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Social bookmarking systems have established themselves as an important part in today’s web. In such sys-
tems, tag recommender systems support users during the posting of a resource by suggesting suitable tags.
Tag recommender algorithms have often been evaluated in offline benchmarking experiments. Yet, the par-
ticular setup of such experiments has rarely been analyzed. In particular, since the recommendation quality
usually suffers from difficulties like the sparsity of the data or the cold start problem for new resources or
users, datasets have often been pruned to so-called cores (specific subsets of the original datasets) – however
without much consideration of the implications on the benchmarking results.

In this paper, we generalize the notion of a core by introducing the new notion of a set-core – which is
independent of any graph structure – to overcome a structural drawback in the previous constructions of
cores on tagging data. We show that problems caused by some types of cores can be eliminated using set-
cores. Further, we present a thorough analysis of tag recommender benchmarking setups using cores. To
that end, we conduct a large-scale experiment on four real-world datasets in which we analyze the influence
of different cores on the evaluation of recommendation algorithms. We can show that the results of the
comparison of different recommendation approaches depends on the selection of core type and level. For the
benchmarking of tag recommender algorithms, our results suggest that the evaluation must be set up more
carefully and should not be based on one arbitrarily chosen core type and level.
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1. INTRODUCTION
Recommender systems have become a vital part of the social web, where they assist
users in their content selection by pointing to personalized sets of resources. Such sys-
tems often have to deal with sparse data since only little or nothing is known about
many users or items. Alongside work that specifically tackles this task, in the eval-
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uation of recommender algorithms it is common to focus on a denser subset of the
data [Sarwar et al. 2001] that provides enough information to produce helpful recom-
mendations. For data that can be modeled as a graph, a commonly used technique are
generalized cores [Batagelj and M. Zaveršnik 2002] which comprise a dense subgraph
in which every vertex fulfills a specific constraint, e.g., the degree of each node is above
a certain threshold, the so-called core-level. However, the influence of these cores on
the evaluation of recommendation algorithms has not been analyzed so far.

In this paper, we investigate cores that have been used in the evaluation of tag
recommender systems. Tag recommenders are useful in social bookmarking systems
where users post resources (like bookmarks for websites, scientific publications, videos,
or photos) and assign arbitrary keywords (tags) to them. During the posting process
a recommender system typically suggests appropriate tags for annotation. The tag
recommendation task is thus to find suitable tags for a given user and resource.

Previously, tag recommender algorithms have often been evaluated on a special gen-
eralized core of the raw dataset. Although the use of cores is quite common in tag rec-
ommender benchmarking (cf. Section 3), it has rarely been analyzed how the choice of

— core type (i.e., the method to construct the core as a subset of the original dataset;
we will recall and introduce various core types in Section 2),

— core level (i.e., the threshold that is imposed on some property of each data point to
construct the subset; see Section 2, Definitions 2.1 and 2.2),

or simply the process of constructing cores influences the results of such experiments.
In fact, the choice of these setup parameters has been rather diverse in previous tag
recommender benchmarking experiments (see the related work in Section 3 for details
and for examples from the literature). Especially, the core level is often set ad-hoc –
without a motivation for the particular choice – to such values as 2, 5, or even 100,
or to dataset-dependent thresholds. In our experiments in Section 4 we show on real
world datasets, that the choice of core type and core level indeed has an impact on a
benchmarking’s ranking of recommender algorithms. In fact, different experiments on
different setups can lead to contradictory results. Thus, much like the choice of the
evaluation metric or the sampling of training and test data, the core type and level
are important aspects of an experimental setup. During the evaluation of different
recommendation algorithms or during parameter optimization of such algorithms, it is
therefore worthwhile to experiment with several cores and also to use the raw datasets
(the unrestricted datasets). Moreover, the choice of particular core-levels should be
motivated by the use-case and comparisons of results from different experiments must
consider the different core setups in each experiment.

While the previously used cores indeed yield denser graphs, they also come with the
unpleasant property of diminishing posts, i.e., a post of the raw dataset – consisting of
a user, a resource, and several tags – might still occur in the core but with fewer tags.
Thus, the core construction not only reduces the number of posts in the dataset, but
modifies the posts themselves. For such “diminished” posts the recommendation prob-
lem becomes more difficult as recommended tags will not be considered good recom-
mendations even when they actually belong to the original post but have been removed
from that post by the core construction.

We show that cores of real-world datasets indeed contain many such diminished
posts and that different recommender algorithms often yield lower quality scores
on such posts than on those that still remain intact with all their tags in the core.
To overcome this structural problem we first generalize the notion of generalized
cores [Batagelj and M. Zaveršnik 2002] even further to yield set-cores (Section 2). In
contrast to generalized cores, these do not require a graph structure and can be applied
to any kind of dataset in which the entities have some measurable property. We show
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that set-cores have similar properties as generalized cores, describe a construction al-
gorithm, and prove its correctness. We then construct a new kind of core – a set-core –
for social bookmarking systems which guarantees to leave all remaining posts intact
(undiminished).

In Section 3 we discuss how the experimental setup and evaluation using cores has
been handled in previous work on tag recommendations. We then choose a common
setup and describe in Section 4 several experiments on four publicly available real-
world datasets to investigate the influence of cores on the results of recommender
systems benchmarking. We discuss the results of these experiments in Section 5 where
we show how different cores can lead to contradictory results in the comparison of
algorithms. We also point to a peculiarity that arises from using any type of core in
that setup. To summarize, the contributions of this paper are fourfold:

— We generalize the notion of generalized cores to set-cores and introduce new cores
for tagging data of social bookmarking systems to eliminate the particular anomaly
of diminished posts in previously used cores.

— We present a thorough investigation of the influence of cores on the results of tag
recommender benchmarking experiments and confirm that different choices of core
type and level can indeed yield different results.

— We discuss potential pitfalls of the use of cores in recommender evaluation.
— We provide recommendations for the use of cores in future tag recommender bench-

marking experiments.

2. CORES OF GRAPHS AND SETS
Before we discuss the influence of cores within the benchmarking framework for tag
recommendations, we deal with the notion of a core itself. In social bookmarking sys-
tems (often also called tagging systems, see Section 2.3 for a formal definition of their
data structure), the cores that have been used so far have the unpleasant property of
diminishing posts by removing tags. In this section we present a solution to that prob-
lem by introducing post-set-cores. To accomplish that we first recall the notion of gen-
eralized cores of a graph and then extend it to arbitrary sets by introducing set-cores
(Section 2.1). We present examples in Section 2.2 that illustrate different set cores and
that demonstrate some advantages of set cores. We then discuss cores for tagging data
in Section 2.3 where we recall the definitions of cores previously used for the evalua-
tion of tag recommenders and we introduce a new core construction using set-cores to
overcome the issue of diminished posts.

Notation. In the remainder of the paper we make use of the following usual notation:

— A graph G = (V,E) is given as a set V of vertices together with a set E of (undi-
rected) edges. Hereby each edge connects two – or more (in the case of hypergraphs)
– vertices.

— E|C denotes the restriction of the set E to a subset C ⊆ V , i.e., to the edges from E
between vertices from C.

— With P(S) we denote the power set of a given set S.

Batagelj and Zaveršnik presented the notion of p-cores in [Batagelj and M. Zaveršnik
2002], which by itself is a generalization of the original cores introduced in [Seidman
1983]. In the sequel, we refer to their construction as graph-p-cores to better distin-
guish them from the new notion of set-P -cores which we introduce later in this section.
The idea of graph-p-cores is to restrict a given graph by removing all nodes for which a
particular quantity p (e.g., the vertex degree) does not exceed a given threshold l called
the core level. The graph-p-core is then the largest possible subgraph such that all its
vertices have the property p (measured in that subgraph) above the threshold:
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Definition 2.1 (Graph-p-Core [Batagelj and M. Zaveršnik 2002]). Let G = (V,E) be
a graph, l ∈ R, and p a vertex property function on G, i.e., p : V ×P(V )→ R : (v,W ) 7→
p(v,W ). A subgraph H = (C,E|C) induced by the subset of vertices C ⊆ V is called a
graph-p-core at level l, iff l ≤ p(v, C), for all v ∈ C and H is a maximum subgraph with
this property. A core of G with a maximum level l such that it is not empty is called
the main core of G.

An example for a property function p is the vertex degree in each subgraph – in fact,
the original core definition of Seidman [Seidman 1983] uses just that function instead
of an arbitrary function p.

The function p is called monotone if and only if it fulfills

W1 ⊆W2 ⊆ V =⇒ ∀v ∈W1 : p(v,W1) ≤ p(v,W2) .

[Batagelj and M. Zaveršnik 2002] prove that for every monotone vertex property func-
tion p a graph-p-core is uniquely determined at each level l and that it can be computed
by iteratively removing vertices v from the vertex set W (starting with W := V ) that do
not fulfill l ≤ p(v,W ). The monotonicity assumption is a mild requirement, as typical
vertex property functions (like the degree) naturally fulfill it.

Note, that in Definition 2.1, the value p(v,W ) of the function p is dependent both
on the vertex v and on the vertices W of the subgraph that it is evaluated on. For
example, the degree of a vertex in a subgraph of G can be smaller than its degree in G.
Alternatively, the function p in Definition 2.1 can be replaced by a set of functions

{pW : W → R | (W,E|W ) is a subgraph of G} .

A drawback of Definition 2.1 is that it is not possible to model simultaneous restric-
tions of several properties (e.g., that a vertex has at least in-degree l and at least out-
degree m). This can be desirable, for example, when vertices are entities in a tagging
system and we want to require that each user has at least l posts, each resource oc-
curs in at least m posts, and each tag has been used at least n times. For the case of
two thresholds on a bipartite graph a solution was given in [Ahmed et al. 2007] by the
introduction of graph-(p, q)-cores. The set-P -core, which we introduce next, allows us
to enforce different thresholds in a more general way by using an arbitrary partially
ordered set1 as a range instead of only the real numbers.

Another drawback of Definition 2.1 is the dependence on a graph structure. While
this is quite universal already – as almost any kind of data can be modeled as a graph
– it is not always particularly intuitive to construct a graph such that a graph-p-core
can be constructed. In contrast, set-P -cores can be constructed on arbitrary sets.

2.1. Generalization
In the following, we present the definition of a set-P -core, prove its uniqueness and de-
scribe a construction. A set-P -core can be constructed on some arbitrary set S where
for each element of S some property can be measured. Again, a threshold l is imposed
to restrict the set to such elements where that property is above the threshold. In con-
trast to graph-p-cores, the level l must not necessarily be a real number but must sim-
ply belong to some partially ordered set L (like, for example, the space Rn). Thus the
properties are also no longer required to yield a single number, allowing to enforce mul-
tiple property restrictions simultaneously. Given a set S, the set-P -core is the largest
subset, such that for each element of S the chosen property functions P yield a value
that is larger than a fix level l. This is stated more formally in the next definition:

1A set L together with a binary relation R ⊆ L × L is a partially ordered set, iff R is reflexive, transitive,
and anti-symmetric.
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Definition 2.2 (Set-P -Core). Let S be a set, L a partially ordered set with the order
relation ≤, l ∈ L, and P a set of property functions pS̃ : S̃ → L with s 7→ pS̃(s) for
each S̃ ⊆ S. A subset C of S is said to have the l-property w.r.t. P , if it satisfies the
condition l ≤ pC(c) for all c ∈ C. The subset C is called set-P -core at level l of S, iff it is
a maximum subset of S with the l-property.

We simply say that a subset of S has the l-property, if the choice of P is clear from
the context. Note, that in contrast to the generalized graph-p-cores in [Batagelj and
M. Zaveršnik 2002], Definition 2.2 does neither require any kind of graph structure,
nor a linearly ordered set (like the real numbers for graph-p-cores). For two elements
a and b of the partially ordered set L, we denote by a 6≤ b that a is not smaller than or
equal to b, i.e., that either a is larger than b or that a and b are incomparable.

It is easy to see that graph-p-cores are special set-P -cores: In the notions of Defi-
nitions 2.1 and 2.2, we set S := V (the vertex set of G), L := R and use the set of
p-functions as P such that pS̃(s) := p(s, E|S̃). A trivial observation is that the empty
set ∅ ⊆ S has the l-property w.r.t. P for any P and l ∈ L and thus any set S has at least
one subset with the l-property.

Similar to graph-p-cores, the unique existence of the set-P -core is guaranteed as
long as the property functions in P satisfy a mild monotonicity requirement: in each
subset of the original set, for each element, the property measured by the according
map in P is lower than or equal to the according value measured in the original set.
Furthermore, set-P -cores are nested in the sense that increasing the level l yields a
smaller core. These properties are formalized and proven in the following theorem:

THEOREM 2.3. Given S, L and P as in Definition 2.2. If the functions in P are
monotone in the sense that

S̃1 ⊆ S̃2 ⊆ S =⇒ ∀s ∈ S̃1 : pS̃1
(s) ≤ pS̃2

(s)

holds, then for l, l1, l2 ∈ L hold:

(1) The union of subsets of S with the l-property has the l-property.
(2) There exists exactly one set-P -core at l.
(3) The set-P -cores are nested, i.e., if l1 ≤ l2, then the set-P -core at l2 is contained in the

set-P -core at l1.

PROOF. We start with the first property: Let I be an index set and S̃i (i ∈ I) be
subsets of S with the l-property and U their union. For s ∈ U , there is some i ∈ I such
that s ∈ S̃i. By monotonicity of P we have l ≤ pS̃i

(s) ≤ pU (s) and thus U has the l-
property. The second property follows directly from the first, with the set-P -core being
the union of all subsets of S having the l-property (and thus obviously being maximal).
For the third property, let C1 and C2 be the respective set-P -cores at l1 and l2. Then
l1 ≤ l2 ≤ pC2(s) ≤ p(C1∪C2)(s). Thus (C1∪C2) has the l1 property, and by the maximality
of C1 as core at level l1 follows C1 = (C1 ∪ C2) and thus C2 ⊆ C1.

We have now established a generalized notion of cores and can reuse the simple con-
struction algorithm from [Batagelj and Zaveršnik 2011] for such a set-P -core, given a
finite set S (see Algorithm 1). The set-P -core can always be constructed simply by re-
moving one element violating the l-property after another until the remaining set of
elements satisfies the l-property. Note however, that it does not suffice to test each ele-
ment only once, as the value of the property function depends both on the element and
the (remaining) subset. Thus, through the removal of other elements, the value of the
property function might have decreased (in comparison to the same value before that
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removal) and thus be no longer larger than the threshold l. We prove the applicability
of Algorithm 1 in the following theorem:

ALGORITHM 1: Naive set-P -core construction
Input: Dataset S, level l, monotone set of functions P .
Output: The set-P -core C of S at level l.
C := S;
while ∃s ∈ C such that l 6≤ pC(s) do

C := C \ {s};
end

THEOREM 2.4. Given S, L, l ∈ L, and P as in Definition 2.2 with P being a set of
monotone functions. If S is finite, then Algorithm 1 returns the set-P -core at l of S.

PROOF. Let D be the algorithm’s result and let C be the set-P -core of S at l. The
unique existence of C is already guaranteed by Theorem 2.3. From the algorithm it is
clear that D has the l-property and is therefore a subset of C. Let further s1, s2, . . . , sn
be the elements of S \D in the order of their deletion by the algorithm. Assume D ⊂ C.
Then we can select an index i with 1 ≤ i ≤ n such that for all j with 1 ≤ j < i, sj is
in S \ C but si is in C. We set S̃i := S \ {s1, s2, . . . , si−1} and yield l 6≤ pS̃i

(si), since si

was removed in the ith step of the algorithm. From the selection of i follows C ⊆ S̃i

and thus by monotonicity of P we have pC(si) ≤ pS̃i
(si) and therefore l 6≤ pC(si). This

is a contradiction to the l-property of C. We have thus established D = C and conclude
that the algorithm’s result is the set-P -core at l of S.

2.2. Examples
Our generalization allows us to transfer the concept of a core to arbitrary algebraic
structures without constructing graphs. Although it is almost always possible to model
a given dataset as a graph, it is not always convenient to impose a graph model. It
is especially unpleasant when data is already modeled as a graph (like in the case
of social bookmarking systems in the next section) but the graph does not allow the
construction of a core in the desired way and thus a new graph would have to be
introduced to support it. With set-cores, this is no longer an issue.

Before we leverage set-cores to construct cores for tagging data in the next section,
we discuss a very simple example where data does not have to be modeled as a graph:
a core that could be used in the evaluation of item recommendation algorithms. Let
U be a set of users and I a set of items. Further, let S ⊆ U × I be the (user, item)
co-occurrences (i.e., the relation denoting which items a user likes). Such a setting is
demonstrated with a toy example in the first column of Table I, where six users co-
occur with (e.g., have expressed interest or have bought) six items in 18 (user, item)
co-occurrences.

Now, let P be a set of maps pS̃ (for every S̃ ⊆ S) with

pS̃ : S̃ → N : (u, i) 7→ max
(∣∣∣{j ∈ I | (u, j) ∈ S̃}

∣∣∣ , ∣∣∣{v ∈ U | (v, i) ∈ S̃}
∣∣∣) . (1)

For a given level l ∈ N, the set-P -core at l then contains all (user, item) co-occurrences
from S such that each user occurs with at least l items or each item occurs with at
least l users. Thus, at least one entity of each user-item-pair is frequent in the data-
set. In the toy example in Table I, for each (user, item) co-occurrence the maximum of
its user and item frequency is larger than or equal to two. Therefore, the set-P -core
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Table I. A toy example for different cores in a user-item co-occurrence setting. The set U contains six users
u1, u2, . . . , u6 and the set I contains six items 1, 2, . . . , 6. The first column shows the full dataset of users together
with their co-occurring items. Each further column A1, A2, B, . . . , F shows a different restriction of that dataset.
The functions to create these subsets are described in Section 2.2.

dataset A1 A2 B C D E F
u1: 1 2 3 4 u1: 1 2 3 4 u1: 1 2 3 4 u1: 1 2 4 u1: 1 2 3 4 u1: 1 2 3 4 u1: 1 2 3 4 u1: 1 2 3 4
u2: 1 2 4 u2: 1 2 4 u2: 1 2 4 u2: 1 2 4 u2: 1 2 4 u2: 1 2 4 u2: 1 2 4 u2: 1 2 4
u3: 1 3 4 u3: 1 3 4 u3: 1 4 u3: u3: 1 3 4 u3: 1 3 4 u3: 1 3 4 u3: 1 3 4
u4: 3 5 6 u4: 3 5 6 u4: u4: u4: u4: 3 5 6 u4: 3 5 u4: 3 5
u5: 2 5 u5: 2 u5: 2 u5: u5: u5: u5: 2 5 u5:
u6: 1 2 4 u6: 1 2 4 u6: 1 2 4 u6: 1 2 4 u6: 1 2 4 u6: 1 2 4 u6: 1 2 4 u6: 1 2 4

at level l = 2 is the full dataset. For l = 3 we obtain the dataset denoted by A1 (sec-
ond column) in which only the (user, item) co-occurrence (u5, 5) has been removed, as
both user u5 and item 5 occur in only two user-item-pairs. In this first example we can
observe that the resulting core actually has a lower density (computed as the number
of (user, item) co-occurrences divided by the number of possible user-item pairs) than
the original dataset, since through the removal of the pair (u5, 5) neither a user nor an
item have been removed completely from the dataset. This might reduce the compu-
tational complexity in an item recommender scenario (for algorithms that depend on
the number of pairs) but usually, artificially introducing sparseness is not desirable.
The next examples will show cores where the density rises. Furthermore, we will see
in Section 4.1 that our core constructions yield an increase in density on all four real
world datasets.

Increasing the level to l = 4 yields the core denoted by A2 in Table I. Here all pairs
are removed where user and item both occur in less than four pairs. Hereby, all pairs
containing user u4 and all pairs containing items 5 and 6 are eliminated. Thus, these
three entities can be removed from the dataset completely. In comparison to the core
for l = 3 we now indeed yield a dataset with higher density than the original dataset.
A2 is the main set-P -core, as for l = 5 the core vanishes since no user or item occurs in
more than four pairs.

Using the minimum instead of the maximum in the definition of pS̃ in Equation 1,
results in a core containing (user, item) co-occurrences where both user and item are
frequent, as here the smaller of the two frequencies – and thus both frequencies – must
exceed the threshold l. In the toy example in Table I, the set-P -core for l = 3 is denoted
by B. It can be constructed using Algorithm 1 by first removing the co-occurrences
(u4, 5), (u5, 5), and (u4, 6), since items 5 and 6 both are not frequent. The pair (u5, 2)
is removed since user u5 is not frequent. Then the remaining co-occurrence of user u4

– (u4, 3) – is removed, since after the elimination of (u4, 5) and (u4, 6) u4 has become
infrequent. Then all co-occurrences with item 3 and finally those of user u3 must be
removed. In the example, the set B is the main set-P -core since for level l = 4 all user-
item-pairs would be removed from the dataset.

An example for a core, where different thresholds can be imposed on users and items,
results from the maps pS̃ :

pS̃ : S̃ → N2 : (u, i) 7→
(∣∣∣{j ∈ I | (u, j) ∈ S̃}

∣∣∣ , ∣∣∣{v ∈ U | (v, i) ∈ S̃}
∣∣∣) (2)

together with a level l := (lu, li) ∈ N2. This setting yields a core where each user occurs
with at least lu items and each item with at least li users. Thus, we have made use of
two thresholds at the same time, which could not have been modeled with graph-cores.
In the toy example in Table I, dataset C shows the (3, 2)-set-core. In contrast to the
previous result B – where user and item both had to occur three times in the dataset –
item 3 still has co-occurrences in the dataset. Note, that setting two thresholds lu and
li at the same time is not the same as first setting one threshold lu on the users, then
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Fig. 1. An example post from BibSonomy for the user ID 1015 and resource http://www.google.com/trends.

setting one threshold li on the items and taking the intersection of the resulting sets.
The latter procedure would not necessarily yield a set where each user occurs at least
lu and each item at least li times. This is demonstrated in the toy example with the
datasets D, E, and F : they contain the restricted datasets with lu = 3 (D) and with
li = 2 (E) as well as their intersection (F ). We can observe that dataset F is different
from C and that user u4 violates the constraint on the user frequency by having only
two co-occurrences instead of the required three and item 5 does not satisfy the lower
bound on the item frequency as it is part of only one co-occurrence.

In these examples we have demonstrated the ability of set-cores to restrict datasets
according to individual thresholds on different sets of entities, like in the latter exam-
ple with one threshold for users and one for items. We have also seen the application
of combined thresholds like the first two examples, using the maximum or minimum
of user and item co-occurrences. Both aspects allow a great flexibility for the practi-
tioner: Thresholds can be chosen individually for different entities and at the same
time, combined thresholds can be imposed. For the latter, min and max are only simple
examples: we could just as easily use sums, products, or other functions, as long as they
comply with the monotonicity requirement in Theorem 2.3. Using the sum instead of
max or min in the above example would impose a threshold for the combined popular-
ity of user and item in a user-item pair. Finally, it is also possible to combine the maps
of the different examples in Equations (1) and (2) (and thus yield maps pS̃ : S̃ → N3) to
have individual requirements on users and items as well as a combined requirement
for each user-item pair.

2.3. Cores of Folksonomies
We employ the use case of social bookmarking systems to demonstrate different types
of cores. These cores are also the subject of the experimental investigation of tag rec-
ommender evaluation frameworks in the following sections. A folksonomy F is the data
structure underlying social bookmarking systems and can be represented as a tuple
F = (U, T,R, Y ) where U is the set of users, T the set of tags, R the set of resources,
and Y ⊆ U × T × R a ternary relation between the three sets [Hotho et al. 2006]. An
element (u, t, r) of Y – called tag assignment (or tas) – expresses the fact that user u
tagged resource r with tag t. This structure F can be interpreted as a ternary hyper-
graph or as a three-dimensional Boolean tensor. Several tag assignments of one user
u on one resource r are typically subsumed in a post p which is a tuple p = (u, Tur, r)
with Tur = {t ∈ T | (u, t, r) ∈ Y } (with the requirement that Tur 6= ∅). The perspective
of a folksonomy as a collection of posts typically corresponds to the view the users have
on the system (cf. Figure 1). Since every post contains at least one tag assignment, the
number of tag assignments an entity (i.e., a user, a tag, or a resource) of a folksonomy
belongs to is always at least as large as the number of posts the entity is part of.

Running Example. Figure 2 shows an exemplary folksonomy hypergraph with users
A,B,C (drawn as    ), resources a, b, c (   ), and tags 1, 2, 3, 4, 5 (   ) which are con-
nected by thirteen tag assignments in seven posts (numbered 1 through 7). The hyper-
edges that represent the tag assignments are visualized by small circles (   ) which are
connected to the three vertices of each hyperedge. The number next to each circle de-
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post-graph-core

post tag assignments (u, t, r)
1 (A, 1, a), (A, 2, a)
2 (A, 2, b)
3 (B, 1, a)
4 (B, 2, b), (B, 3, b)
5 (A, 1, c), (A, 3, c)
6 (B, 1, c), (B, 4, c)
7 (C, 1, c), (C, 2, c), (C, 5, c)

Fig. 2. A folksonomy toy example with a tas-graph-core, post-graph-core, and post-set-core. The table on
the right lists the tag assignments that belong to each post.

picts the number of the post the tag assignment belongs to. The differently colored ar-
eas that enclose parts of the graph depict the various types of cores that are explained
in the sequel.

2.3.1. The Tas-Graph-Core of a Folksonomy. We can regard the folksonomy F =
(U, T,R, Y ) as a hypergraph G = (V,E) := (U ·∪ T ·∪R, Y ). Together with the level l ∈ N
and the vertex property function

p : V ×P(V )→ N : (v,W ) 7→


|({v} × T ×R) ∩ E|W | if v ∈ U

|(U × {v} ×R) ∩ E|W | if v ∈ T

|(U × T × {v}) ∩ E|W | if v ∈ R

(3)

that assigns to every W ⊆ V and every v ∈ W the number of tag assignments that
v is part of in W , we get the tas-graph-core at level l of the folksonomy F. It has the
property that every user, tag, and resource is part of at least l tag assignments. Note,
that for a tag to be part of a tas-graph-core at level l, it must have been used in at least
l posts, while for a user (resource) it is sufficient to annotate (be part of) only a single
post with at least l tags (cf. [Jäschke et al. 2008]).

Running Example. Figure 2 shows the tas-graph-core at level 2, in which every en-
tity belongs to at least two tag assignments. The tag assignments (B, 4, c) from post 6
and (C, 5, c) from post 7 are lost because the tags 4 and 5 belong each only to the one
corresponding tag assignment. Note, that the tas-graph-core does not have level 3,
since the tag assignment (C, 5, c) does not belong to the tas-graph-core and thus user
C occurs in only two tag assignments.

2.3.2. The Post-Graph-Core of a Folksonomy. To circumvent the aforementioned problem,
in [Jäschke et al. 2007] (and more formally in [Jäschke et al. 2008]) we defined another
core which we call post-graph-core here (to distinguish it from the other types of cores).
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Therefore, we define for v ∈W ⊆ V (using the same notation2 as in Equation 3) a new
vertex property function that counts for every entity of the folksonomy the number of
posts (instead of tag assignments, as before) it is part of:

P : V ×P(V )→ N : (v,W ) 7→


|{(v, Tvr|W , r) | r ∈ R|W , Tvr|W 6= ∅}| if v ∈ U

|{(u, v, r) ∈ E|W }| if v ∈ T

|{(u, Tuv|W , v) | u ∈ U |W , Tuv|W 6= ∅}| if v ∈ R

This definition intuitively violates the symmetry of the ternary structure of a folkso-
nomy. This can be seen from the property function P , where – in contrast to the previ-
ous core – the value for tags (v ∈ T ) is no longer defined analogously to the values for
users and resources. This is because one post always contains exactly one user and ex-
actly one resource but can have more than one tag. However, the post-graph-core more
closely resembles the view of a folksonomy as ‘a collection of posts’ that collaborative
tagging systems typically provide. The post-graph-core at level l has the property that
each user, tag, and resource occurs in at least l posts. We illustrate in Section 3 that
post-graph-cores have been frequently used in the evaluation of recommender systems
for folksonomies.

Running Example. In the example in Figure 2 we can see that in the post-graph-
core at level 2 every entity belongs to at least 2 posts. Due to the removal of the user C
(which only belongs to post 7), all tag assignments from post 7 (and thus the post itself)
are removed. Similarly, tag 4 is removed as it belongs only to post 6.

Diminished Posts in Tas-Graph-Cores and Post-Graph-Cores. In the previous two
constructions, the core is computed by removing single tag assignments. Thus, from
one post, several tag assignments can be removed, while others (of the same post) re-
main in the core. This rather unfortunate behavior is illustrated in Table II using a
post from the BibSonomy book dataset which we use and describe in Section 4.1. The
post (that is also shown in Figure 1) consists of five tag assignments in the original da-
taset. By restricting the data to a tas-graph-core or a post-graph-core, some of these tag
assignments are omitted and the post is diminished. In the tas-graph-core at level 2,
first the two rare tags “requetes” and “webmetrics” vanish from the post. At level 3 and
also in the post-graph-cores, also the tag assignment with the tag “comparateur” is re-
moved. The tags “statistics” and “trends” are well connected with other folksonomy
entities through tag assignments in other posts. Thus they remain in the cores for sev-
eral levels until the complete post vanishes from the dataset at levels higher than 12
for tas-graph-cores and levels higher than 5 for post-graph-cores.

Running Example. In our running example we can also observe a diminished post.
In the constructions of both the tas-graph-core and the post-graph-core post 6 is dimin-
ished: tag assignment (B, 1, c) still belongs to the core, while tag assignment (B, 4, c) is
removed. Thus post 6 has now only one tag, instead of the original two.

The use of set-cores now allows us to overcome the phenomenon of diminished posts
by regarding posts as atomic entities. We call this new construction the post-set-core of
a folksonomy:

2.3.3. The Post-Set-Core of a Folksonomy. Let S be the set of all posts in F and for some
subset S̃ ⊆ S of posts let S̃u, S̃t, S̃r be the sets of posts in S̃, that a user u, a tag t, or a
resource r occurs in, respectively. Note, that these can be empty sets, if the according

2U |W , R|W , T |W , Tvr|W , and Tuv |W denote the restrictions of U , R, T , Tvr , and Tuv , respectively, to the
set W ⊆ V – e.g., U |W := U ∩W .
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Table II. An example post from the book dataset (cf. Section 4.1) that is diminished by the construc-
tion of cores. In the post – stored by a user with ID 1015 – the resource is a bookmark to the URL
http://www.google.com/trends and the post was annotated with five tags (see also Fig. 1). Through
the core constructions, some tags are removed from the data, while others remain (column “tags”)
leaving the post diminished in the respective core. Finally for tas-graph-cores at levels l ≥ 13 and
post-graph-cores at levels l ≥ 6 the post vanishes completely from the core.

core tags
full dataset statistics, trends, comparateur, requetes, webmetrics
tas-graph-core at level l = 2 statistics, trends, comparateur
tas-graph-core at level 3 ≤ l ≤ 12 statistics, trends
post-graph-core at level 2 ≤ l ≤ 5 statistics, trends

entity of F does not occur in any post contained in S̃. Now, the functions

pS̃ : S̃ → N3 : (u, Tur, r) 7→
(
|S̃u|, min

t∈Tur

|S̃t|, |S̃r|
)

are monotone in the way required by Theorem 2.3 (where N3 is partially ordered as
usual by (a1, b1, c1) ≤ (a2, b2, c2) ⇐⇒ a1 ≤ a2, b1 ≤ b2, c1 ≤ c2). The monotonicity
simply follows from the observation that by shrinking S̃ the sets S̃u, S̃t and S̃r can
loose but never gain cardinality.

The functions assign to each post a triple: the number of posts each of the post’s
entities is part of within the subset S̃. For any vector l ∈ N3 we can now construct a
post-set-core as a set-P -core at l. In particular, this notion of core allows us to select
three different thresholds (lu, lt, lr) ∈ N3 for the number of occurrences of users, tags,
and resources, respectively. The following examples illustrate use cases for choosing
different thresholds:

— When one goal of a tag recommender is to consolidate the tag vocabulary of the
system, a large threshold lt ensures that only frequently used tags remain in the
dataset for evaluation. The thresholds lu and lr can remain low.

— If the cold-start problem for users and resources shall be neglected in the evalua-
tion, high values for lu and/or lr can be selected while lt can be low.

For the sake of simplicity, we say that a post-set-core is of level l when all three thresh-
olds are equal to l.

Running Example. The post-set-core at level (2, 2, 2) is shown in Figure 2, where ev-
ery user, tag, and resource of the four posts 1, 2, 3, and 4 belongs to at least two of these
four posts. The example also illustrates an important property of the post-set-core con-
struction: None of the remaining posts is diminished, all remaining posts are complete
in the sense that they still contain all the tags they have in the original dataset, as
each post as a whole is treated as an atomic part of the dataset. This is neither the
case for the tas-graph-core (e.g., post 7 loses tag 5) nor in the post-graph-core (post 6
loses tag 4), since here the posts are modeled as collections of tag assignments and tag
assignments are removed individually during the core construction.

The example in Figure 2 illustrates the property that a tas-graph-core always con-
tains the post-graph-core at the same level, and the latter contains all posts of the
post-set-core at that level. This property follows directly from the core construction
and is formalized in the following lemma.

LEMMA 2.5. Given a folksonomy F and a level l ∈ N.

(1) Each user u, tag t, and resource r, as well as each tag assignment (u, t, r) of the
post-graph-core at level l is contained in the tas-graph-core at level l.
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(2) For each post (u, Tur, r) in the post-set-core at level l, the entities u, r, and t ∈ Tur, as
well as all tag assignments (u, t, r) (for t ∈ Tur) are contained in the post-graph-core
at level l.

Finally, a trivial example for each core type is the 1-core, which is the full folkso-
nomy itself, excluding isolated nodes (e.g., users that registered with the system but
never used it and thus do not occur in a post). Tag recommender evaluation usually ig-
nores isolated nodes and therefore the cores at level 1 are just the original evaluation
datasets (in the following also referred to as the raw data).

Similar Constructions on Other Data. The core constructions described for folkso-
nomies can easily be generalized to other similar data structures where entities have
some countable properties. For example a tweet in the micro blogging system Twitter3

consists of a user, URLs, hashtags, and several words. Much like in the case of folkso-
nomies we can derive countable properties for each tweet t, e.g., the minimum number
of tweets the URLs of t occur in, the minimum number of tweets that each hashtag
of t occurs in, or the minimum number of tweets each word of t occurs in, etc. Using
a set-core like in 2.3.3, we can then simply impose individual thresholds on the URL,
hashtag or word frequencies. Depending on the particular use case, one might, for ex-
ample, set high thresholds on the hashtag and URL frequencies to select only trending
topics and resources, while setting a low threshold for words. Moreover, it would be
possible to combine two aspects, say URLs and hashtags, by using maps that count
the number of tweets that share either the URL or a hashtag with a tweet t.

In contrast to the use of set-cores, graph cores would require to impose a graph
structure first, e.g. by connecting all entities of a tweet by 4-dimensional hyperedges
where each edge connects the user to one of the hashtags, to one of the words, and
to one of the URLs of a tweet. Other than with set-cores however, such graph-cores
would yield “diminished tweets” (e.g., missing some infrequent words or hashtags).
Furthermore, since including URLs or hashtags in a tweet is optional, the graph model
would have to be able to deal with tweets that do not contain all these components, e.g.,
by using edges of different dimensionality.

3. RELATED WORK
In this section, we review and discuss several examples from the literature that deal
with the topics of this work. We start with the previous use of cores in various areas of
research before we turn our attention to the evaluation of recommender systems. We
discuss the well-known problem of sparse data, which can be tackled by focusing on
the dense part of the data, e.g., by using graph cores. Since the latter is often the case
in the benchmarking of tag recommender algorithms we review the state of the art in
that area next, covering different approaches as well as variations in the experimental
setups. Finally, we compare several previous tag recommender benchmarking studies
regarding their use of cores.

Graph Cores. One widely applicable methodology to create dense subsets of graphs
are the so-called graph-cores which were introduced by Seidman [Seidman 1983].
Batagelj and Zaveršnik [Batagelj and M. Zaveršnik 2002; Batagelj and Zaveršnik
2011] extended this work by introducing generalized cores – see Section 2 for details.
Cores have previously been used to create generative models of graphs [Baur et al.
2007] or to improve the visualization of large networks [Ahmed et al. 2007]. Angelova
et al. [Angelova et al. 2008] analyzed cores of various derived graphs (friendship, com-
mon entities, and similarity graphs) of a social bookmarking dataset. The number of

3http://www.twitter.com/
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connected components quickly drops to one, already for small core levels. In general,
an increasing core level results in a decreasing average node distance and a more com-
plex behavior of the average clustering coefficient. In [Wang and Chiu 2008], cores
of a transaction network of an online auction system were used to identify densely
connected subgraphs of malicious traders in order to recommend trustworthy auction
sellers. By now, cores are an established methodology to analyze the structure and dy-
namics of graphs with applications as diverse as, e.g., community detection [Giatsidis
et al. 2011], temporal analysis of the internet topology [Alvarez-Hamelin et al. 2005],
or the study of large-scale software systems [Zhang et al. 2010]. Our generalization to
arbitrary sets in Section 2 therefore opens up new possibilities for core-based analyses
on data other than graphs.

Evaluation of Recommender Systems. Research on recommender systems evaluation
typically focuses on the selection of proper metrics and performance criteria (like user
preference, coverage, trust, novelty, etc.) as well as on data processing and selection
methods. A good overview is presented in [Shani and Gunawardana 2011]. A fixed se-
lection of metrics and criteria constitutes an evaluation framework like the one pre-
sented in [Pu et al. 2011] with a focus on criteria to measure the recommendation per-
formance from the users’ point of view. More often, however, such a framework is cho-
sen ad-hoc and the implications of the selection have rarely been investigated. Often
several choices are valid and plausible yet can lead to contradictory results. The conse-
quence of different choices of an evaluation metric was, for example, demonstrated in
[Schein et al. 2002], where two metrics were compared. One metric focuses on a broad
coverage of users (good recommendations for each user) while the other rewards as
many good recommendations as possible independent from the distribution over the
users. In practice, the choice of the ‘best fitting’ metric is up to the operator of the ac-
tual recommender system. Many studies comparing recommender algorithms find that
(part of) their results are dataset dependent. For example [Karypis 2001] showed that
in item-based collaborative filtering algorithms, varying a particular parameter (con-
trolling the influence of popular items) yields different behavior on different datasets.

[Cremonesi et al. 2010] used a movie recommendation scenario to demonstrate that
different recommender algorithms respond differently to a subsampling of the test set.
Their approach was to remove items from the test set that belong to the most popular
(most frequent) items in the datasets. Thus a strictly popularity-based algorithm ex-
hibited a heavy performance decrease (compared to its score on the full test data). In
contrast, other algorithms had less strongly decreased scores, such that the resulting
ranking of the top performing algorithms was different to that on the full test set. The
motivation for the exclusion of the most popular items in [Cremonesi et al. 2010] was
to demote algorithms that tend to favor the most popular items as such items are of-
ten already known to the user and thus do not present interesting recommendations.
In contrast, the core construction in the tag recommender setting is not used to fil-
ter out particularly unwanted recommendations but rather to mitigate the cold start
problem. We will however demonstrate in Section 5.1 that also in this scenario, differ-
ent recommenders react differently to changes of the core setup and in Section 5.3 we
discuss the changes in the resulting rankings of algorithms. [Adomavicius and Zhang
2012] investigate for the use case of the classical recommender scenario – where users
assign ratings to items – how different dataset characteristics influence the resulting
scores of recommendation algorithms. Several recommender algorithms are evaluated
on various subsamples of five datasets using RMSE. The results show that properties
like the size of the rating space and the data density have a positive impact on the rec-
ommendation quality, while others have a negative impact (e.g., the standard deviation
of the ratings in a dataset). Furthermore, there are properties of the rating frequency
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distribution that have a positive influence for some of the tested algorithms, but a neg-
ative influence on the performance of others. In our experiments in Section 5.1 we can
similarly observe that the properties core type and core level have an influence on the
benchmarking of tag recommender algorithms and that different tag recommender al-
gorithms react differently to different cores.

Sparse Data. In many recommendation scenarios, the sparsity of the data is a clas-
sical problem since it can lead to overfitting and impede the performance of recom-
menders. In particular, sparse user rating data limits the identification of similar
users and items in collaborative filtering [Sarwar et al. 2000]. The sparsity problem
has been tackled either by dealing with the sparsity in particular or by focusing on the
dense part of the data, e.g., [Sarwar et al. 2001]. A typical approach to reduce spar-
sity is dimensionality reduction, e.g., via matrix factorization. For instance, [Ma et al.
2008] proposed a matrix factorization approach that combines traditional rating data
with social network data to reduce the sparsity of the ratings matrix. [Sarwar et al.
2000] used singular value decomposition to compute user neighborhoods on dense, low-
dimensional product matrices. Content-based approaches have also be used to increase
the density of the rating matrix for collaborative filtering, e.g., [Melville et al. 2002],
or have been combined with collaborative methods, e.g., [Popescul et al. 2001] using a
unified probabilistic framework. Most of the approaches that focus on the dense part
of the data are rather ad-hoc, e.g., by defining some threshold for the minimal num-
ber of ratings an item or user should have. There are few theoretical considerations or
experiments that investigate the implications of such thresholds on the performance
of different recommender algorithms or the validity of the experiments. For example,
[Herlocker et al. 2004] addressed the density of datasets as one of the properties that
influence recommender systems evaluation. While they empirically compared differ-
ent (classes of) evaluation metrics, they do not further investigate density as a factor
of the evaluation. In this work, we show how using cores (to increase the density of the
data) can influence the results of a tag recommender benchmarking.

Tag Recommender Systems and Their Evaluation. Since the emergence of social
bookmarking, the topic of tag recommendations has raised considerable interest of
researchers such that a vast amount of related work exists. Recommending tags can
serve various purposes, such as: increasing the chance of getting a resource annotated,
reminding a user what a resource is about, and consolidating the vocabulary across the
users. Furthermore, as [Sood et al. 2007] pointed out, tag recommenders lower the ef-
fort of annotation by changing the process from a generation to a recognition task, i.e.,
rather than “inventing” tags the user only needs to find and select a recommended tag.
Here, we introduce a selection of important results and observe different experimental
setups for the comparison of different algorithms.

Early approaches include [Mishne 2006] and [Byde et al. 2007] who devised methods
using content-based filtering techniques. [Mishne 2006] combined a manual evalua-
tion of the recommended tags for 30 randomly selected blog posts (using precision@10)
with an automatic comparison against 6000 randomly selected already tagged posts
(using precision@10 and recall@10). Only posts that have three or more tags were con-
sidered for the automatic evaluation and for comparing tags string distance was used
instead of exact matching, though no details about the maximal allowed string dis-
tance were given. The setup in [Byde et al. 2007] is only briefly explained, it appears
as if the coverage is computed for 6180 posts from 36 users, though no details about
the hold-out set are given. [Xu et al. 2006] identified properties of good tag recom-
mendations like high coverage of multiple facets, high popularity, or least-effort and
introduced an approach based on the HITS algorithm [Kleinberg 1999]. A goodness
measure for tags, derived from collective user authorities, is iteratively adjusted by a
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reward-penalty algorithm. The approach was evaluated qualitatively on 18 resources
(URLs). Other early works include [Basile et al. 2007], who suggested an architecture
of an intelligent tag recommender system based on words extracted from the resources
and a Naive Bayes classifier (no evaluation is performed), and [Vojnovic et al. 2007],
who tried to imitate the learning of the true popularity ranking of tags for a given re-
source during the assignment of tags by users. The method in [Vojnovic et al. 2007]
was evaluated with precision over 1 200 resources, though no details about the hold-
out set are given. The mentioned approaches address important aspects of the tag rec-
ommendation problem, but they diverge on the notion of tag relevance and evaluation
protocol used. In [Xu et al. 2006; Basile et al. 2007], e.g., no quantitative evaluation is
presented, while in [Mishne 2006], the notion of tag relevance is not entirely defined
by the users but partially by experts. An extensive evaluation of collaborative filtering,
the graph-based FolkRank algorithm [Hotho et al. 2006], and simpler methods based
on the usage frequency of tags was performed in [Jäschke et al. 2008] on three datasets
from CiteULike, Delicious, and BibSonomy. FolkRank outperformed the other meth-
ods and a hybrid that combined frequently used tags of the user with tags that were
frequently used to annotate the resource was second. The evaluation was performed
using post-graph-cores in a setup called LeavePostOut – a variant of the leave-one-out
hold-out estimation [Herlocker et al. 2004] – where for each user a post is randomly
selected and removed from the dataset while all remaining data is used for training.

The ECML PKDD Discovery Challenges 2008 and 2009 [Hotho et al. 2008; Eister-
lehner et al. 2009] addressed the tag recommendation task and resulted in many new
approaches. In particular, the 2009 Discovery Challenge established a common eval-
uation protocol against which more than 20 approaches were evaluated: on datasets
from BibSonomy, posts from the most recent six months were used as test data and the
approaches were evaluated with the F1 measure over the top five recommended tags.
One task focused on graph-based recommendations and ensured that every tag, user,
and resource from the test dataset were already contained in training data by using
a post-graph-core at level 2. The content-based task was evaluated on the complete
six months of the test data. The 2nd of 2008 and winner of the 2009 content-based
task [Lipczak et al. 2009] was a hybrid recommender that combined tag suggestions
from six sources (e.g., words from the title expanded by a folksonomy driven lexicon,
tags from the user’s profile) and re-scored them, e.g., by the frequency of usage of the
posting user. The winners of the graph-based task [Rendle and Schmidt-Thieme 2009]
produced recommendations with a statistical method based on factor models. They fac-
torized the folksonomy structure to find latent interactions between users, resources
and tags. Using a variant of the stochastic gradient descent algorithm, the authors op-
timized an adaptation of the Bayesian Personal Ranking criterion [Rendle et al. 2009].
The learned factor models are ensembled using the rank estimates to remove vari-
ance from the ranking estimates. Finally, the authors estimated how many tags to rec-
ommend to further improve precision using a linear combination of three estimates.
A novelty of the challenge was the evaluation of some algorithms in an online setup
where the click-rate of BibSonomy users could be measured. There, again the recom-
mender presented in [Lipczak et al. 2009] clearly outperformed other approaches. For
further results of the challenges we refer to the proceedings [Hotho et al. 2008; Eister-
lehner et al. 2009] and the summary in [Jäschke et al. 2012].

[Krestel et al. 2009] presented a tag recommendation algorithm based on Latent
Dirichlet Allocation. The evaluation was performed per resource, i.e., almost all posts
(except up to five) for a resource were removed and the recommender then tried to pre-
dict their tags. The test data consists of 10% of the posts and the whole experiment
was repeated five times. [Ramezani 2011] introduced a new weighted and directed
folksonomy graph model on which she applied the PageRank algorithm. More recently,
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[Seitlinger et al. 2013] proposed an approach that simulates human category learning
in a three-layer connectionist network. Similar to [Krestel et al. 2009], in the input
layer Latent Dirichlet Allocation is used to characterize the resource (and user). [Ma
et al. 2013] proposed ‘TagRank’, a variant of topic-sensitive PageRank upon a tag-tag
correlation graph which they integrate into a hybrid with collaborative filtering and
popularity-based algorithms. The selection of the algorithms for the hybrid is guided
by a greedy algorithm. While the approaches in [Ramezani 2011] and [Seitlinger et al.
2013] were evaluated with the same setup as in [Jäschke et al. 2008] (using Leave-
PostOut on cores and selecting one post per user at random), [Ma et al. 2013] per-
formed five-fold cross validation and the results were “averaged over each user, then
over the final five folds” though no details on how the data was split (e.g., per user)
were given. Overall, algorithms are typically evaluated on offline datasets, the posts
for the test sets are selected at random, and measures like precision, recall, and F1 are
used for evaluation. There is a tendency to use the LeavePostOut methodology, though
other cross-validation procedures (LeavePostOut is |U |-fold cross validation where |U |
is the number of users in the dataset) and other types of splits are also used.

Cores and Recommender Systems. As part of the evaluation of recommender sys-
tems, cores have first been used in [Jäschke et al. 2007] to focus on the dense part
of folksonomies – the tripartite hypergraphs of collaborative tagging systems. Exper-
iments with different tag recommenders were conducted on subsets of folksonomies,
constructed as generalized cores – so-called post-cores like explained in the previous
section. Cores were then commonly used in the evaluation of (tag) recommendation
algorithms for collaborative tagging systems, e.g., in [Ramezani 2011] to compare dif-
ferent PageRank variants on cores from Delicious, BibSonomy, and CiteULike at levels
20, 5, and 5, respectively, in [Krestel et al. 2009] to evaluate a tag recommendation al-
gorithm based on Latent Dirichlet Allocation on a core at level 100 of a dataset from
Delicious, in [Seitlinger et al. 2013] to evaluate a category-based tag recommender on
a Delicious core at level 14, in [Ma et al. 2013] to evaluate ‘TagRank’, a variant of topic-
sensitive PageRank upon a tag-tag correlation graph on a Delicious core at level 9 and
cores at level 5 from Last.fm and Movielens, and in [Nanopoulos et al. 2013] to eval-
uate a matrix factorization-based song recommender with the core level set such that
it is equivalent to 0.001% of the total playcounts. As mentioned earlier, a post-graph-
core at level 2 of a BibSonomy dataset was also used in the ECML PKDD Discovery
Challenge 2009 for the graph-based task.

As this overview shows, the choice of the particular core level is very diverse and
typically neither justified nor evaluated. The arguments for using cores are similar
throughout these approaches and are summarized in [Ma et al. 2013]: “the size of
each dataset is dramatically reduced allowing the application of recommendation tech-
niques that would otherwise be computationally impractical, and by removing rarely
occurring users, resources and tags, noise in the data can be considerably reduced.”
Except for [Jäschke et al. 2008], all these works did neither question or challenge the
use of cores nor did they compare their findings on several cores or to results on the
raw data. In [Jäschke et al. 2008] the results on a Delicious core at level 10 were com-
pared to results on a dataset where only users and resources with less than two posts
were removed. Recall and precision of all algorithms except the adapted PageRank
were found to be similar. Furthermore, besides the typical lack of evaluation on the
raw data, all aforementioned evaluation setups suffer from the problem of diminished
posts which we described in Section 2.3.2 together with a solution by introducing post-
set-cores.

Summary. As we pointed out in the previous paragraphs, one commonly used frame-
work for collaborative tagging systems comprises graph cores in an offline setting
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where coverage and accuracy (which correspond to recall and precision, resp.) are mea-
sured. In this paper we do not aim at the evaluation of different properties of recom-
mender systems nor at the presentation of a new evaluation framework. Instead, we
investigate the robustness of that common evaluation framework itself and thereby
challenge commonly used methodologies. Therefore (and to be comparable with previ-
ous works), we investigate the influence of different core types and levels within the
fixed framework for offline evaluation of tag recommender systems in folksonomies us-
ing graph cores in combination with the LeavePostOut method and the standard mea-
sures precision, recall, and MAP.

A first rigorous evaluation of the influence of different types and levels of cores was
performed in [Doerfel and Jäschke 2013]. In this paper we extend this work by per-
forming a thorough assessment of the evaluation framework based on the use of cores,
which has been employed in the aforementioned works. In particular, we extend [Doer-
fel and Jäschke 2013] by 1) introducing our generalization of cores to solve the problem
of diminished posts in Section 2, 2) extending the experiments to the CiteULike data-
set, to new core levels, and to two new benchmarking setups (comparing recommenders
on post-set-cores and on diminished posts), and 3) investigating further properties of
the datasets, algorithms, and cores (Sections 4.1 (properties), 5.2, 5.4, and 5.5).

4. EXPERIMENTAL EVALUATION
The main goal of the experiments in this work is to demonstrate how benchmarking
results act over different core types and levels. In the experiments we show that the
quality of recommendations depends on (mostly increases with) the core level, that di-
minished posts indeed occur frequently in tas-graph-cores and post-graph-cores and
these posts influence the overall results, and that different core setups (different core
types or levels) can lead to conflicting results in a benchmarking’s ranking of algo-
rithms. Furthermore, we point to a peculiarity of using cores that arises from their use
in the LeavePostOut evaluation scenario. To that end, we choose a fix evaluation setup
for tag recommender algorithms – like it has been used frequently in previous studies
– and apply it to four real world datasets. In that setup we then vary the cores and
discuss the differences in the results using different metrics.

In this section we describe the setup of our experiments to test different evaluation
procedures with different cores, levels, and metrics for tag recommender algorithms.
More specifically, we

— describe four datasets from three collaborative tagging systems, namely BibSon-
omy, CiteULike, and Delicious,

— explain the cleansing procedure that includes, amongst others, the removal of im-
ported posts,

— show some basic properties of the datasets like size and density for different core
types and levels, and

— detail which cores, evaluation protocol (LeavePostOut), metrics, and recommender
algorithms we use.

4.1. Datasets
We use four datasets from three tagging systems (for an overview, cf. Table III): The
BibSonomy4 dataset from 2012-07-01 is a regular dump of the system’s publicly avail-
able data.5 The generation of the dataset is described in [Jäschke et al. 2012]. BibSon-
omy supports bookmarking of both bookmarks and publication metadata, hence we

4http://www.bibsonomy.org/
5http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
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Table III. The sizes of the four datasets, the levels lm of their main cores for the three different core types: tas-
graph-core (T ), post-graph-core (P), and post-set-core (S), and the levels chosen for the experiments. (∗ Some
levels of the post-set-core were ignored in the evaluation, cf. Section 4.2.)

dataset |U | |T | |R| |Y | |posts| lm(T ) lm(P) lm(S) chosen l
publ 4 777 57 639 94 427 397 081 109 984 23 12 4 2–6
book 4 959 80 603 231 907 1 032 037 268 589 60 9 6 2–6∗

deli 75 071 397 028 2 999 487 17 280 065 7 268 305 200 75 58 2–10, 20
cite 75 657 421 874 1 604 856 7 712 798 2 400 489 153 19 19 2–10, 15∗

split the data into two parts: book and publ . From CiteULike6 we use the official snap-
shot (cite) from 2012-05-14.7 From Delicious8 we use a dataset (deli) that was obtained
from July 27 to 30, 2005 [Hotho et al. 2006] which is a subset of the Tagora dataset.9

Cleansing. As [Lipczak et al. 2009] pointed out, tags from automatically imported
posts are problematic for training and evaluating tag recommenders, since their prove-
nance is unknown. They might have been automatically extracted from the title of a
resource or resemble the folder structure of a browser’s bookmark directory and thus
do not necessarily reflect the user’s view on the resource. The (in)ability of a recom-
mender to predict such tags does not allow us to draw any conclusion about its per-
formance on predicting user-generated tags. Moreover, in most systems, recommen-
dations are usually not provided during import. Hence, we applied a similar cleans-
ing strategy as described in [Lipczak et al. 2009]: we removed sets of posts that were
posted at exactly the same time by the same user. Furthermore for the cite dataset,
additional cleansing was necessary. A thorough inspection of the data had revealed
that the tags no-tag, todo mendeley and (many different) tags like bibtex-import, *file-
import-10-07-11, or imported-jabref-library were frequently (and exclusively) used to
indicate imported posts. However, the posts of such an import had not identical but
slightly different (consecutive) timestamps and were thus not removed by the previ-
ously applied strategy. Therefore, we additionally removed all posts from cite that were
exclusively tagged with the tags no-tag or todo mendeley, or a tag matching the regu-
lar expression \bimport\b or \bimported\b (where \b indicates a word boundary). In
addition, we cleaned all tags as described in [Jäschke et al. 2012], i.e., we ignored tag
assignments with the tags imported, public, system:imported, nn, system:unfiled, con-
verted all tags to lower case, and removed characters which were neither numbers nor
letters.

Properties. The core construction process rapidly reduces the number of tags, users,
and resources, e.g., from 2 999 487 resources (397 028 tags) in the raw deli dataset (cf.
Table III) to 588 816 resources (65 050 tags) in the tas-graph-core at level 5. The de-
cline of the number of users for an increasing core level can exemplarily be seen in
Figure 3(c). The smaller datasets book and publ quickly vanish with rising core level
and although the number of users for cite and deli is very similar, the number drops
much quicker in cite than in deli. Due to the decrease of the number of nodes, experi-
ments using cores with higher levels require a much lower computational effort since
the complexity of most recommender algorithms depends on the number of entities
(users, tags, and resources) or tag assignments.

Since the usual argument for the use of cores is their higher density compared to
raw datasets [Krestel et al. 2009; Ramezani 2011; Nanopoulos et al. 2013; Seitlinger
et al. 2013], we compare this property for all three core types on the four datasets. The

6http://www.citeulike.org/
7http://www.citeulike.org/faq/data.adp
8http://www.delicious.com/
9http://www.tagora-project.eu/data/#delicious
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density of a graph is often defined as the fraction of realized edges among the theoreti-
cally possible edges, e.g., in [Diestel 2005] referred to as edge density. In a folksonomy,
the edge density is equal to |Y |/(|U | · |T | · |R|). Other sources (e.g., [Janson et al. 2000])
define the density rather as the ratio between edges and nodes. In that case the den-
sity is proportional to the average node degree in the graph. In a folksonomy the aver-
age node degree is three times the edge-node ratio: 3 · |Y |/(|U |+ |T |+ |R|), since every
(hyper-)edge in |Y | connects three nodes. The edge density is also related to the node
degree: it can be understood as the ratio between the actual sum of degrees (in a folk-
sonomy that is 3 · |Y |) and the theoretically possible sum of degrees (in a folksonomy
that is 3 · |U | · |T | · |R|).

Figures 3(a) and 3(b) show for each dataset and each core type the edge density and
the average node degree, respectively, depending on the chosen core level. As expected,
the edge density increases with the core level and for the same level and the same
dataset the post-set-core is the densest core, followed by the post-graph-core and the
tas-graph-core. The average node degree at first also rises with the core level, however,
with the last levels before the core vanishes we can observe a decrease for most of the
cores. In the case of the tas-graph-core on the book dataset, the average node degree
drops quickly at core level 44 and then rises again at the next level. This behavior
coincides with a sharp drop of the number of users in Figure 3(c) and a sharp rise in
density in Figure 3(a). An inspection of the graph properties showed that from level
43 to 44 the book dataset lost almost half of its remaining edges (tag assignments) but
only few nodes, while from 44 to 45 it lost two thirds of the edges but also about 75% of
the nodes, resulting in a much smaller and denser graph.

Comparing the behavior with respect to both density and node degree between the
three core types, we see that post-graph-cores and post-set-cores are more similar to
each other (especially the average node degrees are close together) than to the tas-
graph-cores which always have a lower density and a lower average node degree than
the other two types (compared for the same dataset and level). It is also worth noting,
that the smaller datasets (publ and book ) have fewer users and lower average degrees
than the larger datasets (deli and cite), yet higher densities. This was to be expected:
it is a consequence of the number of possible edges (that enters the formula for the
density) which rises super-linear with the number of nodes. Among the four datasets
and three core types, we can see three cores that reach the maximal density of 1: the
post-set-core at level 6 of book (at level 5 the density is 826/840 = 0.983̄), the tas-
graph-core at level 45 of book, and the tas-graph-core at level 96 of cite. There is no
general pattern that indicates which main core has the highest density, e.g., for the
publ dataset the densest main core is a post-graph-core but for the deli dataset it is a
tas-graph-core.

Another observation is that, although the density of the raw cite dataset (0.15 · 10−9)
is slightly smaller than that of deli (0.19·10−9), it is growing much quicker with the core
level than on deli and is already higher than on deli at a level of 2 for both the post-
set-core and the post-graph-core. Such a rapidly increasing density can be explained
by a larger share of sparsely connected nodes compared to well-connected nodes: nodes
that are not well-connected are removed in cores of higher levels, while well-connected
nodes are more likely to remain in the (thus denser) core. In deli , on the contrary, we
can infer that the share of well-connected nodes is higher than on cite, since the den-
sity increases less rapidly. Finally, Figure 3(d) confirms that the density increases with
a decreasing number of users (and thus with increasing level). We can observe that per
dataset the three curves (one for each core type) are almost indiscernible, which indi-
cates, that the core type has no pronounced influence on the relation between density
and the size of the dataset. Comparing the curves of different datasets, we also note
that their slope is a dataset dependent property.
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(d) The density over the number of users.

publ tas-graph-core
publ post-graph-core
publ post-set-core

book tas-graph-core
book post-graph-core
book post-set-core

deli tas-graph-core
deli post-graph-core
deli post-set-core

cite tas-graph-core
cite post-graph-core
cite post-set-core

Fig. 3. The density 3(a), the average node degree 3(b), and the number of users 3(c) in the graphs of the
different cores for each dataset as a function of the core level, and the density as a function of the number
of users 3(d).

4.2. Evaluation Methodology
The dimensions of our experiments are the four datasets, the three different core types,
the chosen levels (see Table III), the recommendation algorithms, and the evaluation
metrics.

Cores and LeavePostOut. For the experiments we used – besides the raw datasets
(or ‘cores at level 1’) – all three types of cores we described in Section 2.3. Although the
post-set-core allows us to select different thresholds for users, tags, and resources, we
used only one single threshold l for three reasons: 1) to be comparable to the tas-graph-
cores and post-graph-cores which do not allow separate thresholds, 2) to be consistent
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with most of the previous tag recommender evaluation works without particular focus
on special use cases like the consolidation of the tag vocabulary (cf. Section 2.3), and,
finally 3) to keep the dimensionality of the experiments manageable.

For each dataset we chose several core levels on which we conducted the experiments
(see ‘chosen l’ in Table III). The difference in choice is due to the different character-
istics of the datasets (size, level of the main core, unchanged cores over several levels,
etc.). I.e., for the two smaller datasets (book and publ), we selected five levels (2–6).
The two larger datasets (deli and cite) allow the selection of higher levels and thus we
chose consecutive levels up to level 10 and then for each dataset one larger level (20
for deli and 15 for cite), taking into account that the cores of cite vanish much faster
than those of deli. Due to the rapid rise in density with rising core level, some cores
have only very few nodes (cf. Figure 3(c)). In particular, the post-set-cores at levels 9 or
higher of the cite and at levels 5 and 6 of the book dataset contain less than 40 users.
Such cores do not allow a representative evaluation of recommender algorithms, since
it would rely on the judgment of very few users. They have therefore been excluded
from the analyses. All other considered cores have more than 100 users.

To evaluate the recommenders, we used the variant of the leave-one-out hold-out
estimation [Herlocker et al. 2004] called LeavePostOut [Jäschke et al. 2007]. It is a
very common choice in tag recommender evaluation (e.g., [Ramezani 2011; Seitlinger
et al. 2013; Montañés et al. 2011; Kubatz et al. 2011]). Given a dataset (or a core), one
experiment consists of the following steps: For each user u: 1) One post p is selected
at random. 2) The post p is eliminated from the dataset and the remaining data is
used for training. 3) The task for the recommender algorithm then is to produce tag
recommendations (i.e., to predict the tags of p) given both the user and the resource of
p, while the tags of p serve as gold-standard. 4) A score is assigned that measures the
prediction quality of the recommendation. This procedure is repeated for every user
and the resulting scores are averaged. To ensure statistical validity, we repeated each
experiment five times – such that every time a post is randomly drawn for each user –
and report the averages of the resulting scores.

Evaluation Metrics. The evaluation metric determines the quality of a recommender
by measuring how successful an algorithm can predict the tags of the left-out post. We
use the two common metrics recall and precision at a given cut-off level k (rec@k and
pre@k). For a left-out post p, rec@k is the share of p’s tags among the top k positions
of a recommender’s ranking and pre@k the share of the top k tags in the ranking that
belong to p. In the experiments we let k run from 1 through 10. The mean average
precision (MAP) computes the arithmetic mean of the precision taken at each position
of a ranking where the recall changes. [Manning et al. 2008].

Recommender Algorithms. Since the goal of our experiments is not to find the best
algorithm, but rather to analyze the experimental setup itself, we select a set of well-
studied tag recommendation algorithms, namely most popular tags, most popular tags
by resource, most popular tags by user, adapted PageRank, and FolkRank. Adapted
PageRank and FolkRank were first presented in [Hotho et al. 2006]. Both are adapta-
tions of the original PageRank algorithm [Brin and Page 1998] to the ternary hyper-
graph of folksonomies. The FolkRank algorithm computes the difference between one
run of the adapted PageRank without preference (i.e., the global ranking) and one run
with preference for the user/resource pair for which tags should be recommended. The
latter run also constitutes the result for the adapted PageRank. We do not explore
particular properties of the algorithms and therefore omit further descriptions. They
can be found in [Jäschke et al. 2008]. In particular, we use the same parameter setting
of d = 0.7 for both the adapted PageRank and FolkRank as in [Jäschke et al. 2008].
Note that all ‘most popular’ recommenders count the number of posts that contain the
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tag – in contrast to counting the number of users that have used the tag. The latter
does not make sense for most popular tags by user, of course, and it does not make a
difference for most popular tags by resource, since a user is typically allowed to book-
mark a resource only once. We discuss the impact of the two counting strategies on
the most popular tags recommender in Section 5.5. All chosen algorithms are graph-
based (in contrast to content-based methods) and thus their performance may depend
on the way the folksonomy graph is restricted through the core construction. Further-
more, we employ the least popular tags recommender to demonstrate an anomaly that
affects the LeavePostOut methodology on cores (cf. Section 5.4). The algorithm is de-
liberately designed to produce bogus recommendations by always recommending those
tags that occur the least often in the training dataset.

5. RESULTS
In total we conducted 937 experiments using different recommendation algorithms in
different setups – each time conducting LeavePostOut once for each user. Each single
experiment was repeated 5 times and evaluated using 21 different metrics. In this
section we present and discuss our findings:

— We start by summarizing some general results on the performance of recom-
menders on different cores.

— In Section 5.1, we find that the performance of a recommender varies not only over
different datasets, core types, and core levels but also changes, when using the same
training data and choosing only the test posts from within denser cores.

— Section 5.2 addresses the problem of diminished posts, showing that such posts
occur frequently in cores and influence the overall performance of recommenders.

— Section 5.3 is dedicated to the correlation between rankings of algorithms on differ-
ent setups. We find that despite high consistency among those rankings, different
setups may well lead to different conclusions about the performance of algorithms.

— We point to a statistical flaw of the use of cores within a LeavePostOut setup in
Section 5.4.

— Finally in Section 5.5, we demonstrate how the most popular tags baseline can be
affected by irregular tag distributions.

When we compare recommenders’ scores on different cores and levels with different
metrics we first observe that they tend to yield better scores on the post-set-cores than
on the post-graph-cores of the same level (in 97.1% of the experiments) and better
scores on the post-graph-cores than on the tas-graph-cores (88.0%). The performance
of the algorithms on the tas-graph-cores, post-graph-cores, and post-set-cores is better
than that on the raw datasets in 94.2%, 99.6%, and 99.7% of the cases, respectively.
This increase of the scores raises the question whether the choice of the core has an
influence on the comparison of different algorithms against each other.

As an example for how the ranking of algorithms can change with different core
levels, Figure 4 shows a comparison of the pre@5 of the five algorithms on the cite
tas-graph-core. The observation that FolkRank shows the best performance is in line
with prior results [Jäschke et al. 2008]. Although the ranking of the algorithms’ per-
formance is quite stable over the levels, the results of most popular tags by user are
better than those of most popular tags by resource for tas-graph-cores for core levels 1
through 6 and smaller for higher levels. Thus, a single experiment using the raw data
would have yielded another conclusion on the performance of these two recommenders
than an experiment using only cores, e.g., at level 10. We further investigate correla-
tions between such algorithm rankings on different cores in Section 5.3.

The plot also shows the unexpectedly bad performance of the most popular tags
recommender on cite – a phenomenon we investigate in Section 5.5.
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Fig. 4. The pre@5 scores of all algorithms on the cite tas-graph-core over different core levels and densities.

5.1. Recommendation Performance Depends on Core Type and Level
In our experiments, the most prominent observation is that the performance at dif-
ferent core levels depends both on the dataset and on the algorithm – as expected
from previous work in recommender systems literature: e.g., [Cremonesi et al. 2010]
found that different algorithms for item (movie) recommendation react differently to
manipulation of the test set while [Jäschke et al. 2008] showed for different tag recom-
menders that their scores vary over datasets of different tagging systems. In Figure 5
(the lines labeled (a) tas-graph-core), we see exemplarily the pre@5 scores10 for the five
algorithms over different levels of the tas-graph-core for all four datasets. A strong vis-
ible tendency is that scores rise with an increasing level – exceptions are a few levels
on cite for most popular tags by user or deli for most popular tags.

Further, we leverage the property that the tas-graph-core always contains the
post-graph-core, which in turn contains the post-set-core at the same level using
Lemma 2.5: Next to the scores on the tas-graph-cores (a) we plotted the scores of the
same experiments with only a slight modification of LeavePostOut’s post selection pro-
cess. Where we usually choose one post per user at random, we now choose one post
per user randomly such that it is also contained in the post-graph-core (b) or also con-
tained in the post-set-core (c) – scores on diminished posts (d) will be relevant in the
next section. Note, that only the selection of the left-out posts is different to (a), as
all four variations use the same core (the tas-graph-core) for training. Comparing the
scores on arbitrarily chosen posts to those particularly chosen from one of the smaller
cores, we see that for most of the algorithms it is easier to predict tags for posts from
the post-graph-core than for arbitrarily chosen posts. We yield even better results for
posts also contained in the post-set-core. The exceptions to that tendency are the same
we have observed before. We can conclude that focusing on posts from the dense part
of the data often overestimates the performance of recommendation algorithms.

5.2. Diminished Posts
As already mentioned in Section 2.3, diminished posts, i.e., posts having fewer tags in
cores than in the raw dataset, are a result of the design of the tas-graph-core and the
post-graph-core. In contrast, post-set-cores do not suffer from this issue. To illustrate
the influence of such diminished posts, we once more modified LeavePostOut’s post

10To suggest five tags is a typical choice in tagging systems. The resulting diagrams for rec@5 are similar to
those for pre@5.
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(a) tas-graph-core (b) post-graph-core (c) post-set-core (d) diminished posts

Fig. 5. The pre@5 (on the y-axis) scores over the core level l (on the x-axis) for deli, book, publ, and cite for
the five recommenders using modifications of LeavePostOut. Each column of plots represents the dataset
specified at the top, each row contains results for the algorithm specified at the right, respectively. The
horizontal lines depict the pre@5 value for the respective raw dataset.
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Table IV. Statistics on diminished post in each dataset for several core levels of tas-graph-cores and
post-graph-cores. Listed are a core’s share of posts that have lost tags (compared with the original
dataset) as well as the average number of tags, that such posts loose. The table shows these statistics
for the levels l=2, 3 and lmax where the latter denotes the highest level that was considered in our
experiments i.e., lmax = 6 for publ and book and lmax = 20 and 15 for deli and cite respectively
(cf. Table III).

dataset
share of diminished posts in % average number of lost tags

tas-graph-core post-graph-core tas-graph-core post-graph-core
2 3 lmax 2 3 lmax 2 3 lmax 2 3 lmax

publ 18 26 42 17 27 49 1.66 1.82 2.26 1.51 1.60 1.87
book 11 17 31 12 22 40 1.38 1.52 1.85 1.35 1.53 1.77
deli 2 3 7 2 2 7 1.20 1.23 1.29 1.15 1.16 1.22
cite 5 9 30 4 9 41 1.45 1.55 2.30 1.29 1.39 1.75

selection process (like in the previous section) to randomly choose only such posts (line
(d) in Figure 5). We can observe that in most cases (with the exception of most popular
tags on cite), the recommenders perform comparably well or worse on posts that have
lost tags than on arbitrary posts. Regarding the exception, we have to consider that
in general the scores of most popular tags are extremely low and thus only very few
correctly predicted tags more or less can yield relatively large changes in the scores.
The largest difference between the pre@5 scores on arbitrary posts and on diminished
posts can be observed on deli, e.g., 0.192 vs. only 0.102 for the diminished posts. In
general, the amounts by which the scores differ are diverse without a clear tendency.

Table IV shows that diminished posts are not only a theoretical problem, but do in-
deed occur frequently in cores. We can see that on the two smaller datasets (publ and
book ) even for level 2 more than 10% of the posts in the core have lost tags, while there
are fewer such posts in the larger datasets. Raising the core level, however, raises the
share of diminished posts – most dramatically in the cite dataset, that has 5% dimin-
ished posts in the tas-graph-core (4% in the post-graph-core) at level 2 but a share of
30% (41%) at level 15 (the highest level used in our experiments). The deli dataset has
significantly lower shares of diminished posts, yet also shows the tendency of a rising
share for a rising core level. The second half of Table IV shows the average number of
tags that diminished posts have lost. Again, we can observe that the numbers rise with
a rising level. Each such post loses one or two (and even more in the higher levels of
the tas-graph-core) tags on average. Lost tags pose an artificially introduced difficulty
to the evaluation of tag recommendation algorithms, as there are less correct tags that
could be predicted. Especially with a metric like pre@5, one or two more tags to predict
can make an enormous difference.

These observations support the assumption that diminishing posts has indeed an
influence on the evaluation and is thus undesirable, as it is not clear how different al-
gorithms react to such artificially modified posts. A reason for the weaker performance
might be that it is easier to yield a higher precision when there are more tags to pre-
dict and thus it is more likely that one of these tags is recommended. However, we
could observe the same behavior for the rec@5 scores (without exceptions).

5.3. Recommender Ranking Correlation
Evaluating recommender systems usually has the goal to determine one algorithm
that performs best on one or several datasets and therefore several algorithms are
ranked according to their performance. Since several setups for experiments are possi-
ble – several core types, levels and metrics – the question arises, whether the ranking
of recommenders varies depending on the chosen setup. To investigate this question we
determine the algorithm rankings, where the algorithms are ranked according to their
recommendation quality. A ranking can be computed on the raw datasets, on all three
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Table V. The mean pairwise Pearson’s r and the number of
discordant pairs d in the recommender algorithm rankings
on different cores together with the standard deviation σ.

dataset metric avg. r σ avg. d σ
publ MAP 0.912 0.074 1.473 1.148
publ pre@5 0.909 0.079 1.593 0.977
publ rec@5 0.920 0.076 1.516 1.026
book MAP 0.908 0.092 1.429 1.087
book pre@5 0.878 0.117 1.462 1.148
book rec@5 0.912 0.090 1.330 1.076
deli MAP 0.994 0.008 0.512 0.500
deli pre@5 0.992 0.010 0.361 0.481
deli rec@5 0.993 0.009 0.503 0.501
cite MAP 0.981 0.026 0.651 0.735
cite pre@5 0.972 0.043 0.492 0.676
cite rec@5 0.976 0.043 0.595 0.766

core types and at all chosen levels.11 Between two rankings (on two different setups)
we can determine Pearson’s correlation coefficient r, as a measure of how likely the
score rankings of the recommenders are (linearly) correlated. The coefficient ranges
from −1 (anti-correlation) through 0 (no correlation) to 1 (perfect correlation). As Pear-
son’s r takes the particular score values (the value describing one recommender’s per-
formance on one setup) of the algorithms into account, we additionally use another
metric that only considers the order of the algorithms in a ranking: the number of dis-
cordant pairs d.12 Given two rankings, the algorithms A and B are discordant, when
in one ranking A performs better than B while in the other ranking B is better than
A. Thus in our case of five algorithms, d is between 0 (the rankings agree completely)
and 10 (one ranking is the reverse of the other).

Table V shows the mean pairwise (averaged over any pair of two different setups)
values of r and d together with the standard deviations exemplarily for the metrics
pre@5, rec@5, and MAP. We can observe that on no dataset we get perfect correlations.
Generally, the correlations are rather high, but we clearly see that the rankings are
inconsistent. The most stable are the rankings on deli. Here, only in every second pair
of setups two recommenders change their order. The correlations on cite are only a
little lower than on deli and on the two BibSonomy datasets the values are similar
and again lower than those on cite: on average, in two rankings one or two pairs of
recommenders have a different order.

Further, we computed which of the cores yield the ranking that is most consistent
with the raw data. For all datasets these are the tas-graph-cores at levels 2 and 3, i.e.,
the two largest cores. More generally we could observe that higher levels (and thus
higher densities) tend to yield results less consistent with the raw data. We conclude
that in experiments cores with lower levels are preferable to others, since they resem-
ble the original dataset more closely.

The consistency of the rankings also depends on the particular metric that is em-
ployed. In Figure 6 we see the mean pairwise values of r and d for rec@k and pre@k
with k running from 1 through 10. We see that the behavior of the consistency mea-
sures over the levels is dataset-specific. For deli the consistency is quite stable for both
metrics precision and recall. However, for the two BibSonomy datasets the values vary

11That is, 14 different setups for book and publ each and 28 and 31 setups for cite and deli respectively.
These numbers are determined by the choice of levels (see Table III) and the exclusion of cores with only few
users (see Section 4.1).
12The number of discordant pairs is closely related to the ranking correlation measure Kendall’s τ . In fact,
since all rankings have the same length of five (algorithms), and no two algorithms have equal scores in one
ranking, we have τ = 1− 0.2d.
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Fig. 6. The mean pairwise Pearson’s correlation r and number of discordant pairs d over the cut-level k for
the metrics rec@k and pre@k.

Table VI. For each dataset and each core type, the core levels l (among those considered in
the previous experiments, cf. Table III) where the algorithm most popular tags outperforms
least popular tags (column ”mpt”) or otherwise (column ”lpt”) according to precision at five
(pre@5) and recall at five (rec@5). For both metrics the comparisons are identical except
for the tas-graph-core of publ at level 5. The difference is indicated using the metric as
superscript.

dataset tas-graph-core post-graph-core post-set-core
mpt lpt mpt lpt mpt lpt

publ 1, 5rec@5, 6 2 – 4, 5pre@5 1, 3 – 6 2 1, 3, 4 2
book 1, 4 – 6 2, 3 1, 3 – 6 2 1 – 4 –
deli 1 – 10, 20 – 1 –10, 20 – 1 – 10, 20 –
cite 1 2 – 10, 15 1, 4 – 10, 15 2, 3 1, 4 – 8 2, 3

and the highest consistency is achieved for k = 10, indicating that especially among
top recommendations the recommenders’ success changes with the setups. Finally, on
cite, the difference in consistency is more dramatic when measured by the number of
discordant pairs than with r. This means that recommenders switch places in the per-
formance rankings although their scores develop similarly with changing levels or core
types.

5.4. Exploiting Cores using LeavePostOut
To demonstrate a critical statistical flaw of the use of any core in connection with
the LeavePostOut method, we employ the bogus least popular tags recommender that
always suggests the rarest tags. It is expected that this method’s scores should be
inferior to those of the other algorithms. They are indeed, when the raw datasets are
used – recall and precision always yield 0 and the MAP-score is below 10−4. However,
on the two BibSonomy datasets and on cite this changes once we use cores at a level
l > 1: On many of the investigated cores, least popular tags actually outperforms most
popular tags (and occasionally even most popular tags by resource). Table VI shows for
the three core types those levels on which least popular tags yields better scores –
measured in terms of precision and recall – than most popular tags or the other way
around.
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(a) deli (b) cite

Fig. 7. The distribution of the number of users per tag versus the number of posts per tag. Shown are the
reciprocal values in a logarithmic plot to focus on the high-frequency tags. The top five tags of the most
popular tags recommender are highlighted.

The algorithm least popular tags can profit in cases where the left-out post contains
many rare tags: through LeavePostOut, these tags become even more rare and, in
particular when they occurred exactly l times in a core at level l before LeavePostOut,
they occur l − 1 times afterwards. Instead of being removed from the dataset like in
the case of l = 1 (the raw data), for higher levels l they become the rarest tags in the
core. We can observe that this effect is mitigated with an increasing core level and
the scores of least popular tags tend to fall below those of most popular tags. Only on
deli least popular tags is always worse than most popular tags (although its scores are
still significantly higher than zero). This can be explained by a much higher average
number of tag assignments per tag: 43.5 on deli compared to only 6.9, 12.8, and 18.3 on
publ , book, and cite, respectively. The higher the number, the less likely it is to select
posts with tags that occur exactly l times during LeavePostOut. The same argument
explains why least popular tags falls behind most popular tags as the level increases:
together with l also the average number of tag assignments per tag rises.

5.5. The Most Popular Baseline
In Section 5.1 we have seen that the most popular tags recommender performs very
badly – especially on cite. To explain this phenomenon, recall that the most popular
tags are computed based on their post frequency, i.e., the number of posts that contain
a tag. Thus, if there are tags that are used extremely often by only a few users, they will
be among the most popular tags and thus be recommended to many users. In Figure 7,
for deli and cite, for each tag its post frequency is plotted against the number of users
that have tagged at least one post with it. To put emphasis on those tags that occur
most often, we have plotted the reciprocal values – and thus small values correspond to
high frequencies – on a log-log scale. Relevant for the most popular tags recommender
are the tags with the highest post frequency – these are the ones closest to the x-axis.
We can see that the top five tags for deli are also close to the y-axis, which means they
have both a high post frequency and a high user frequency. In contrast, the tags with
the highest post frequency in cite have a rather low user frequency, therefore they are a
bad recommendation for most of the users. A closer look at these top five tags (namely

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article XXXX, Publication date: July 2015.



The Role of Cores in Recommender Benchmarking XXXX:29

“celegans”, “elegans”, “nematode”, “caenorhabditiselegans”, and “wormbase”) reveals
that they are all related to Caenorhabditis elegans,13 a worm which is frequently used
as a model organism in biology. These five tags were very frequently used (27 735
times) in the same posts by two users (with IDs 33569 and 28123) and less frequently
by 165, 81, 58, 24, and 4 other users, respectively (cf. also the related tags for “celegans”
on CiteULike14). Thus, the posts from the two users were likely created automatically
but were not detected by the approaches described in Section 4.1, since they describe
the content of posts and not their creation process (as do tags like “imported”). Also, if
we recall the evaluation procedure LeavePostOut, which randomly picks one post for
every user, it becomes clear that these most popular tags are only a weak baseline. A
better choice would be to measure the popularity of tags based on user frequency.

6. CONCLUSION
We have analyzed the use of cores for the evaluation of tag recommendations. The
main contribution of the paper is the extension of the framework of core constructions
through the introduction of set-cores as generalization of graph-cores. This new core
type allows us to transfer the idea of cores to datasets without imposing a graph struc-
ture on them. In contrast to graph-cores, it allows the use of several thresholds at once
and for flexible combinations of individual and combined thresholds for different enti-
ties. We have successfully used them in tag recommender benchmarking experiments
to avoid the problem of diminished posts.

6.1. Lessons Learned
In the experiments, we have confirmed that benchmarking results not only depend
on the dataset and preprocessing procedures, but also on the chosen cores and that
using cores for offline evaluation has its pitfalls: The use of tas-graph-cores and post-
graph-cores results in diminished posts (post with fewer tags than they had originally)
in the dataset. With the use of post-set-cores we have presented a suitable solution
for this problem. The anomaly of the successful least popular tags recommender di-
rectly exploits the combination of cores and LeavePostOut. For other recommenders it
is unclear whether and how they can profit from the particular setup or the artificial
rareness of the left-out tags. We have also confirmed that recommenders perform dif-
ferently in different core setups of the same dataset. Thus, focusing on one particular
core can produce non-stable results. Evaluating the performance of recommenders on
another core type or at another core level might cause changes in the results. There
is no guarantee that a recommender performing best in one setup is also the best in
another setup (even on the same dataset). The correlations of recommender rankings
over various setups were relatively high. Yet, the fact that in a comparison of different
algorithms some switch ranks on different cores suggests that the choice of the core
and its level is even more critical for the comparison of algorithms with similar per-
formance and for the optimization of parameterized algorithms (where usually scores
change only little through fine adjustments of parameter values).

6.2. Recommendations for Future Tag Recommender Benchmarking Experiments
Following our findings, we can draw the following conclusions for future experiments
with recommender algorithms:

— In general, the comparison of tag recommender algorithms should always be per-
formed directly on the raw data or on several core types and levels.

13http://en.wikipedia.org/wiki/Caenorhabditis elegans
14http://www.citeulike.org/tag/celegans
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— Differences in the rankings, resulting from such comparisons, indicate strengths
or weaknesses of individual algorithms in the presence of datasets with different
densities.

— We could observe that even cores at higher levels still yield correlated results to
those of the raw data. It is therefore worth to compare recommenders on several
of these smaller subsets of the raw data to get a first impression of their overall
performance, before running the computationally more expensive experiments on
the raw data.

— We suggest to still use small choices for the core level (thus larger cores), since they
yield more consistent results with the raw dataset.

— We recommend not to run an evaluation on only one arbitrary chosen core, but to
carefully select several levels that suit the investigated use case. The particular
choice of the core level should be motivated by the use-case – examples are given in
Section 2.3.3.

— To avoid the problem of diminished posts, post-set-cores should be used. Investigat-
ing posts with all their tags (as they are in the raw data) is closer to the real online
use case. Allowing diminished posts increases the divide between offline evaluation
and actual online usage further.

— To tailor the test dataset to a particular use case, post-set-cores – in contrast to tas-
graph-cores and post-graph-cores – allow to impose thresholds individually for each
dimension of the data.

6.3. Future Research
We have shown that the choice of core type and core level has an impact on a bench-
marking experiment’s result. It is well-known that there are many other parameters
of the experimental setup which are influential as well. While, for instance, the choice
of the evaluation metric can often be justified by the use case – e.g., by the design
of the service in which the recommendations are provided – other choices are often
rather arbitrary or for the sake of minimizing the computational effort. These aspects
of the experimental setup include the method of splitting test and training data (e.g.,
LeavePostOut, different variations where more than one post is removed from the da-
taset, or time splits), the sampling of the training data (e.g., selecting some randomly
chosen post per user, or selecting the most recent post of each user, or using some
user-independent selection of posts), the preprocessing of the data, etc. Further exper-
iments could reveal the influence of these choices on the results of tag recommender
benchmarking as well as insights about how particular algorithms can profit or suffer
from the chosen setup.

The fact that different core setups yield different recommender rankings is an in-
dicator that different algorithms have strengths and weaknesses when dealing with
rather sparse or with more dense data. In Section 5.1 we have shown that performance
differences occur even through choosing only the test posts (the user-resource combi-
nations to recommend tags for) from different regions of the data (i.e., from the tas-
graph-core, the post-graph-core, or the post-set-core) while leaving the training data-
set the same (i.e., in our experiments the tas-graph-core). This encourages approaches
using different recommender algorithms in different situations: A recommender that
performs well (compared to others) on sparse data can be applied for new (or sparsely
connected) users and resources. An algorithm that dominates on the more dense data-
sets (higher core levels) can be chosen for user-resource pairs from an already dense
section of the data. The dynamic selection of the appropriate recommender – depend-
ing on the user and resource at hand – can be investigated as a machine learning
problem.
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An open aspect regarding the offline evaluation of a recommender is the current way
of distinguishing good recommendations from bad ones. In the current setup a tag is
only a good suggestion if it fits the user’s actual choice exactly (in our experiments ig-
noring upper and lower case). Thus, for example, the recommended tag “work” is con-
sidered a bad recommendation even if the user had in fact used seemingly related tag
“working” where in an online setting the user might have accepted the recommended
tag. Several approaches to “softer” measures are conceivable: word stemming of both
recommended tags and the actual tags (actually the conversion to lower case is already
a mild form of stemming), differentiating between exact and close fits of recommended
tags, etc. In Section 3 we have already mentioned the approach by [Mishne 2006] us-
ing string distance to compare tags. Different evaluation scenarios could be compared
in a similar setup like in this paper, variating the evaluation functions instead of core
type and level. Such experiments should also be accompanied by a user-study to inves-
tigate, for instance, which forms of stemming are acceptable for many users.

Finally, since set-cores can be constructed on arbitrary sets, they can be used in the
analysis of all kinds of datasets. In the related work on cores in Section 3, we have
mentioned several applications of graph-cores for diverse purposes, such as commu-
nity detection, data visualization, or the discovery of dynamics in datasets. It is now
possible to adapt these methods using set-cores and thus to extend their analytic capa-
bilities – through new, flexible, and multi-valued property functions – and their scope.
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Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. 2006. Information retrieval in folk-
sonomies: search and ranking. In The Semantic Web: Research and Applications (LNCS), Vol. 4011.
Springer, Berlin/Heidelberg, 411–426.

Andreas Hotho, Beate Krause, Dominik Benz, and Robert Jäschke (Eds.). 2008. ECML PKDD Discovery
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Robert Jäschke, Leandro Marinho, Andreas Hotho, Lars Schmidt-Thieme, and Gerd Stumme. 2008.
Tag recommendations in social bookmarking systems. AI Communications 21, 4 (2008), 231–247.
DOI:http://dx.doi.org/10.3233/AIC-2008-0438

George Karypis. 2001. Evaluation of Item-Based Top-N Recommendation Algorithms. In Proceedings of the
Tenth International Conference on Information and Knowledge Management (CIKM ’01). ACM, New
York, NY, USA, 247–254. DOI:http://dx.doi.org/10.1145/502585.502627

Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (1999), 604–632.
DOI:http://dx.doi.org/10.1145/324133.324140

Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent dirichlet allocation for tag rec-
ommendation. In Proc. 3rd Conf. on Recommender Systems. ACM, New York, NY, USA, 61–68.
DOI:http://dx.doi.org/10.1145/1639714.1639726

Marius Kubatz, Fatih Gedikli, and Dietmar Jannach. 2011. LocalRank - Neighborhood-Based, Fast Compu-
tation of Tag Recommendations. In E-Commerce and Web Technologies, Christian Huemer and Thomas
Setzer (Eds.). Lecture Notes in Business Information Processing, Vol. 85. Springer Berlin Heidelberg,
258–269. DOI:http://dx.doi.org/10.1007/978-3-642-23014-1 22

Marek Lipczak, Yeming Hu, Yael Kollet, and Evangelos Milios. 2009. Tag Sources for Recommendation in
Collaborative Tagging Systems, See Eisterlehner et al. [2009], 157–172. http://ceur-ws.org/Vol-497

Feichao Ma, Wenqing Wang, and Zhihong Deng. 2013. TagRank: A new tag recommendation algorithm
and recommender enhancement with data fusion techniques. In Social Media Retrieval and Mining,
Shuigeng Zhou and Zhiang Wu (Eds.). Communications in Computer and Information Science, Vol. 387.
Springer, Berlin/Heidelberg, 80–91. DOI:http://dx.doi.org/10.1007/978-3-642-41629-3 7

Hao Ma, Haixuan Yang, Michael R. Lyu, and Irwin King. 2008. SoRec: Social Recommenda-
tion Using Probabilistic Matrix Factorization. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management (CIKM ’08). ACM, New York, NY, USA, 931–940.
DOI:http://dx.doi.org/10.1145/1458082.1458205

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York.

Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan. 2002. Content-Boosted Collaborative Filter-
ing for Improved Recommendations. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence. AAAI, 187–192.

Gilad Mishne. 2006. AutoTag: a collaborative approach to automated tag assignment for weblog posts. In
WWW ’06: Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York,
NY, USA, 953–954. DOI:http://dx.doi.org/10.1145/1135777.1135961

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article XXXX, Publication date: July 2015.

http://dx.doi.org/10.1145/2507157.2507222
http://ceur-ws.org/Vol-497
http://dx.doi.org/10.1109/ASONAM.2011.65
http://dx.doi.org/10.1145/963770.963772
http://www.amazon.com/Random-Graphs-Svante-Janson/dp/0471175412
http://dx.doi.org/10.1007/978-3-642-25694-3_3
http://dx.doi.org/10.3233/AIC-2008-0438
http://dx.doi.org/10.1145/502585.502627
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1145/1639714.1639726
http://dx.doi.org/10.1007/978-3-642-23014-1_22
http://ceur-ws.org/Vol-497
http://dx.doi.org/10.1007/978-3-642-41629-3_7
http://dx.doi.org/10.1145/1458082.1458205
http://dx.doi.org/10.1145/1135777.1135961


The Role of Cores in Recommender Benchmarking XXXX:33
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2011. TagRanker: learning to recommend ranked tags. Logic Journal of IGPL 19, 2 (2011), 395–404.
DOI:http://dx.doi.org/10.1093/jigpal/jzq036

Alexandros Nanopoulos, Dimitrios Rafailidis, and Ioannis Karydis. 2013. Matrix factorization with content
relationships for media personalization. In Proc. 11th Int. Conf. Wirtschaftsinformatik. 87–101.

Alexandrin Popescul, Lyle H. Ungar, David M. Pennock, and Steve Lawrence. 2001. Probabilistic models for
unified collaborative and content-based recommendation in sparse-data environments. In Proceedings
of the 17th Conference on Uncertainty in Artificial Intelligence (UAI’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 437–444.

Pearl Pu, Li Chen, and Rong Hu. 2011. A user-centric evaluation framework for recommender systems. In
Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, New York, NY,
USA, 157–164. DOI:http://dx.doi.org/10.1145/2043932.2043962

Maryam Ramezani. 2011. Improving graph-based approaches for personalized tag recommendation. Journal
of Emerging Technologies in Web Intelligence 3, 2 (2011).

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Schmidt-Thieme Lars. 2009. BPR: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Un-
certainty in Artificial Intelligence (UAI ’09). AUAI Press, Arlington, Virginia, United States, 452–461.
http://portal.acm.org/citation.cfm?id=1795114.1795167

Steffen Rendle and Lars Schmidt-Thieme. 2009. Factor Models for Tag Recommendation in BibSonomy, See
Eisterlehner et al. [2009], 235–242. http://ceur-ws.org/Vol-497

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. In Proc. 10th Int. Conf. World Wide Web. ACM, New York, NY, USA, 285–
295. DOI:http://dx.doi.org/10.1145/371920.372071

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. 2000. Application of Dimension-
ality Reduction in Recommender System – A Case Study. In ACM WEBKDD Workshop.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. 2002. Methods and Metrics
for Cold-start Recommendations. In Proceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR ’02). ACM, New York, NY, USA,
253–260. DOI:http://dx.doi.org/10.1145/564376.564421

Stephen B. Seidman. 1983. Network structure and minimum degree. Social Networks 5, 3 (1983), 269 – 287.
DOI:http://dx.doi.org/10.1016/0378-8733(83)90028-X

Paul Seitlinger, Dominik Kowald, Christoph Trattner, and Tobias Ley. 2013. Recommending tags with
a model of human categorization. In Proceedings of the 22nd International Conference on Confer-
ence on Information & Knowledge Management (CIKM ’13). ACM, New York, NY, USA, 2381–2386.
DOI:http://dx.doi.org/10.1145/2505515.2505625

Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender Systems
Handbook, Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer US, 257–
297. DOI:http://dx.doi.org/10.1007/978-0-387-85820-3 8

Sanjay Sood, Sara Owsley, Kristian Hammond, and Larry Birnbaum. 2007. TagAssist: Automatic Tag Sug-
gestion for Blog Posts. In Proceedings of the International Conference on Weblogs and Social Media
(ICWSM 2007). Boulder, Colorado, USA.

Milan Vojnovic, James Cruise, Dinan Gunawardena, and Peter Marbach. 2007. Ranking and Suggesting
Tags in Collaborative Tagging Applications. Technical Report MSR-TR-2007-06. Microsoft Research.

Jyun-Cheng Wang and Chui-Chen Chiu. 2008. Recommending trusted online auction
sellers using social network analysis. Expert Syst. Appl. 34, 3 (2008), 1666–1679.
DOI:http://dx.doi.org/10.1016/j.eswa.2007.01.045

Zhichen Xu, Yun Fu, Jianchang Mao, and Difu Su. 2006. Towards the Semantic Web: Collaborative Tag
Suggestions. In Proceedings of the Collaborative Web Tagging Workshop at the WWW 2006. Edinburgh,
Scotland.

Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the k-core decomposition to
analyze the static structure of large-scale software systems. The Journal of Supercomputing 53, 2 (2010),
352–369. DOI:http://dx.doi.org/10.1007/s11227-009-0299-0

Received January 2014; revised August 2014; accepted November 2014

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article XXXX, Publication date: July 2015.

http://dx.doi.org/10.1093/jigpal/jzq036
http://dx.doi.org/10.1145/2043932.2043962
http://portal.acm.org/citation.cfm?id=1795114.1795167
http://ceur-ws.org/Vol-497
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/10.1145/564376.564421
http://dx.doi.org/10.1016/0378-8733(83)90028-X
http://dx.doi.org/10.1145/2505515.2505625
http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1016/j.eswa.2007.01.045
http://dx.doi.org/10.1007/s11227-009-0299-0

	Introduction
	Cores of Graphs and Sets
	Generalization
	Examples
	Cores of Folksonomies
	The Tas-Graph-Core of a Folksonomy
	The Post-Graph-Core of a Folksonomy
	The Post-Set-Core of a Folksonomy


	Related Work
	Experimental Evaluation
	Datasets
	Evaluation Methodology

	Results
	Recommendation Performance Depends on Core Type and Level
	Diminished Posts
	Recommender Ranking Correlation
	Exploiting Cores using LeavePostOut
	The Most Popular Baseline

	Conclusion
	Lessons Learned
	Recommendations for Future Tag Recommender Benchmarking Experiments
	Future Research


