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1 Introduction

On-Tine Transaction Processing (OLTP) systems gather huge amounts of au-
tomatically generated data, often without sufficient integrity checking. Hence,
during the knowledge discovery process, one discovers inconsistencies which con-
tradict to constraints that have never been made explicit, but which exist only
as personal knowledge of the analyst.

Conceptual Information Systems support the detection of such contradic-
tions to expert knowledge which is not explicitly given. They provide a multi-
dimensional conceptually structured view on data stored in relational databases
([5], [10]). Conceptual Tnformation Systems are similar to On-Line Analytical
Processing (OLAP) tools, but focus on qualitative (i.e. non-numerical) data ([6]).
The analog to OLLAP dimensions are conceptual scales. Each conceptual scale
represents a conceptual hierarchy describing the semantics of the range of values
for one or more attributes of the database scheme. The conceptual scales are visu-
alized by so-called Hasse diagrams which indicate the subconcept-superconcept
hierarchy on the concepts. Unlike statistical data mining tools, Conceptual Infor-
mation Systems always present information about the individual objects. Hence
the existence of outliers is not hidden in numerical values as, e. g., standard de-
viations. Conceptual Information Systems rely on the mathematical theory of
Formal Concept Analysis ([12], [3]) which provides a formalization of the concept
of ‘concept’. Tt reflects an understanding of ‘concept’ which is first mentioned
explicitly in the Logic of Port Royal in 1668 ([1]) and has been established in
the German standards DIN 2330 and DIN 2331.

If inconsistencies have been discovered in the knowledge discovery process,
then the task is to examine their causes. In cases where the detection of such in-
consistencies was possible only by human interaction, it is very unlikely that the
cause will be discovered by a fully automatic tool. Hence we promote a knowl-
edge discovery support environment that supports a human-centered discovery
process. In this paper we present the state of research about extending Con-
ceptual Information Systems such that they support the process of analyzing
possible causes for such inconsistencies.



2 Conceptual Information Systems

Concepts are necessary for expressing human knowledge. Therefore, the knowl-
edge discovery process benefits from a comprehensive formalization of concepts
which can be activated to represent knowledge coded in databases. Formal Con-
cept Analysis ([12], [3]) offers such a formalization by mathematizing concepts
which are understood as units of thought constituted by their extension and
intension ([11]). For allowing a mathematical description of extensions and in-
tensions, Formal Concept Analysis always starts with a formal contert.

Definition. A (formal) context is a triple K := (G, M, T) where G and M are
sets and T 1s a relation between (G and M. The elements of (G and M are called
objects and attributes, respectively, and (g, m) € T is read “the object g has the
attribute m”.

A (formal) concept is a pair (A, B) such that A C G, B C M are maximal
with A x B C I. The set A is called the extent and the sett B the intent of the
concept (A, B). The subconcept-superconcept-relation is formalized by (A, By) <
(Ag, B2) <= A} C As (<= By D B3). The set of all concepts of a context
(G, M, T) together with this order relation is always a complete lattice, called
the concept lattice of (G, M, T) and denoted by B(G, M, T).

Frample 1. The cross-table in Figure 1 represents a formal context about the
gates of Terminal 1 at Frankfurt Airport. The object set (G comprises the gates,
the attribute set M four different functionalities. The binary relation 7T is repre-
sented by the crosses. A cross at cell (g, m) (i.e., (g, m) € T) means ‘gate g has
functionality m’.
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Fig. 1. A formal context concerning gates at Frankfurt Airport

In the line diagram of the concept lattice in Fig. 2, each circle stands for a
formal concept. The subconcept-superconcept hierarchy can be read by following



Fig. 2. The concept lattice of the formal context in Fig. 1

ascending paths of straight line segments. The intent [extent] of each concept
is given by all attribute labels [object labels] reachable from that context by
ascending [descending] paths of straight line segments. Hence, an object has an
attribute if and only if they are linked by an ascending path. For instance, the
leftmost concept in the diagram (which is labeled by B10) is the concept

({B10, A1,B2,C1}, {Domestic Gate, Terminal Gate}) .

The fact that the lattice 1s a four-dimensional hypercube indicates that there
are no implications between the four attributes. In general, the visualization by
line diagrams supports the study of dependencies between the attributes.

In most applications, there are not only Boolean attributes in the databases.
The conceptual model we use for this is a many-valued contert. Tn database
terms, a many-valued context is a relation of a relational database with one
key attribute whose domain is the set (¢ of objects. Throughout this paper, we
consider only one (denormalized) database relation at a time.

In order to obtain a concept lattice from a many-valued context, it has to
be translated into a one-valued (formal) context. The translation process is de-
scribed by conceptual scales:

Definition. A many-valued context is a tuple (G, M, (Wy)mem, T) where G
and M are sets of objects and attributes, resp., W, is a set of values for each
m e M,and I CG x|, cpr({m} x Wy,) is a relation such that (g, m,wq) € 7
and (g, m,ws) € T imply wy = ws.

A conceptual scale for an attribute m € M is a one-valued context S,, =
(G, My, Iy) with W,,, C G,y,. The context Ry, := (G, M,,, J,,) with gJ,n :
<— FweW,,: (¢9,m,w)el A (w,n)el, is called the realized scale for the at-
tribute m € M.

A Conceptual Information System consists of a many-valued context together
with a set of conceptual scales.
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Fig. 3. Realized scale Destination Southern Furope/Mediterranean Sea

The set. M consists of all attributes of the database scheme, while the sets
M., contain the attributes which are shown to the user by the Conceptual Tn-
formation System.

Frample 2. The information system INFO-80 supports planning, realization, and
control of business transactions related to flight movements at Frankfurt Airport.
A Conceptual Information System has been established in order to facilitate
access to the data of INFO-80 ([4]).

Here we consider 18389 outbound flight movements effectuated at Frankfurt
Airport during one month. For each of these flight movements 110 attributes are
registered automatically and stored in a database (e. g., destination, estimated
time of departure, actual time of departure, number of passengers, terminal
position, ...). 77 conceptual scales have heen designed (some of the 110 database
attributes were of minor importance for data analysis). By combining the scales
and zooming into them with other scales, the analyst can explore dependencies
and irregularities.

Figure 3 shows the realized scale Destination Southern Europe/Mediterranean
Sea. Because of the large number of flight movements, TOSCANA displays only
the number of flight movements assigned to each concept. If desired, the user
can drill-down to the flight number and to more detailed information. For in-
stance, the concept labeled by ‘Marokko” (Morocco) has 53 objects (i.e., flight
numbers) in its extent, and the attributes ‘Marokko’ and ‘Nordafrika’ (Northern
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Fig. 4. Nested line diagram of the scales Position of Baggage Conveyor and Position
of Atrcraft

Africa) in its intent. Its upper neighbor (which is labeled by ‘Nordafrika’) has
534 14 4+ 111 = 178 objects in its extent, and ‘Nordafrika’ in its intent.

For analyzing how objects are distributed over two different scales, one can
combine the two conceptual scales. The result of combining the two conceptual
scales Position of Baggage Conveyor and Position of Aircraft is displayed in the
nested line diagram in Figure 4.



Fach of the 17 lines of the outer scale represents seven parallel lines linking
corresponding concepts of the inner scale. The concept lattice we are interested
in 18 embedded in this direct product. The embedding is indicated by the bold
circles. Each non-realized concept (i.e., the empty circles) indicates an implica-
tion. For example, the leftmost circle in the leftmost ellipse has the attribute
‘Halle A’ (hall A) and ‘G’ (general aviation) in its intent. These two attributes
form the premise of the implication. The conclusion of the implication is given
by the intent of the largest realized concept below. In this case, it 18 the bot-
tom concept. which has all attributes in its extent. Hence hall A as position of
the baggage conveyor and the general aviation apron as position of the aircraft
implies everything else. This means that the premise 1s not realized by any ob-
ject. There are no general aviation aircraft with a baggage conveyor assigned at
hall A. There are concepts in the nested line diagram which are expected to be
non-realized as well. For instance, an aircraft at Terminal 1 should not have a
baggage conveyor assigned at Terminal 2. But in the diagram, we see that the
concept with these two attributes is realized. There are 180 flight movements
having the attribute “Terminal 2’ of the outer scale and the attribute “T'1’ of the
inner scale.

We can detect some more unnormal combinations. There are four aircraft
that docked at Terminal 2, while their assigned baggage conveyors are at Termi-
nal 1. To seven aircraft at Terminal 2 and 17 aircraft at Terminal 1, conveyors on
the ‘Vorfeld V3’ (Apron V3) were assigned. Tn all these cases, one can drill down
to the original data by clicking on the number to obtain the flight movement
numbers, which in turn lead to the data sets stored in the INFO-80 system.

The knowledge that the combinations are unnormal, is not coded explic-
itly in INFO-80, but is only implicitly present as expert knowledge. Since these
combinations happen at the airport, they cannot be forbidden by database con-
straints. But once such conflicts are discovered, one can implement an alarm
which informs the operator of the baggage transportation system about such
cases.

If there are too many scales involved in the knowledge discovery process,
then zooming into the outer scale reduces the size of the displayed diagram.
For instance, by zooming into the concept labeled by ‘“Terminal 27 in Fig. 4, we
obtain the diagram of the conceptual scale Position of Aircraft, but with the
objects being restricted to those flight movements where the assigned baggage
conveyor is at Terminal 2. Then one can continue the exploration by adding a
new conceptual scale on the inner level. This interactive human-centered knowl-
edge discovery process is described in detail in [8].

3 Exploring Conceptual Similarities

What are the reasons for the mismatches between the aircraft positions and
the assigned baggage conveyors for certain flight movements? By adding a new
conceptual scale and zooming into the concepts in Fig. 4 where these flight move-
ments are grouped together, the analyst can examine the properties of these flight



movements with regard to the new scale. But he has still the choice between 75
scales, whereof most are probably irrelevant for the analysis. Hence we need a
ranking of the scales which tells the analyst which scales are probably the most
interesting.

One approach is to determine, in each scale, all attributes that all these flight
movements have in common. The scales can then be listed according to the num-
ber of these attributes. For instance, for the 180 flight movements with aircraft
positions at Terminal 1 and baggage conveyors at Terminal 2, we obtain 27 com-
mon attributes in 21 scales out of the total of 731 attributes of the 77 scales.
These attributes obviously include “Terminal 2’ in the scale Position of Baggage
Conveyor and “T'17 in the scale Position of Aircraft. While these attributes pro-
vide no new information to the user, there are also more interesting attributes
as, e.g., ‘none’ in the scale Number of mail pallets, or ‘last airport in the KU’
in the scale All Informations in [PCG]. The computation and representation of
the attributes common to all objects is discussed in more detail in [7].

The result of retrieving all attributes common to all 180 flight movements
provides interesting insights in the situation (e. g., that the destination is the last
airport in the EU for all these flights), but is not sufficient, for explaining the
mismatch. One difficulty of this approach is that we require that all objects must
have the attributes to be returned. Attributes that do not pertain to all, but only
to most of the objects are not shown to the analyst. The second drawback 1s that
even if an attribute pertains to all objects, it may be relatively irrelevant. This
is the case if almost all objects in the database have that attribute. For instance,
18811 of the 18939 outbound flight movements have the attribute ‘none’ in the
scale Number of Mail Pallets. This does not mean that the information that
none of the 180 aircraft has mail pallets on board is irrelevant for the analysis,
but it provides an estimation of its significance.

Hence, beside the percentages of the common attributes, another criterion for
aranking of the scales is needed, which indicates the difference of the distribution
of the sample set to the distribution of the total set of objects. Once we have
a measure for this difference, we can rank those scales where the sample set
of objects has attributes in common, thus measuring the significance of these
attributes. The second possibility is to rank all scales according to that measure,
even if they do not provide common attributes.

For the 180 flight movements with aircraft positions at Terminal 1 and bag-
gage conveyors at Terminal 2, we will for instance discover that the scale Desti-
nation Southern Furope/Mediterranean Sea provides interesting insights: Among
the 180 flight movements, there are 87 with destination Ttaly', hence much more
than estimated from the distribution of all objects which is shown in Fig. 3. For
all of the three different measures that we discuss next, this scale appears on
prominent positions in the rankings.

' Two of the remaining 93 flight movements have destinations in Spain, two in Mo-
rocco, three in Tunisia, and 86 are out of the region Southern Furope/Mediterranean
Sea.



4 Measuring Differences of Distributions over Conceptual
Scales

The three measures that we discuss are based on the y? distance function

n 2
Q(m17"'7mr;y17"'7y,):: X - X
! ! Z;ﬁ i Z;ﬁ Y

i=1

For each scale in the Conceptual Information System, we compute such a value
(with the #; and y; as defined below), and rank the scales in descending order
of these values.

1. The first measure, (01, is obtained by letting n be the number of concepts of
the scale to be measured, xz; the cardinality of the extent of the ith concept
in the sample set, and y; the cardinality of the extent of the ith concept in
the set (¢ of all objects.

2. The second measure, (Js, 1s defined as @ with the exception that the top
element of the scale is not regarded (i.e., we have that n is the number of
concepts in the scale minus 1).

3. The third measure, (Js, is again similar to 1, but now, the x; and y; are
set to the cardinalities of the contingents rather than of the extents. The
contingent of a concept ¢ is the set of all objects which belong to the extent
of ¢ but not to the extent of any proper subconcept of c.

There are arguments for and against each of these three measures: i) The first
measure involves the difference in each concept. This seems the most natural
approach. ii) Because the top concept of a scale always contain all objects, the
distribution of the sample set and the total set is always equal in this concept.
This is the argument for studying the modification @« of @. 7ii) The standard
in comparing distributions is to consider classifications of the objects in disjoint
classes. This is the case for contingents, while extents share objects. This is
the reason for introducing the third measure. However, the third measure loses
information about the structure of the conceptual scale, since its measure is
always equal to the corresponding nominal scale. Variations of the distribution
which appear only at a very specialized level of concepts are thus considered to
be more important than by the first two measures.

The research for determining which of the measures should be preferred is still
in progress. In sample applications, the different rankings have to be computed
and evaluated by experts of the field. These experts have to decide which of the
rankings reflects best their intuitive understanding of interestingness. We have
applied all three measures to the sample set of 180 flight movements. In this
paper, we discuss some observations that can be made in the first experiments:

The rankings obtained by the first two measures do not differ significantly.
The ranking of Q3 gives scales with flat hierarchies a preference compared to
the other two. However, all three rankings are similar in a global sense: They
provide local differences, but in the whole they consider the same scales to be



important. The scales an analyst considers to be potentially significant are all
among the top twenty in each of the rankings.

In the flight movement database, there 13 no information coded about the
semantics of the database attributes. Hence the algorithm can not distinguish
whether a high score indicates a cause or a consequence of the examined situ-
ation. For instance, the scale Area Control Group has a high score in all three
rankings. This is a consequence of the fact that by fixing the aircraft position
the area control group is determined as well. If the data model provides such
information (e. g., by functional dependencies), then one could use it for filtering
the ranking. This feature cannot be applied to the presented system, because
the flight movement database is just a flat table.

Concluding this section, we want to emphasize again that our purpose is not
testing hypotheses or providing statements about dependencies. This is the task
of a human expert. The analyst is free to look at any scale he wants. The system
only supports him by providing suggestions where to look first. This approach
combines a systematic investigation with the freedom to navigate around.

5 Qutlook

As already mentioned in the last section, field studies have to be done in order
to compare the different measures. Once a measure is decided to be the most
suitable, this application should be implemented in the management system
TOSCANA for Conceptual Information Systems. The implementation can be
combined with a highlighting of interesting concepts as proposed in [9]. This
highlighting marks those concepts of a conceptual scale which contribute over-
proportionally to the sum of squared differences. Further research should also
include the exploitation of information provided by the conceptual data model.

References

1. A. Arnauld, P. Nicole: T.a logique ou I’art de penser contenant, outre les régles
communes, plusieurs observations nouvelles, propres a former le jugement. 37 édit.
reveile & augm. P., Ch. Saveux, 1668

2. R. Cole, P. Eklund, B. Groh: Scalability in Formal Concept Analysis. J. on Com-
putational Intelligence (to appear)

3. B. Ganter, R. Wille: Formale Begriffsanalyse: Mathematische Grundlagen. Sprin-
ger, Heidelberg 1996

4. U. Kaufmann: Begriffliche Analyse von Daten uber Flugereignisse Implemen-
tierung eines Frkundungs- und Analysesystems mit TOSCANA. Diplomarbeit, TU
Darmstadt, 1996

5. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA ein Werkzeug zur
begriflichen Analyse und FErkundung von Daten. In: R. Wille, M. Zickwolff
(eds.): Begriffliche Wissensverarbeitung Grundfragen und Aufgaben. B.1.
Wissenschaftsverlag, Mannheim 1994



10.

11.

12.

G. Stumme: On-Tine Analytical Processing with Conceptual Tnformation Systems.
Proc. of the 5th Intl. Conf. of Foundations of Data Organization. Kobe, November
12-14, 1998 (to appear)

GG, Stumme: Dual Retrieval in Conceptual Information Systems. Proc. of the Conf.
Datenbanksysteme in Biiro, Technik und Wissenschaft. Freiburg, March 1 3, 1999
(submitted)

G. Stumme, R. Wille, U. Wille: Conceptual Knowledge Discovery in Databases
Using Formal Concept Analysis Methods. In: J. M. 7ytk0w7 M. Quafofou (eds.):
Principles of Data Mining and Knowledge Discovery. Proc. of the 2nd Furopean
Symposium on PKDD 98, T.ecture Notes in Artificial Intelligence 1510, Springer,
Heidelberg 1998, 450 458

G. Stumme, K. E. Wolff: Computing in conceptual data systems with relational
structures. In: Proc. Intl. Workshop on Data Warehousing and Data Mining, Sin-
gapore, November 19 20, 1998, Springer, Heidelberg 1998 (to appear)

F. Vogt, R. Wille: TOSCANA A graphical tool for analyzing and exploring data.
In: R. Tamassia, 1. G. Tollis (eds.): Graph Drawing '94, T.ecture Notes in Computer
Sciences 894, Springer, Heidelberg 1995, 226 233

H. Wagner: Begriff. Tn: H. M. Baumgartner, C. Wild (eds.): Handbuch philosophi-
scher Grundbegriffe. Kosel Verlag, Munchen 1973, 191 209

R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. Tn: T. Rival (ed.): Ordered sets. Reidel, Dordrecht Boston 1982, 445 470



