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1 Introduction

At the two conferences KRUSE 95 ([5]) and TCCS 95 ([6], [7]) held at Santa
Cruz in August 1995 researchers on description logics, conceptual graphs, and
formal concept analysis came together and discovered common interests and
tasks. A fruitful discussion revealed that these three disciplines should integrate
their research. Therefore common developments were considered. Tn one of the
presented papers ([2]), for instance, F. Baader demonstrated how a classification
algorithm providing more information can be built by combining a subsump-
tion algorithm of description logics with a knowledge acquisition tool of formal
concept analysis. In this paper we show how a classification algorithm providing
still more information can be obtained by choosing another acquisition tool of
formal concept analysis.

Much work has been done to develop algorithms for computing the subsump-
tion hierarchy for knowledge representation systems based on description logics
(also called KT.-ONFE like systems, terminological knowledge representation sys-
tems; cf. [1]). Tn [2], F. Baader describes how this computation can be extended
to all conjunctions of concepts given in a terminology (TBox). He applies at-
tribute exploration [8], an exploration tool of formal concept analysis (cf. [22],
[9]) which is usually used as an interactive procedure to interview efficiently a hu-
man expert about a certain domain of knowledge. Instead of computing only the
partially ordered set of the concepts in the TBox with the subsumption ordering,
he obtains the complete semi-lattice of all possible conjunctions of concepts in
the TBox. Since every complete semi-lattice is in fact a complete lattice, the ex-
istence of suprema (i.e., least common superconcepts) is asserted. However they
generally differ from the disjunction unlike the infima which are always equal
to the conjunction of concepts. This paper describes, how the complete lattice
of all possible combinations of conjunctions and digjunctions (and negations) of
concepts in the TBox can be computed by applying another exploration tool of
formal concept analysis, namely distributive concept exploration [17], instead of
attribute exploration.

As in [2] we restrict ourselves to the description logic language ALC, but
the results can be generalized to other languages. The basic notions of ALC are
recalled 1n the next section. There we also give a short introduction into formal
concept analysis.



2 Description Logic and Formal Concept Analysis

In this section we briefly recall the basic notations of the description logic ALC
and of formal concept analysis. For a more detailed introduction we refer to [14]
and [1] for ALC, and to [9] and [22] for formal concept analysis.

2.1 The Description Logic ALC

The syntar of ALC is built from a set of concept names and a set of role names.
Concept descriptions are defined recursively:

The concept names (which are assumed to contain two particular names T
and L for the top and the bottom concept) are concept. descriptions.

Tf ' and D are concept descriptions and R is a role name, then C'11 D (con-
Junction), CUD (disjunction), =C' (negation), IR.C' (existential restriction),
and YR.C' (value restriction) are concept descriptions.

A terminological ariom is a pair A=1) where A is a concept name different from
T and L and D is a concept description. A terminology (TBoz) is a finite set, T of
terminological axioms such that there are no cyclic and no multiple definitions.
The concepts A appearing in an axiom A = 1) on the left side are called defined
concepts, otherwise they are called primitive concepts.

Next we describe the semantics of ALC: An interpretation T consists of a
set. dom(Z) and of a function ()% which maps every concept name to a subset
of dom(Z) (T has to be mapped to dom(Z) and L to the empty set) and every
role name to a binary relation on dom(Z). This mapping is recursively extended
to concept descriptions by

(cnnmr.=ctnnt,
(Cunm?.=ctunt,
(=C)T = dom(T) \ C7,
(AR.CY? .= {x edom(T) | Iy € C7: (x,y) € RT},
(YR.C)? .= {x €dom(T) | Yy Edom(T): (x,y) € R = y € C*}.

A model of a TBox T is an interpretation 7 which satisfies the equality AZ = DT
for all terminological axioms A=7) in the TBox T.

We say that a concept description 1) subsumes a concept description ' with
respect to a TBox T (C' Ty D), if the inequality O C DZ holds for all models
T of T.

In [14], a subsumption algorithm is described which computes for given con-
cept descriptions €' and 1) whether (' is subsumed by 1) with respect to a TBox
7. Tn [2], it is shown that, if C'is not subsumed by D then the algorithm can
provide a “counterexample” i.e. a model Z of T and an individual ¢ € dom(ZT)
with ¢ € CT\ DZ.



2.2 Formal Concept Analysis

Formal concept analysis is based on the philosophical understanding of a concept
as a unit of thought consisting of two parts: the extension contains all objects
belonging to the concept and the intension contains all attributes valid for all
these objects (cf. [21]). Formal concept analysis starts with a formal context
(G, M, T) which consists of two sets G and M and a relation T C G x M.
The elements of (G and M are called objects and attributes, respectively, and
(9,m) € Tis read as “the object g has the attribute m”.

Now, the formal concepts of the context (G, M, T) are all pairs (A, B) with
A C G and B C M such that (A, B) is maximal with the property A x B C I.
The set A 1s called the extent and the set B is called the intent of the formal
concept (A, B). The set B(G, M, T) of all formal concepts of a formal context
with the ordering (Aq, By) < (A9, B2) : <= Ay C A, is always a complete
lattice which is called the concept lattice of the context (G, M, T) (cf. [22]). The
ordering reflects the subconcept-superconcept-relation.

Next we introduce the two derivations A" := {m € M |Vg € A:(g,m) € T}
for AC G,and B':={g € G |Vm € B:(¢g,m) € T} for B C M. The fact that
(A, B) with A C G and B C M is a formal concept is equivalent to A’ = B
and A = B’. The smallest formal concept having an object g in its extent is
vg = ({9}, {g}"), the largest formal concept having an attribute m in its intent
is pm = ({m}’, {m}""). In the concept lattice, infima and suprema are calculated
as follows:

AN ALB) = () AU B, VAL B) = (U A" () Br)

teT teT teT teT teT teT

Every complete lattice can be viewed as a concept lattice: The Basic Theorem of
Formal Concept, Analysis (cf.[22]) shows that a complete lattice I is isomorphic
to the concept lattice B(L, ., <). We say that a complete lattice L is represented
by a formal context (G, M, T)if L. = B(G, M, T). If L is a finite lattice then it
is also isomorphic to the concept lattice B(J(L), M (L), <) where J(L) is the
set, of all join-irreducible elements and M (L) is the set of all meet-irreducible
elements of L. The context (J(L), M (L), <) is said to be reduced. Tt is (up to
isomorphism) the unique minimal context which represents L.

Since description logics and formal concept analysis have been developed
independently, the notations are slightly different (see [27] for an extensive dis-
cussion): The concepts in description logics are understood as unary predicates.
Hence they correspond more to the attributes in formal concept analysis than to
the formal concepts, which have no direct counterpart in description logics. The
conjunction of concepts in description logics correspond directly to the infimum
of attribute concepts in formal concept analysis. Tn [11] and [15], concept for-
mations like negation and disjunction are discussed for formal concept analysis,
since they are important for the handling of incomplete knowledge (cf. [4], [11],
[25], [26]) in conceptual knowledge systems [26]. For her dissertation, U. Pri} is
working on adding existential and value restriction (cf. also [12]).



Description logics have a strict distinction between the TBox containing
purely intensional definitions of concepts and roles, and the ABox providing in-
formation about individuals. Tn formal concept analysis, extension and intension
are understood as two aspects of a concept which cannot be treated separately.

3 Extending the Concept Classification of a Terminology

Tt 1s efficient to provide the subsumption relationships of the concepts in a ter-
minology explicitly as a partially ordered set for further computations. The com-
putation of the ordering, called classification, 1s done by repeatedly applying a
subsumption algorithm. For two given concepts ' and ) the subsumption algo-
rithm computes whether (' 18 subsumed by 1) with respect to a terminology. In
[14], the first sound and complete subsumption algorithm for ALC is given.

Although the classification gives important information about a terminol-
ogy, there are hierarchical dependencies between the concepts that cannot be
described. Tn [2] (where also the subsumption algorithm of [14] is described),
F. Baader gives as example the terminology

Male = —=Female, Human = MalelLl Female, Parent = 3child.Human,
NoDaughter = Vchild.Male, NoSon = Vchild.Female,
and NoSmallChild = Vchild.=Small

where Small and Female are primitive concepts. In the ordering resulting from
the classification, the three concepts NoDaughter, NoSon and NoSmallChild are
incomparable. The subsumption NoDaughter M NoSon C NoSmallChild cannot be
deduced from the partially ordered set.

For including information about the subsumption-relationship between con-
junctions, the classification can be extended with all conjunctions of the con-
cepts of the terminology. Instead of testing all pairs of conjunctions for sub-
sumption (which would not be effective, since in the worst case the number
of concepts built by conjunction is exponential in the size of the terminology),
Baader applies atiribute exploration ([8], see also [9], [3]), an exploration tool
of formal concept analysis. Attribute exploration produces questions of the kind
“Is C7 11 ... C,, subsumed by Dy M ...M D,,7" which are answered by the
subsumption algorithm. The set of all suggested subsumptions being accepted
by the subsumption algorithm is a minimal representation (called Duquenne
Guigues Basis) of the semi-lattice of all possible conjunctions of the concepts
in the TBox. Additionally this algorithm provides a list of “counterexamples”
(Z, ¢) for all subsumptions that do not hold with respect to the terminology: For
every pair CyM...MC,, DyM...M D, of conjunctions of concepts of the TBox
with Cy ... C, gy DM ... Dy, there is a pair (Z,¢) in the list such that
c€(CiM..CHEN (DML D).

Since every complete semi-lattice is also a complete lattice, we can com-
pute suprema in the resulting ordering. For instance, the supremum of Male
and Female is Human in our example. Unfortunately, this does not imply Hu-
man = Malell Female (but only Human O MalelLlFemale), since the supremum



in general does not correspond to the disjunction.’ The subsumption Human
C MalelLlFemale cannot be deduced from the classification of all conjunctions
alone, although 1t follows directly from the definition of Human in the TBox.

By replacing attribute exploration by distributive concept exploration ([17],
[10]), the classification algorithm computes the complete lattice of all combina-
tions of conjunctions and disjunctions of the concepts in the TBox. In particular,
the supremum in the resulting lattice will correspond to the disjunction. The lat-
tice will be represented by a minimal formal context (which can be stored for
further computations). As in the previous case, the algorithm provides a list of
counterexamples for all non valid subsumptions.

4 Computing the Conjunction-Disjunction-Lattice

The algorithm for the computation of the conjunction-disjunction-lattice gener-
ated by the concepts of a terminology uses the fact that this lattice is 1Isomorphic
to a suitable quotient lattice of the free bounded distributive lattice generated
by the concepts. Hence the main task is to determine the corresponding con-
gruence relation. Since free bounded distributive lattices grow exponentially,
the algorithm does not calculate in this lattice, but splits up the task of de-
termining the congruence relation. Therefore the tensor product for complete
lattices ([23], see definition below) which is the coproduct in the category of com-

pletely distributive complete lattices is used. The equation FBD({2y, ..., 2;}) =
FBD({z1,...,2;-1}) @ FBD({2;}) allows an iterative computation.
Starting with 2 = 1 the algorithm determines a lattice I; that is isomor-

phic to the conjunction-digjunction-lattice generated by the first ¢ concepts
Cy, ..., C; of the terminology. The lattice L; results from L;,_y by L; :== (L;,_1 ®
FBD({C;}))/0;, where Ly is the two element lattice L < T. The congruence
relation @; is determined by applying the subsumption algorithm. The lattice
Li—1 @ FBD({C;}) is the lattice which respects all hierarchical dependencies
between the first 7 L1 concepts, but no relationships to the concept ;. The con-
gruence @; is then describing these relationships. Both congruence relations and
tensor products can be defined by formal contexts representing the lattices. This
allows an effective computation.

4.1 Tensor Products and Congruence Relations
of Complete Lattices

The tensor product of two complete lattices Iy and I is defined to be the
concept lattice Ly @ Ly := B(Lyx Lo, L1x Ly, V) with (21,22)V(y1,y2) : <=
(21 < g1 or 29 < yo). We define the direct product of two contexts K; :=
(G], /\/[17 []) and TKQ = (G27 M27 [2) to be the context TK1 XTKQ = (G] ><(;27 M1 X
My, V) with the incidence (g1, g2)V(m1,ma) : <= ((g1,m1)ET or (g2, ma)ElL).

1 .. . . .
The supremum always subsumes the disjunction; in general the inverse does not

hold.



The tensor product of two concept lattices is (up to isomorphism) just the con-
cept lattice of the direct product of their contexts: B(K; )QB(Ky) = B(K; xKy)
(cf.]23]).

We say that a context is distributive if 1ts concept lattice is distributive. All
contexts in the following will be distributive reduced finite contexts. The direct
product of distributive reduced contexts is again a distributive reduced context.

In reduced finite contexts every congruence relation corresponds to a compat-
ible subcontext: A context (H, N,.J) is called a subcontext of a context (G, M, T)
if HC G, NCMandJ=Tn(H x N). Ttis called compatible if for every
concept (A, B) of (G, M, T) the pair (AN H, BN N) is also a concept of the sub-
context. Every compatible subcontext of a distributive reduced context is again
a distributive reduced context (cf.[9]).

Factorizing a concept lattice is equivalent to deleting suitable rows and
columns in the context (which generates a compatible subcontext). The rows
and columns that have to be deleted can be described with the #-relation: For
g € Gand m € M we write ¢ /' m if vg is minimal in vG with vg < pm and pm
is maximal in ugM with vg < pm. Tn a distributive reduced finite context the -
relation is a bijection between the set of objects and the set of attributes, and the
compatible subcontexts are exactly those of the form (H, N, TN (H x N)) where
9/'m implies g € H <= m € N. The following theorem (cf. [17]) describes the
correspondence between the compatible subcontexts and the congruence rela-
tions:

Theorem 1. Let (G, M,T) be a distributive reduced finite context, g € G and
m € M with g /* m. Then (A1, B1)O(As, Bs) : <= A1\ {9} = A2\ {9} (=
Bi \ {m} = By \ {m}) defines the congruence relation on B(G, M, T) thal is
generated by the pair (vg, ygAum) (i. e., by forcing~yg < pm). The corresponding
compatible subcontext 1s

(G\{gh, MAA{m}E T (G {g}) x (M {m}))) .

For determining the congruence relation we have thus to compute for every
pair g ,* m if the subsumption v¢ < um holds. For the computation of the
-relation, the algorithm uses the fact that the relation is inherited to compat-
ible subcontexts, and that for every direct product of contexts the equivalence

(91,92) " (m1,my) <= (g1 " my and g5 /2 my) holds.

4.2 Classifying with Distributive Concept Exploration

In this subsection we explain the algorithm via the example given above. First
we list the concepts of the terminology: €'y := Female, (5 := Male, (5 := Human,
..., (s := NoSmallChild. The concepts T and L are considered in the first step
of the computation.

The algorithm starts with the free bounded distributive lattice FBD({C4})
which is the three element chain shown in Fig. 1. For the two ,* in the context
the subsumptions T C Female and Female T | are tested with the subsumption
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Fig. 1. The free bounded distributive lattice FBD({C1 }) and its context representation

algorithm. The algorithm denies both and provides the two counterexamples

(Zy, 1) and (Zs, 2):

L Te) ] | (Zz, c2) |
dom(Z;) := {Otto} dom(Zs) := {Tina, Tom}
Female™ := @ Female™ := {Tinal
Small™ := @ Small™ := ¢
child™ =) child™ := ¢
¢ = Otto ¢y = Tina

Hence there are no rows or columns to delete. We obtain the lattice 1 describing
the subsumption relationships between the three concepts 1, T, and Female. The
lattice and the representing context Ky are shown in the upper left of Fig. 2. At
the left of the context the counterexamples are listed.

Now the tensor-product of L with FBD({C5}) is computed (see Fig. 2).
The computation is only done on the context level, the line diagrams are only
displayed for a better understanding. For the two counterexamples (Zy,¢1) and
(T, e2), now the algorithm tests (by finite model-checking) whether ¢y € Male®"
and co € Male??. The answers “Yes” and “No”, resp., determine the place to put
the counterexamples in the context K. Tn the context we write Female M Male
for the object, (Female, Male) and Female LI Male for the attribute (Female, Male),
since this is exactly the interpretation of the relation V in the definition of the
direct product.

Next, the congruence relation that describes the subsumption relationships
of the concept Male to the three already computed concepts |, T, and Female
is computed. For two of the four /* there are already counterexamples. For the
other two *, the subsumption algorithm is asked the questions “Does Female
M Male C | hold?” and “Does T C Female LI Male hold?”. This time both sub-
sumptions are accepted, since the subsumption algorithm is not able to provide
a counterexample. Hence the corresponding two lines and two columns have to
be deleted. The resulting lattice is shown at the bottom of Fig. 3.

In this way the classification continues. The next step, for instance, with C's =
Human, discovers that T = Human, since the subsumption algorithm accepts
the two subsumptions Male C Female LI Human and Female C Male LI Human.
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Fig. 2. The tensor-product

Hence the fact that every individual of a model of the terminology is a Human
can directly be read from the result of the classification. The computation for
our example ends with the eighth concept NoSmallChild. The result is a formal
context with 44 objects and 44 attributes, and a list of 44 counterexamples.

5 Qutlook

The algorithm can easily be modified such that it computes the Boolean lattice of
all combinations of conjunctions, disjunctions, and negations of the concepts in
the terminology, since the tensor-product is also the coproduct in the category of
completely distributive complete Boolean algebras. In that case the free bounded
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Fig. 8. Factorization of the tensor-product

distributive lattice FBD({(;}) has to be replaced by the free Boolean algebra
FBA({C;}) (see Fig. 4). An interesting question is whether the classification can
be extended further by existential and value restriction. There one encounters
with new problems: The free algebra is infinite, and hence the desired result
may be infinite, too. This could be overcome by restricting the length of the
concept descriptions to be considered. Secondly these algebras have less algebraic
structure than semi-lattices, lattices or Boolean algebras; and the quantifiers
are less related to the subsumption ordering than conjunction, disjunction and
negation.

The inference mechanisms presented in the last section and the one described
in [1] show that combining techniques of description logic and formal concept
analysis can provide interesting results. A further extension of these combina-
tions seems desirable, especially for the development of conceptual knowledge
systems. While description logics are more sophisticated in knowledge repre-
sentation and inference, tools of formal concept analysis focus more on knowl-
edge acquisition (cf. [16], [24]) and communication (cf. [20]). All four aspects
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Fig. 4. The free Boolean algebra FBA({C;}) and its context representation

play a crucial role for conceptual knowledge systems. The management system
TOSCANA ([20]) for conceptual data systems ([13], [19]) provides techniques for
knowledge representation and communication. Tt is promising to examine how

this system can be extended with a terminology in order to increase expressive-

ness and to treat incomplete knowledge.
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