. These datasets arethe C20D10K and C73D10K 
ensus datasets from the PUMS sample �le8, theT20I6D100K, T25I10D10K and T25I20D100K9 syntheti
 dataset that mimi
s mar-7In the following tables, we distinguished the time spent by Max-Miner itself and the supportretrieval step.8ftp://ftp2.

.ukans.edu/pub/ippbr/
ensus/pums/pums90ks.zip9http://www.almaden.ibm.
om/
s/quest/syndata.html9



ket basket data, and the Mushrooms10 dataset des
ribing mushrooms 
hara
ter-isti
s [UCI99℄. In all experiments, we attempted to 
hoose signi�
ant minimumsupport threshold values: we observed threshold values used in other papers forexperiments on similar data types.Name Number of obje
ts Average size of obje
ts Number of itemsC20D10K 10,000 20 386C73D10K 10,000 73 2,178Mushrooms 8,416 23 128T20I6D100K 100,000 20 1,000T25I10D10K 10,000 25 1,000T25I20D100K 100,000 25 10,000Table 2: Datasets.C20D10KSupport # frequents Pas
al Apriori Close Max-Miner20.0 20,239 9.44 57.15 14.36 0.17 77.4015.0 36,359 12.31 85.35 18.99 0.26 113.2210.0 89,883 19.29 164.81 29.58 0.34 201.337.5 153,163 23.53 232.40 36.02 0.35 268.805.0 352,611 33.06 395.32 50.46 0.48 428.652.5 1,160,363 55.33 754.64 78.63 0.81 775.56
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al Apriori Close Max-Miner80 109,159 177.49 3,661.27 241.91 0.87 3,717.9975 235,271 392.80 7,653.58 549.27 1.06 7,730.3670 572,087 786.49 17,465.10 1,112.42 2.28 17,618.4060 4,355,543 3,972.10 109,204.00 5,604.91 7.72

0

20000

40000

60000

80000

100000

120000

6065707580

T
im

e 
(s

)

Minimum Support (%)

Pascal
Apriori
Close

Max-Miner+

11



0

1000

2000

3000

4000

5000

6000

6065707580

T
im

e 
(s

)

Minimum Support (%)

Pascal
Close

On these two databases, Pas
al and Close outperform Apriori and Max-Minerby a wide margin. On C73D10K with minsup = 60%, for instan
e, they bothmake 13 passes while the largest frequent patterns are of size 19.T20I6D100KSupport # frequents Pas
al Apriori Close Max-Miner1.00 1,534 13.14 13.51 25.91 2.60 5.030.75 4,710 20.41 20.67 35.29 4.44 11.060.50 26,950 44.00 44.38 67.82 6.87 35.370.25 155,673 117.97 117.79 182.95 15.64 109.14
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This T20I6D100K database is a typi
al 
ase where all frequents patterns are key.Here, Pas
al, Apriori and Max-Miner are on a par, while Close spends mu
h time
omputing interse
tions.
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T25I10D10KSupport # frequents Pas
al Apriori Close Max-Miner1.00 3,300 3.24 3.62 6.67 0.63 1.050.75 17,583 5.17 6.95 9.38 1.09 3.830.50 331,280 17.82 41.06 26.43 2.76 35.530.25 2,270,573 70.37 187.92 86.08 6.99 154.89
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T25I10D10K is a basket market database with lots of non key patterns: hen
e,Pas
al is faster than Close, Apriori and Max-Miner.T25I20D100KSupport # frequents Pas
al Apriori Close Max-Miner1.00 583 5.15 5.76 11.15 1.24 1.30.75 1,155 9.73 11.13 35.67 1.99 1.770.50 1,279,254 968.64 935.14 2,151.34 24.94 879.85
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T25I20D100K is like T20I6D100K: Nearly all frequent patterns are key, thusPas
al su�ers a slight performan
e loss over Max-Miner and Apriori while Close isby far the worst performer. 13
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On the Mushrooms database, as the 
ensus databases, Pas
al and Close arean order of magnitude faster than the two other algorithms.6 Con
lusionWe presented a new algorithm, 
alled Pas
al, for eÆ
iently extra
ting frequentpatterns in large databases. This algorithm is a novel, e�e
tive and simple opti-mization of the Apriori algorithm, thus easy to implement or to integrate in anexisting implementation based on the Apriori approa
h. This optimization is basedon the notion of key patterns of equivalen
e 
lasses of patterns. Using these key14



patterns we propose a method, 
alled pattern 
ounting inferen
e, that allows to de-termine the support of some frequent patterns, the frequent key patterns, ratherthan 
ounting the support of all frequent patterns as in algorithms based on thelevelwise extra
tion of frequent patterns or on the extra
tion of maximal frequentpatterns.We 
ondu
ted performan
e evaluations to 
ompare the eÆ
ien
y of Pas
al withthose of optimized versions of Apriori, Max-Miner and Close, ea
h one representativeof an approa
h for extra
ting frequent patterns. The results showed that Pas
algives response times equivalent to those of Apriori and Max-Miner when extra
tingall frequent patterns and their support from weakly 
orrelated, and that it is themost eÆ
ient among the four algorithms when data are 
orrelated.We think that an important perspe
tive of future work is the integration ofpattern 
ounting inferen
e in Database Management Systems. The integration ofdata mining methods in relational and obje
t database systems is an importantresear
h topi
 [STA98℄. Implementing the Pas
al algorithm in SQL or OQL, we
an bene�t from database indexing and query pro
essing 
apabilities, parallelizationof the pro
ess (e. g., in a SMP environment) and using support for 
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