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ABSTRACT

Social bookmarking systems constitute an established part
of the Web 2.0. In such systems users describe bookmarks
by keywords called tags. The structure behind these social
systems, called folksonomies, can be viewed as a tripartite
hypergraph of user, tag and resource nodes. This underlying
network shows specific structural properties that explain its
growth and the possibility of serendipitous exploration.

Today’s search engines represent the gateway to retrieve
information from the World Wide Web. Short queries typ-
ically consisting of two to three words describe a user’s in-
formation need. In response to the displayed results of the
search engine, users click on the links of the result page as
they expect the answer to be of relevance.

This clickdata can be represented as a folksonomy in which
queries are descriptions of clicked URLs. The resulting net-
work structure, which we will term logsonomy is very sim-
ilar to the one of folksonomies. In order to find out about
its properties, we analyze the topological characteristics of
the tripartite hypergraph of queries, users and bookmarks
on a large snapshot of del.icio.us and on query logs of two
large search engines. All of the three datasets show small
world properties. The tagging behavior of users, which is
explained by preferential attachment of the tags in social
bookmark systems, is reflected in the distribution of single
query words in search engines. We can conclude that the
clicking behaviour of search engine users based on the dis-
played search results and the tagging behaviour of social
bookmarking users is driven by similar dynamics.

Categories and Subject Descriptors

H.3.5 [Information Systems]: Online Information Ser-
vices— Web-based services; H.2.8 [Information Systems]:
Database Applications—Data Mining
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1. INTRODUCTION

Folksonomies are complex systems consisting of user-defined
labels added to web content such as bookmarks, videos or
photographs by different users. In contrast to classical search
engines, which index the web and offer a simple user inter-
face to search in this index, a folksonomy can be explored
in different dimensions taking users, tags and resources into
account. A further, fundamental difference consists in the
way a folksonomy’s and a web search engine’s index is cre-
ated: While search engines automatically crawl the web, the
content of a folksonomy is determined by its users. As a con-
sequence, the content selection and retrieval in folksonomies
is a social process, in which users decide about relevance.

User relevance feedback is integrated into search engine
ranking algorithms as well. The feedback is extracted from
log files which track a user’s click history. However, as the
evolvement of social bookmarking systems or recommen-
dation systems on popular websites such as Amazon have
shown, web searchers are not only interested in a ranked list
of search results, but they like to explore community content
as well.

In this paper we discuss the realization of such “search
communities” within search engines by building an anonymized
folksonomy similar to the del.icio.us social bookmarking sys-
tem from search engine logdata. As logdata contain queries,
clicks and session IDs, the classical dimensions of a folkso-
nomy can be reflected: Queries or query terms represent
tags, session IDs correspond to users, and the URLs clicked
by users can be considered as the resources they tagged with
the query terms. Search engine users can then browse this
data along the well known folksonomy dimensions of tags,
users, and resources.

A search engine folksonomy, which we will call logson-
omy in the sequel, brings a variety of features to search
engines. Partly discussed in blogs [18] one can picture users
adding additional tags to their pages to have them higher



ranked. Temporal aspects can be introduced by incorporat-
ing a fourth dimension and showing popular tags, users or
resources at a certain time. Finally, search engine users may
interact with each other, commenting and copying search re-
sults of each other.

Logsonomies open a wide field of exploration. What kind

of semantics can we extract from logsonomies? Is the serendip-

itous discovery of information also possible in logsonomies?
How does the structure of logsonomies differ from folksono-
mies? In this paper, we address these questions by analyz-
ing the topological properties of two logsonomy datasets and
comparing our findings to a social bookmarking system. In
previous work [6], it was shown that folksonomies exhibit
specific network characteristics (e.g. small world properties,
power laws, and long tail degree distributions). These char-
acteristics help to explain why people are fascinated from
this structure: A small world leads to short ways between
users, resources and tags, which allows for finding interesting
resources by browsing the system randomly. High clustering
coefficients show dense neighbourhoods which are tracked
by the formation of communities around different topics. Fi-
nally, cooccurrence graphs show the building of user enabled
shared semantics.

By looking at a logsonomy graph’s components we find
that logsonomies collapse in more disconnected components
than folksonomies do. In contrast, small world properties
considering the shortest path length and the clustering co-
efficient, compared to random graphs and del.icio.us, can be
confirmed, and finally, the strength of each node expresses
similar tagging semantics as folksonomies do. Most of the
differences in topological structure can be explained by the
differences in user behaviour and the creation of metadata in
both systems. Overall, we think that our findings strenghten
the idea that clickdata can enable social information re-
trieval and serve as a basis for further analysis.

The rest of the paper is organized as follows. Section 2
briefly reviews related work. In Section 3 we introduce a
formal model of a folksonomy and show how to adapt click
data to fit this model. Section 4 discusses the topological
structure of logsonomies, Section 5 analyses the tag-tag—co-
occurence graph to explain the emergent semantics in the
logsonomy, and in Section 6 we discuss our vision of future
uses of logsonomies.

2. RELATED WORK

In this part we will review related work on extracting so-
cial information from logdata, practical approaches of inte-
grating social features into search engines as well as research
on the analysis of social networks our analysis is based on.

A first consideration of the tripartite structure of query
logs was presented by Zhang and Dong in [21], where an al-
gorithm to rank resources based on the relationships among
users, queries and resources of a search engine’s log is pro-
posed. In [3], Baeza-Yates and Tiberi proposed to present
query-logs as an implicit folksonomy where queries can be
seen as tags associated to documents clicked by people mak-
ing those queries. The authors extracted semantic relations
between queries from a query-click bipartite graph where
nodes are queries and an edge between nodes exists when
at least one equal URL has been clicked after submitting
the queries. Our work differs in the formal underlying folk-
sonomy model. Furthermore, we study various topological
characteristics of the tripartite graph of user, resource and

query nodes, while [3] only focus on a bipartite graph. Our
tag-tag—co-occurrence analysis is related to their graph anal-
ysis but we consider a strength analysis, while they extract
semantic relations between queries. Overall, to the best
of our knowledge, a comparison between a real folksonomy
dataset and logsonomy datasets as presented in this work
was not carried out before.

Several popular search engines have integrated social ser-
vices. This includes social bookmarking services where users
can explicitly assign bookmarks to share them with other
search engine users.! Furthermore, individual search history
information is provided: Users can browse through clicked
pages of the past, view their top searches and most fre-
quently visited pages.? Comprehensive statistics about the
overall search activities are provided by tools such as Google
Trends®, Yahoo Buzz!* or Ask IQ.> Most of the statisti-
cal information is derived from query logs. To the best of
our knowledge, these query logs have not been transformed
to a folksonomy alike search experience before. Search en-
gine providers do not detail to which extent click data is
used to improve search, but none is currently providing a
folksonomy-style navigation of query logs. A major reason
can be seen in privacy considerations which would need to
be addressed carefully [1].

Social network topology features. The graph-theoretic
notions our analysis is based on are defined in [19, 7]. Cat-
tuto et al. [6] extend the small world characteristics to the
tripartite graph. The analysis of structural properties of so-
cial networks has been addressed by a number of studies.
For example, in [2] topological characteristics of social net-
working services are described taking degree distribution,
clustering properties, degree correlation and evolution over
time into consideration. In [10] the structure of internal
cooperate blogs is analyzed by Kolari et al. to improve in-
formation retrieval and expert finding in companies.

Key studies along the structure and dynamics of social
tagging systems are [5, 8, 11, 12]. Major findings include
the power law distribution of tags, the evolution of a vo-
cabulary growth over time and the small world properties
of the underlying graph. While the representation of click-
data in form of a folksonomy has not been realized before,
clickdata was represented as a bipartite graph using queries
and URLs as nodes by [4, 20]. An analysis of the bipartite
clickdata graph was conducted by Shi in [17] on the AOL
data set which we considered also in our study. An analysis
of clickdata as tripartite hypergraph as well as a comparison
to folksonomy properties has not been carried out so far.

3. LOGSONOMIES

This section will introduce the concept of a logsonomy.
After a brief definition referring to the folksonomy model,
necessary adaptations of search engine query log data will
be discussed.

3.1 Formal Model of a Folksonomy

Following [9] we define a folksonomy as a tuple F :=
(U, T,R,Y) where

"http:/ /www.google.com/s2/sharing /stuff
2http://www.google.com/history
Shttp://www.google.com/trends
“http://buzz.yahoo.com
®http://sp.ask.com/en/docs/iq/iq.shtml



e U, T, and R are finite sets, whose elements are called
users, tags and resources, resp., and

e Y is a ternary relation between them, i.e., Y C U X
T x R, whose elements are called tag assignments (TAS
for short).

For convenience we also define, for all w € U and r € R,
tags(u,r) == {t € T | (u,t,r) € Y}, i.e., tags(u,r) is the
set of all tags that user u has assigned to resource r. The
set of all posts of the folksonomy is P := {(u,S,r) | u €
U,r € R,S = tags(u,r),S # 0}. Thus, each post consists of
a user, a resource and all tags that the user has assigned to
the resource.

Another perspective of this structure is that of a tripartite,
undirected hypergraph G = (V, E), where V = UUTUR is
the disjoint union of the sets of users, tags and resources,
and every hyperedge (u,t,r) connects exactly one tag, one
user, and one resource.

3.2 Adaptation to Search Engine Query Logs:
Logsonomies

Let us now consider the query log of a search engine. To
map it to the three dimensions of a folksonomy, we set

e U to be the set of users of the search engine. De-
pending on how users in logs are tracked, a user is
represented either by an anonymized user ID, or by a
session ID.

e T to be the set of queries the users gave to the search
engine (where one query either results in one tag, or
will be split at whitespaces into several tags).

e R to be the set of URLs which have been clicked by
the search engine users.

In a logsonomy, we assume an association between ¢, u and
r when a user u clicked on a resource r of a result set after
having submitted a query ¢ (eventually with other terms).
The resulting relation ¥ C U x T' X R corresponds to the
tag assignments in a folksonomy.

We call the resulting structure a logsonomy, since it re-
sembles the formal model of a folksonomy described above.
Additionally, the process of creating a logsonomy shows sim-
ilarities. The user describes an information need in terms
of a query. He or she then restricts the result set of the
search engine by clicking on those URLs whose snippets in-
dicate that the website has some relation to the query. These
querying and clicking combinations result in the logsonomy.
However, logsonomies differ from folksonomies in some im-
portant points which may effect the resulting structure of
the graph:

e Users experience a bias towards clicking top results
in a result list. In query log analysis these clicks are
usually discounted. To construct a logsonomy, this
bias may be integrated by introducing weights for the
hyperedges.

e While tagging a specific resource can be seen as an
indicator for relevance, users may click on a resource to
check if the result is important and then decide that it
is not important. However, the act of clicking already
indicates an association between query and resource in
our case.

e A user might click on a link of a query result list be-
cause it is interesting to him for other reasons than the

query.

e A user may click on a resource several times in response
to the same query when repeating search after some
time. This information is lost when constructing the
logsonomy, since TAS are not weighted.

e In logsonomies, a tag is created with a search click.
Composed queries are thus another intentional creative
process to describe the underlying resources.

e Queries are processed by search engines leaving open
to which extend the terms influence the search results.

e When a resource never comes up for search, it cannot
be tagged as such.

e Session IDs (in the MSN case) differ from a typical
user. They are probably more coherent. We will anal-
yse the differences between users and sessions in 4.1.

The described differences may lead to a different under-
lying topological structure regardless of the similar nature
of the overall process. We will focus on a comparison of the
major properties of the underlying graph and will not specifi-
cally investigate the influence of the discussed differences on
this results. However, in future work we want to further
consider these differences to get a better understanding of
querying and tagging dynamics.

3.3 Datasets

We use three datasets in our study: two click datasets ob-
tained from commercial search engines (MSN and AOL), and
one dataset from the social bookmarking system del.icio.us.

The MSN dataset consists of about 15 million queries sub-
mitted in 7,470,915 different sessions which were tracked
from the MSN search engine users in the United States in
May 2006. The dataset was provided as part of the “Mi-
crosoft Live Labs: Accelerating Search in Academic Re-
search” award in 2006°.

We transformed the data to obtain two logsonomy datasets.
In the first, the set of tags is the set of complete queries, the
set of users is the set of sessions and the set of resources is
the set of clicked URLs. Thus, a click on a URL r after sub-
mitting the query g within a session s results in the triple
(s,q,7) of Y. To make the dataset comparable to the AOL
dataset, we reduced the URLs to host only URLs, i.e., we
removed the path of each URL leaving only the host name.
In the following, we refer to this dataset as MSN complete
queries. For the second dataset, we also considered host
only URLs. Additionally, we decomposed each query ¢ at
whitespace positions into single terms (qu,...,qx) and col-
lected the triples (s, ¢;,r) (for¢ € {1,...,k}) in Y instead of
(s,q,7). This splitting shall better resemble the tags added
to resources in folksonomies which typically are single words.
As we removed stopwords, a minor fraction of users (1,375)
and URLs (282) disappeared because of their relation to a
query consisting only of stopwords. The second dataset is
called MSN split queries in the sequel.

The AOL data is a snapshot of queries from March, 1st
to May, 31st 2006. The dataset consists of 657,426 unique

Shttp://research.microsoft.com/ur/us/fundingopps/RFPs/
Search_2006_RFP.aspx



user IDs, 10,154,742 unique queries, and 19,442,629 click-
through events [15]. Analogously to the MSN dataset, we
transformed the data into two different datasets (called AOL
complete queries and AOL split queries resp.)”.

To compare the logsonomy structure to a folksonomy, we
also used a social bookmarking dataset from del.icio.us con-
taining posts from 81, 992 users up to July, 31st 2005. Again,
we have two datasets: one consisting of full URLs to be com-
parable to prior work on folksonomies [6], and one reduced
to the host part of the URL only to be comparable to the
logsonomy datasets. The sizes of the different datasets are
presented in Table 1.

4. TOPOLOGICAL STRUCTURE

To analyse the structural properties of logsonomies, we
consider various network measures, adapted to the tripartite
structure of our data.

4.1 Degree distribution

We start our analysis by looking at the degree distribution.
A degree of a node in a tripartite graph reflects the number
of hyperedges, (e.g., the triples (u,t,r)) which contain the
specific node.

It has been shown, that the distribution of the degree
of nodes for tags and resources in a folksonomy follows a
power law distribution [8], P(k) ~ k™7, where k is the node
degree and ~y the exponent of the distribution. A power law
distribution implies that a very high number of nodes have
few links to other nodes and very few nodes have a very
large number of links [7]. Here we examine if this property
is maintained in a logsonomy graph.

Figure 1 shows the distributions of users for the differ-
ent datasets. The distributions are plotted using a log-log
scale — power law distributions would show up in such plots
as a straight line. For users neither in the query log data
nor in the del.icio.us data a power law distribution is re-
flected. While the curve of the AOL users shows a progres-
sion similar to the one of del.icio.us, the curve for the MSN
users exhibits a steeper gradient. This is probably due to
the nature of sessions representing the users in this dataset:
though long-term cookies to track users exist in MSN, ses-
sions have a shorter life time as opposed to unique, timeless
user IDs. The probability of being strongly interlinked is
therefore lower.

For all datasets, the distribution of the resources are sur-
prisingly similar to each other (cf. Figure 2). This may be an
indicator that interests in folksonomies and search engines
considering the generality /specificity of content is similarily
distributed, i.e., there exist few URLs that are of high in-
terest to many users (authorities), and many specific URLs
that are of interest to individuals only.

Finally, the distributions of queries and tags are plotted
in Figure 3. When splitting queries into single tags, the dis-
tribution is very similar to the tag distribution of del.icio.us.
The datasets containing complete queries as nodes show a
steeper distribution than the other datasets. We attribute
this difference to the fact that full queries have less overlap
across and within users.

To conclude, the distribution between tags and queries as
well as resources is very similar. This is an indicator that

"We used unique user IDs, because session IDs were not
included in the AOL dataset.
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Figure 1: Degree distribution of user nodes. The
x-axis shows the degree k, the y-axis the fraction of
users with this degree.
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Figure 2: Degree distribution of resource nodes.
The x-axis shows the degree k, the y-axis the frac-
tion of resources with this degree.

both systems share a common distribution of the used vo-
cabulary and show a similar tagging and clicking behaviour.

4.2 Connected components

A connected component in a tripartite, undirected graph
represents a maximal connected subgraph where two nodes
are part of the component if there exists a path between
them. The size of a connected component is defined as the
number of its nodes. According to [14], a giant connected
component (GCC) is the largest component which scales lin-
early with the size of the whole graph after a certain perco-
lation threshold is exceeded. The rest of the network, e.g.,
separate, finite connected components, are called the discon-
nected components (DC). With the presence of giant com-
ponents networks can be described as a “unit” organism [7].
Figure 4 shows that in all six datasets the GCC comprehends
most of the existing nodes. For instance, in del.icio.us with
host only URLSs the size of the GCC is 1,446,888. As the
dataset contains in total 1,447,093 nodes, the GCC covers



Table 1: Datasets
dataset |T| U] |R| Y|
del.icio.us host only URLs 430,526 81,992 934,575 | 14,730,683
del.icio.us complete URLs 430,526 81,992 | 2,913,354 | 16,217,222
AOL complete queries 4,811,436 519,250 | 1,620,034 | 14,427,759
AOL split queries 1,074,640 519,203 | 1,619,871 | 34,500,590
MSN complete queries 3,545,310 | 5,680,615 | 1,861,010 | 10,880,140
MSN split queries 902,210 | 5,679,240 | 1,860,728 | 24,204,125
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Figure 3: Degree distribution of queries/tags. Figure 4: Number of connected components with a

Again, the degree k is plotted against the fraction
of query/tag nodes with this degree.

99.99% of the whole hypergraph. In the AOL split query
dataset the relation is similiar with 3,220,395 vs. 3,229,100
total nodes. When comparing the number of disconnected
components, the logsonomies have more disconnected com-
ponents than the folksonomies. Most of these components
consist of singletons: a user submitted only one very specific
query not submitted by anybody else and thereafter visited
one URL that nobody else visited. This behaviour may re-
sult from a search query which did not deliver a relevant
result and was reformulated in the following.

A comprehensive comparison of different sizes is given in
Table 2.

4.3 Small-world properties

It has been shown in [6], that folksonomies exhibit small
world characteristics. Small worlds have a network topology
for which the degree of clustering is high like in regular net-
works, but the average shortest path length like in random
networks [19]. In the following, we investigate to which ex-
tent these characteristics hold for logsonomies. Thereby, we
follow the experiments of [6] in order to be comparable to
former findings regarding folksonomy properties.

In these experiments, binomial and shuffled graphs® of
the same size than the original folksonomy were selected
to compare the original graph to random networks. For a
given folksonomy (U,T,R,Y), a binomial random network
is a logsonomy (U, T, R,Y") where Y consists of |Y| randomly
drawn tuples from U x T' x R. A shuffled random network

8In [6] the shuffled graphs are called permuted graphs.

specific size.

is then a folksonomy (U, T, R,Y) where Y is derived from
Y by randomly shuffling all occurrences of tags in the TAS,
followed by shuffling all occurrences of the resources. (For
a complete shuffling, it is sufficient to shuffle any two of the
three dimensions.) The binomial network has thus the same
number of TAS as the original logsonomy, while the shuffled
network has additionally the same degree distribution.

4.3.1 Average shortest path length

The average shortest path length denotes the mean dis-
tance between any two nodes in the graph. In a tripartite
hypergraph, the path between any two nodes is the num-
ber of hyperedges that lie between them. The shortest path
denotes the minimum number of hyperedges connecting the
two nodes.

Because of complexity reasons, we approximated the av-
erage path length as follows. For each of the datasets, we
computed the average path length by randomly selecting
4000 nodes and calculating the average path length of each
of those nodes to all other nodes in its connected component.

Table 3 shows the average shortest path length of each
dataset together with the values for the corresponding ran-
dom graphs. Comparing the two del.icio.us datasets, the
average shortest path length does not vary to a large extend
when considering host only URLs (3.48 for the host-only—
graph versus 3.59 for the graph with complete URLs). The
average shortest path length of the AOL and MSN datasets
with split queries are smaller than those of the datasets with
complete queries. This can be explained by the higher over-
lap, the splitting of queries produces. As a side effect, this
also leads to a mixing of contents, e.g., the term “java” in



Table 2: Number and size of connected components

| dataset | size of GCC | #components with size 10-100 | #components with size < 10 |
del.icio.us, complete URLs 3,425,146 0 140
del.icio.us, host only URLs 1,446,888 0 56
AOL, complete queries 6,951,513 2 4,578
AOL, split queries 3,220,395 0 2,749
MSN, complete queries 10,165,911 2,363 257,952
MSN, split queries 8,207,977 258 71,195

Table 3: Average shortest path length

dataset raw | shuffled | binomial
del.icio.us, complete URLs | 3.59 3.08 3.99
del.icio.us, host only URLs | 3.48 3.06 3.67
AOL, complete queries 4.11 3.81 5.76
AOL, split queries 3.62 3.20 3.90
MSN, complete queries 5.43 4.10 8.78
MSN, split queries 3.94 3.42 5.48

“java programming language” and “java island” will link to
different topics. However, such wording issues also exist in
folksonomies.

Compared to del.icio.us, all four datasets from MSN and
AOL provide larger path lengths. Capturing the intuition
of serendipitous browsing, it takes longer to reach other
queries, users, or URLs within a logsonomy than it takes
to jump between tags, users and resources in a folksonomy.
In particular, the high values for MSN are likely to result
from the fact that a user cannot bridge between different
topics if he searched for them in different sessions.

Small world properties are still confirmed by the shortest
path length: Comparing each logsonomy to the correspond-
ing binomial and random graphs, the path lengths differ only
slightly.

4.3.2 Cliquishness and Connectedness

The clustering coefficient characterizes the density of con-
nections in the environment of a node. It describes the
cliquishness, (i.e., are neighbor nodes of a node also con-
nected among each other) and the connectedness of a node,
(i.e., would they stay acquainted if the node was removed).
In a tripartite graph, these measures are considered sepa-
rately. In [6] the following definitions are introduced.

Cliquishness.

Consider a resource r. Then the following sets of tags T’
and users U, are connected tor: T, ={t € T | Ju : (t,u,r) €
Y}, U ={ueU]|3t: (tur) €Y} Furthermore, let
tur == {(t,u) € T x U | (t,u,r) € Y}, i.e., the (tag, user)
pairs occurring with r.

If the neighborhood of r was maximally cliquish, all of
the pairs from 7). x U, would occur in tu,. So we define the
cliquishness coefficient v.(r) as:

o tuy
Vcl(r) - ‘Trl K |U7"

The same definition of v, stated here for resources can be
made symmetrically for tags and users.

€[0,1] . (1)

Connectedness.

Table 4: Cliquishness

dataset raw | shuffled | binomial
del.icio.us, complete URLs | 0.86 0.55 0.20
del.icio.us, host only URLs | 0.75 0.51 0.05
AOL, complete queries 0.85 0.66 0.32
AOL, split queries 0.70 0.43 0.04
MSN, complete queries 0.87 0.75 0.47
MSN, split queries 0.85 0.50 0.23
Table 5: Connectedness
dataset raw | shuffled | binomial
del.icio.us, complete URLs | 0.85 0.37 0.00
del.icio.us, host only URLs | 0.83 0.32 0.00
AOL, complete queries 0.33 0.03 0.00
AOL, split queries 0.66 0.10 0.00
MSN, complete queries 0.42 0.03 0.00
MSN, split queries 0.70 0.11 0.00

Consider a resource r. Let tu, := {(t,u) € |tu,|A3IF # 7 :
(t,u,7) € Y}, i.e., the (tag, user) pairs from tu, that also
occur with some other resource than r. Then we define:

_ ]
’VCO(T) T |tu,«|

€[o,1] . (2)

i.e., the fraction of 7’s neighbor pairs that would remain
connected if r were deleted. ., indicates to what extent the
surroundings of the resource r contain “singleton” combina-
tions (user, tag) that only occur once.

The results in Tables 4 and 5 show the cliquishness and
connectedness coefficients averaged over all nodes. One can
see that the coefficients of the original del.icio.us, AOL, and
MSN graphs are in general higher than the ones of the corre-
sponding random graphs. This indicates that there is some
systematic aspect in the search behaviour which is destroyed
in the randomized versions. Comparing the two logsonomies
to the folksonomy del.icio.us, however, the connectedness co-
efficients of the folksonomy exceed those of the logsonomies.
With the experiments so far, we lack an explanation for this
difference. The cliquishness coefficients show less distinc-
tion. This is probably because many resources (tags, users)
exist which only appear in very few TAS, but which then
are well connected among each other. The cliquishness co-
efficient of these nodes is than (close to) one.

S. STRENGTH IN THE TAG-TAG-
CO-OCCURENCE GRAPH

In this section we focus on the analysis of the seman-
tics behind the querying and clicking behavior in a logson-
omy. Therefore we study the properties of the tag-tag—co-
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Figure 5: Cumulative strength distribution for the
network of cooccurrence of tags and queries for all
datasets. Split query logsonomies show a very simi-
lar distribution to the del.icio.us folksonomy.

occurrence graph, as it mainly reflects the semantics describ-
ing the clicked URLs with respect to the queries. This graph
consists of tags which are linked if they occur in the same
post. More formally, G := (T, E) with E := {(t1,t2) | Ju €
U,3r € R: (u,t1,7) € YA(u,t2,r) € Y} defines the tag-tag—
co-occurrence graph on the set T' of tags. Naturally, we can
add weights to the edges by counting in how many posts two
tags appear together. We define the weight w(¢1,t2) of an
edge (t1,t2) to be w(t1,t2) := [{(u,7) € U x R | (u,t1,7) €
Y A (u,ta,7) € Y}|. The strength s, of a tag ¢ in the graph
is then defined as

st = Zw(t,t/). (3)

t/ £t

Each of the following figures contains data from two types
of datasets: the raw data of the datasets as described in
Section 3.3, and a shuffled version of the datasets where we
shuffled the tags® in the triples of the relation Y. To do
so, for each triple (u,t,r) we randomly picked a tag ¢’ and
exchanged (u,t,7) in Y with (u,t’,r). We picked each tag
with a probability according to its degree, such that the tag
degree distribution of the resulting folksonomy is identical
to the original one.

One of the standard measures of complex network theory
is the cumulative strength distribution Ps(s) [6]. It specifies
for a given node strength the probability that a node will
exceed this strength. For the del.icio.us dataset we observe
the same fat tailed distribution as in [6] (cf. Figure 5). The
logsonomy with split queries for AOL as well as for MSN
shows a very similar distribution to the del.icio.us folkso-
nomy. This distribution is also not disturbed by the shuf-
fling process on the tags which confirms that the strength
distribution for both the logsonomy and folksonomy data
only depends on the tag frequencies and not on their se-
mantics — which is destroyed by the shuffling process (Due
to space restrictions we did not include a figure with the
shuffled distribution for all datasets.)

9In contrast to the shuffled versions in Section 4.3, where we
shuffled all three dimensions.

We observe a different behavior for the datasets with com-
plete queries. Queries with high strengths (above 10 for
MSN and above 10® for AOL) show up less frequently than
expected: these frequencies are significantly below those ob-
tained for the shuffled versions. This can be explained by the
construction process of the dataset: The probability that a
user clicks on the same URL within one session but based
on another query is very unlikely. The number of queries
that are connected to many other queries by some (user,
resource) pairs is therefore below expectation.

Next, we want to take a closer look into the co-occurrence
network of the logsonomy to see whether another property
holds or not. Therefore, we measure the average nearest-
neighbor strength of tags in this graph. For that purpose
we define the neighborhood N; of a tag t to be N; := {t' |
(t,t') € E}. The average nearest-neighbor strength is then
defined as:

Sun(t) = ﬁ S s (4)

t'€Ng

For each tag t € T', we will set its average nearest-neighbor
strength Sy, (t) in relation to its own strength s;. This
relation can reveal the difference between human-produced
social networks and technological artefacts [13]: a positive
correlation — called assortative mixing — hints at social
networks while a negative correlation frequently shows up
in technological and biological networks.

Each of the following six figures (6(a) to 8(b)) shows the
strengh of each tag versus its average strength for the raw
dataset and its corresponding shuffled version. Additionally,
the figures contain linear least squares fits for each dataset.
Those are splitted into two regions: tags with low strength
(st < 10%) and tags with high strength (s; > 10?).

Figure 6 shows the relation between s; and Snr (t) for the
two del.icio.us datasets in consideration. The plot for the
dataset with complete URLs (6(a)) shows that the average
strength of the neighbors of tags with low strength varies
strongly while for tags with higher strength the variation
is much smaller, as already observed in [6]. The average
nearest-neighbor strength for tags with high values of s; and
s¢ itself are slightly anti-correlated. Clusters in the diagram
(regions of points separated from the main point cloud, like
the one for 10° < s, < 10*,10% < Snn(t) < 1()4) are mainly
caused by artifacts in the data (such as spam).

The shuffled data shows a more regular distribution of
the average nearest-neighbor strength over s; and a larger
anti-correlation for higher values of s;. Since shuffling de-
stroys semantics inherent in the original network, the obvi-
ous difference to the raw data, especially in the low strength
regions, is a strong indicator that the infrequent tags are
frequently grouped together by their inherent semantics —
an effect which is destroyed by shuffling [6]. Removing the
paths from the URLs of the del.icio.us dataset does not
change the picture much: only some clusters (dis)appear,
as Figure 6(b) shows.

The strength distributions of the split versions of the AOL
and MSN datasets (Figures 7(a) and 8(a)) show noticeable
similarity to the behaviour in del.icio.us for both the orig-
inal and the shuffled data. This supports the hypothesis
that the semantics of the single words within web search en-
gine queries provide topically organized local structures on
the tag-tag—co-occurrence graph similar to the behavior in
a folksonomy.
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Figure 6: Average nearest-neighbor strength S,, of tags in relation to the tag strengths in del.icio.us. The
distributions of both datasets is very similar: the average nearest-neighbor strength for tags with low strength
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Figure 7: Average nearest-neighbor strength S,,, of tags in relation to the tag strengths in AOL. The datasets
with split queries show a similar assortative and dissortative behaviour for the original and shuffled datasets.
The full query dataset differs in size and shape.



The strength distributions for the complete queries of AOL
and MSN (Figures 7(b) and 8(b)), on the other hand, differ
substantially from the distributions of the del.icio.us data.
Not only are the strengths and average nearest-neighbor
strengths smaller than in del.icio.us (which is in line with
the results for the cumulative strength distribution in Fig-
ure 5), but also the shape is different: it is more strongly
bulged on its lower part, which results from a large num-
ber of queries with medium to high strength (around 102
in AOL and 10*® in MSN) that are connected in average
to less strong queries. We assume that this structure stems
from frequency effects rather than from semantically induced
structures, as now the shuffled data differ only slightly from
the raw data.

In the distribution for the complete AOL queries, we addi-
tionally observe — both for the raw and the shuffled data —
a separated cluster on top of the distribution. We currently
lack an explanation for this phenomenon.

We summarize the results of the analysis of the tag-tag—
co-occurrence graph with the conclusion that the logsonomies
based on split queries are closer in terms of semantical be-
havior to folksonomies.

6. VISION

In this paper we presented the idea of transforming a
search engine query log into a “logsonomy”. We analyzed the
resulting graph structure to find similarities and dissimilar-
ities to the existing folksonomy del.icio.us. We found sim-
ilar user, resource and tag distributions, whereby the split
query datasets are closer to the original folksonomy than the
complete query datasets. We could show that both graph
structures have small world properties in that they exhibit
relatively short shortest path length and high clustering co-
efficients. Finally, the analysis of the strength in the tag-
tag—co-occurrence network revealed very similar properties
between folksonomies and logsonomies with split queries.

In general, the differences between the folksonomy and
logsonomy model mentioned in Section 3.2 did not effect
the graph structure of the logsonomies. Minor differences
are triggered by the session IDs which do not have the same
thematic overlap as user IDs have. Also, full queries show
less inherent semantics than the splitted datasets do. In
future work, a more thourough analysis of these differences
will be interesting.

Overall, the results support our vision to merge the search
engine and folksonomy worlds into one system. While some
search engines already allow to store and browse search re-
sults, they do not provide folksonomy-alike navigation or the
possibility to add or change tags. From a practical point
of view, the following considerations are further arguments
for a logsonomy implementation and its combination with a
folksonomy system:

e Users could enrich visited URLs with their own tags
(besides the automatically added words from the query)
and the search engine could use these tags to con-
sider such URLs for later queries — also from other
users. Thus, those tags could improve the quality of
the search engine.

e The popularity of folksonomy systems could increase
the customer loyalty for a search engine. The community-
feeling known from folksonomies could pass over to
search engines.

e Search engines typically have the problem of finding
new, unlinked web pages. Assumed, users store new
pages in the folksonomy, the search engine could direct
its crawlers better to new pages. Additionally, those
URLSs would have been already annotated by the user’s
tags — even without crawling the pages it would be
possible to present them in result sets.

e As described in [16], folksonomies can assist in finding
trends in society. Many social bookmarking users can
be viewed as trend setters or early adopters of inno-
vative ideas — their data is valuable for improving a
search engine’s topicality.

e Bookmarked URLs of the user may include pages, the

search engine can not reach (intranet, password-protected

pages, etc.). These pages can then be integrated into
personalized search results.

However, privacy issues are very important when talking
about search engine logs. They provide details of a user’s life
and often allow to identify the user himself [1]. Certainly,
this issue needs attention when implementing a logsonomy
system.
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