Stephan Doerfel
Andreas Hotho

Robert Jaschke

Folke Mitzlaff

Juergen Mueller (Eds.)

20DC13
ECML PKDD Discovery Challenge

Recommending Given Names

International Workshop at
the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases

in ague, CZeCh Repub“c, Septe bel 2;t f 2013
20-]3 IWII"{W

EUROPEAN CONFERENCE ON MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES

Table of Contents

[Summary of the 15th Discovery Challenge — Recommending Given Names| 7
|Folke Mutzlaff, Stephan Doerfel, Andreas Hotho, Robert Jaschke, |
| and Juergen Mueller|

|A mixed hybrid recommender system for given names| 25

afael Glauber, Angelo Loula, and Joao Rocha-Junio

|Collaborative Filtering nsemble for Personalized Name Recommendation| 37

ernat Coma-Puig, Ernesto Diwaz-Aviles, an olfgang Nej

[INameling Discovery Challenge - Collaborative Neighborhoods| 49
|Durk Schafer and Robin Sengé

Improving the Recommendation of Given Names by Using Contextual |

.. 61
|Marcos Aurélio Domangues, Ricardo Marcondes Marcacini, Solange |
| Olweira Rezende, and Gustavo K. A. P. A. Batistal
|[Similarity-weighted association rules for a name recommender system|.... 73
[Benjamin Letham)
|[Factor Models for Recommending Given Names|....................... 81

mmanue ayer an teffen Ren

Preface

All over the world, future parents are facing the task of finding a suitable given
name for their children. Their choice is usually influenced by a variety of factors,
such as the social context, language, cultural background and especially personal
taste. Although this task is omnipresent, little research has been conducted on
the analysis and application of interrelations among given names from a data
mining perspective.

Since 1999 the ECML PKDD embraces the tradition of organizing a Dis-
covery Challenge, allowing researchers to develop and test algorithms for novel
and real world datasets. The Discovery Challenge 2013' tackled the task of rec-
ommending given names in the context of the name search engine Nameling. It
consisted of an offline and an online phase. In both phases, participants were
asked to create a name recommendation algorithm that could provide suitable
suggestions of given names to users of Nameling.

More than 40 participants/teams registered for the challenge, of which 17
handed in predictions of the offline challenge. After the end of the offline phase 6
teams submitted a paper. All papers have been peer reviewed and can be found
in these proceedings. The different approaches to the challenge are presented at
the ECML PKDD workshop on September 27th, 2013, in Prague, Czech Repub-
lic. The online challenge ran until the day before the workshop and four teams
successfully participated with implementations meeting all required criteria. De-
tails of the two challenge tasks, winners of both phases and an overview of the
main findings are presented in the first paper of these proceedings.

The organizers would like to sincerely thank the challenge’s sponsor Kasseler
Sparkasse for donating the trophy money for the challenge’s awards and the
organizers of ECML PKDD 2013 for their support in the organization of the
challenge and the workshop.

Kassel, October 2013
Stephan Doerfel, Andreas Hotho, Robert Jaschke,
Folke Mitzlaff, and Juergen Mueller

! http://www.kde.cs.uni-kassel.de/ws/dc13/

Summary of the 15th Discovery Challenge

Recommending Given Names

Folke Mitzlaff', Stephan Doerfel’, Andreas Hotho??2, Robert Jischke?, and
Juergen Mueller!-3

! University of Kassel, Knowledge Discovery and Data Engineering Group,
Wilhelmshoher Allee 73, 34121 Kassel, Germany
{mitzlaff, doerfel, mueller}@cs.uni-kassel.de
2 University of Wiirzburg, Data Mining and Information Retrieval Group, Am
Hubland, 97074 Wiirzburg, Germany
hotho@informatik.uni-wuerzburg.de
3 L3S Research Center, Appelstrafie 4, 30167 Hannover, Germany
{hotho, juergen.mueller, jaeschke}@l3s.de

The 15th ECML PKDD Discovery Challenge centered around the recommen-
dation of given names. Participants of the challenge implemented algorithms that
were tested both offline — on data collected by the name search engine Namel-
ing — and online within Nameling. Here, we describe both tasks in detail and
discuss the publicly available datasets. We motivate and explain the chosen eval-
uation of the challenge, and we summarize the different approaches applied to
the name recommendation tasks. Finally, we present the rankings and winners
of the offline and the online phase.

1 Introduction

The choice of a given name is typically accompanied with an extensive search for
the most suitable alternatives, at which many constraints apply. First of all, the
social and cultural background determines, what a common name is and may
additional imply certain habits, such as, e. g., the patronym. Additionally, most
names bear a certain meaning or associations which, also depend on the cultural
context. Whoever makes the decision is strongly influenced by personal taste
and current trends within the social context. Either by preferring names which
are currently popular, or by avoiding names which most likely will be common
in the neighborhood.

Future parents are often aided by huge collections of given names which list
several thousand names, ordered alphabetically or by popularity. To simplify
and shorten this extensive approach, the name search engine Nameling (see Sec-
tion 2) allows its users to query names and returns similar names. To determine
similarity, Nameling utilizes Wikipedia’s text corpus for interlinking names and
the microblogging service Twitter for capturing current trends and popularity
of given names. Nevertheless, the underlying rankings and thus the search re-
sults are statically bound to the underlying co-occurrence graph obtained from
Wikipedia and thus not personalized. Since naming a child is a very personal

task, a name search engine can certainly profit from personalized name recom-
mendation.

The task of 15th ECML PKDD Discovery Challenge was to create successful
recommendation algorithms that would suggest suitable given names to future
parents. The challenge relied on data gathered by Nameling and consisted of
two phases, i. e., an offline and an online challenge. In both phases, participants
were asked to provide a name recommendation algorithm to solve the task.

Task 1: The Offline Challenge. In the first phase, recommenders have been
evaluated in an offline setting. To train an algorithm, the participants had been
provided with a public training data set from Nameling’s access logs, representing
user search activities. Given a set of names for which a user had shown interest
in, the recommender should provide suggestions for further names for that user.
A second, private dataset from Nameling contained further search events from
users of Nameling. To win the challenge, participants had to predict these search
events. Details of the offline phase are discussed in Section 3 where we also
summarize the different approaches to solve the challenge as well as the ranking
of the participating teams and the challenge’s winners.

Task 2: The Online Challenge. The online phase took place after Task 1
had been completed. The participants implemented a recommendation service
that could be actively queried via HTTP and would provide names according
to the participant’s algorithm. These recommendation were shown to actual
users of Nameling and their quality was measured by counting user’s clicks on
recommended names. We elaborate on the online challenge in Section 4.

2 The Name Search Engine Nameling

Nameling is designed as a search engine and recommendation system for given
names. The basic principle is simple: The user enters a given name and gets a
browsable list of relevant, related names, called “namelings”. As an example,
Figure la shows the namelings for the classical masculine German given name
“Oskar”. The list of namelings in this example (“Rudolf”, “Hermann”, “Egon”,
etc.) exclusively contains classical German masculine given names as well. When-
ever an according article in Wikipedia exists, categories for the respective given
name are displayed, as, e.g., “Masculine given names” and “Place names” for
the given name “Egon”. Via hyperlinks, the user can browse for namelings of each
listed name or get a list of all names linked to a certain category in Wikipedia.
Further background information for the query name is summarized in a corre-
sponding details view, where, among others, popularity of the name in different
language editions of Wikipedia as well as in Twitter is shown. As depicted in
Figure 1b, the user may also explore the “neighborhood” of a given name, i. e.,
names which co-occur often with the query name.

From a user’s perspective, Nameling is a tool for finding a suitable given
name. Accordingly, names can easily be added to a personal list of favorite
names. The list of favorite names is shown on every page in the Nameling and
can be shared with a friend, for collaboratively finding a given name.

Name:

Oskar explore!

Namelings for N Bl

1. Rudolf
2. Hermann

German masculine given names, Surnames
3. Egon

Masculine given names, Place names

@ 4. Erich &

'Add name to your favorite list

Walter Robert

‘ Y?rkrhomas
Peter ~ \Wolfgang

Dsummer
Rudolf —

September . VWiIIiam
. :Rudolph

Wilhelm

Masculine given names, Surnames

. Paul
6. Emil Werner,
7. Fritz

German masculine given names

Richard Otto

(a) Namelings (b) Co-occurring names

Fig. 1: A user query for the classical German given name “Oskar”.

2.1 Computing Related Names

To generate the lists of related names, Nameling makes use of techniques that
have become popular in the so called “Web 2.0”. With the rise of the latter,
various social applications for different domains — offering a huge source of infor-
mation and giving insight into social interaction and personal attitudes — have
emerged that make use of user generated data (e. g., user profiles and friendships
in social networks or tagging data in bookmarking systems).

The basic idea behind Nameling was to discover relations among given names,
based on such user generated data. In this section, we briefly summarize how
data is collected and how relations among given names are established. Nameling
is based on a comprehensive list of given names, which was initially manually
collected, but then populated by user suggestions. Information about names and
relations between them is gathered from three different data sources, as depicted
in Figure 2:

Wikipedia: As basis for discovering relations among given names, co-occurrence
graphs are generated for each language edition of Wikipedia separately. That is,
for each language, a corresponding data set is downloaded from the Wikimedia
Foundation®. Afterwards, for any pair of given names in our dataset, the number
of sentences where they jointly occur is determined. Thus, an undirected graph is
obtained for every language, where two names are adjacent if they occur together
at least in one sentence within any of the articles and the edge’s weight is given
by the number of such sentences.

4 “Database dump progress.”, Wikimedia. 2012. http://dumps.wikimedia.org/
backup-index.html (May 1, 2013)

WIKIPEDIA twitter ¥

Jacob 143093
William 139271
Sophia 24503
Isabella 15756

Wilhelm Sophie

William

Sophia

Co-Occurrence Popularity Social Context

Fig.2: Nameling determines similarities among given names based on co-
occurrence networks from Wikipedia, popularity of given names via Twitter
and social context of the querying user via Facebook.

Relations among given names are established by calculating a vertex similar-
ity score between the corresponding nodes in the co-occurrence graph. Currently,
namelings are calculated based on the cosine similarity (cf. [2]).

Twitter: For assessing up-to-date popularity of given names, a random sample
of status messages in Twitter is constantly processed via the Twitter streaming
API®. For each name, the number of tweets mentioning it is counted.

Facebook: Optionally, a user may connect Nameling with Facebook®. If the user
allows Nameling to access his or her profile information, the given names of all
contacts in Facebook are collected anonymously. Thus, a “social context” for the
user’s given name is recorded. Currently, the social context graph is too small for
implementing features based on it, but it will be a valuable source for discovering
and evaluating relations among given names.

2.2 Research around Nameling

Beside serving as a tool for parents-to-be, Nameling is a research platform too.
The choice of a given name is influenced by many factors, ranging from cultural
background and social environment to personal preference. Accordingly, the task
of recommending given names is per se subject to interdisciplinary considera-
tions.

Within Nameling, users are anonymously identified via a cookie that is, a
small identification fragment which uniquely identifies a user’s web browser.
Although a single user might use several browsers or computers, Nameling uses
the simple heuristic of treating cookies identification for users.

5 Twitter Developers. https://dev.twitter.com/docs/api/1/get/statuses/sample
(May 3, 2013)
5 https://facebook.com/

10

The Nameling dataset arises from the requests that users make to Namel-
ing. More than 60,000 users conducted more than 500,000 activities within the
time range of consideration (March 6th, 2012 until February 12th, 2013). For
every user, Nameling tracks the search history, favorite names and geographi-
cal location based on the user’s IP address and the GeolP” database. All these
footprints together constitute a multi-mode network with multiple edge types.
Analyzing this graph (or one of its projections) can reveal communities of users
with similar search characteristics or cohesive groups of names, among others.
In the context of the Discovery Challenge, the data of Nameling is used to train
and to test given name recommendation algorithms.

3 Offline Challenge

The first task of the Discovery Challenge was to create an algorithm that pro-
duces given name recommendations — given a list of users with their previous
history of name search requests to Nameling. The evaluation of these algorithms
was conducted in a classical offline prediction scenario. A large dataset from
Nameling was split into a public training dataset and a secret test dataset. In
the following we describe details of the task and the dataset. In the second part
of this section we summarize the participants’ approaches and their results in
the challenge.

3.1 Task

In the challenges, we deal with a standard binary item recommendation task.
Users of the name search engine Nameling have expressed interest in certain
names by searching for them or requesting their details. These interactions with
the system are interpreted as (binary) positive feedback to these names, while
there is no explicit negative feedback - only names towards which we do not
know the user’s attitude. A recommender algorithm must determine, which of
these names will be of interest to the user.

Participants were given a public dataset to train their algorithms on. For the
overall evaluation a second dataset containing only a list of users was given to
them. The task in the offline challenge then was to produce for each user in that
second dataset a list of 1,000 name recommendations, ordered by their relevance
to the user at hand.

For the challenge no further restrictions were made regarding the choice of
methodology or additional data. On the contrary, participants were encouraged
to make use of any kind of data they might find suitable, e.g., family trees,
location information, data from social networks, etc.

" “GeolP databases and web services.”, MazMind. http://www.maxmind.com/en/
geolocation_landing (May 3, 2013)

11

3.2 Challenge Data

For the challenge, we provided data from the name search engine Nameling,
containing users together with their (partial) interaction history in Nameling. A
user interaction hereby is always one of the following:

ENTER_SEARCH The user entered a name directly into Nameling’s search field.

LINK_SEARCH The user followed a link on some result page (including pagination
links in longer result lists).

LINK_CATEGORY_SEARCH Woherever available, names are categorized according to
the corresponding Wikipedia articles. The users clicked on such a category
link to obtain all accordingly categorized names.

NAME DETAILS The user requested some detailed information for a name using
a respective button.

ADD_FAVORITE The user added a name to his list of favorite names.

The full dataset contains interactions from Nameling’s query logs, ranging
from March 6th, 2012 to February 12th, 2013. It contains profile data for 60,922
users with 515,848 activities. This dataset was split into a public training dataset
and a secret test dataset. For this purpose, a subset of users (in the following
called test users) was selected for the evaluation. For each such test user, we
withheld some of their most recent activities for testing according to the following
rules:

— For each user, we selected the chronologically last two names for evalu-
ation which had directly been entered into Nameling’s search field (i.e.,
ENTER_SEARCH activity) and which are also contained in the list of known
names. We thereby considered the respective time stamp of a name’s first
occurrence within the user’s activities. We restricted the evaluation to
ENTER_SEARCH activities, because all other user activities are biased towards
the lists of names which were displayed by Nameling (see our corresponding
analysis of the ranking performance in [2]).

— We considered only those names for evaluation which had not previously
been added as a favorite name by the user.

— All remaining user activity after the (chronologically) first evaluation name
has been discarded.

— We required at least three activities per user to remain in the data set.

— For previous publications, we already published part of Nameling’s usage
data. Only users not contained in this previously published data set, have
been selected as test users.

With the above procedure we obtained two data sets®: The secret evaluation
data set containing for each test user the two left out (i. e., ENTER_SEARCH)
names and the public challenge data set containing the remaining user activities
of the test users and the full lists of activities from all other users. The only

8 Both datasets are available from the challenge’s website: http://www.kde.cs.
uni-kassel.de/ws/dc13/downloads/

12

applied preprocessing on our part was a conversion to lower case of all names.
Additionally to the public training dataset, participants were provided with the
list of all users in the test dataset to be used as input for their algorithms.
Furthermore, we published a list of all names known to Nameling, which thus
included all names occurring in the training or the test data (roughly 36,000
names).

3.3 Evaluation

Given the list of test users (see above), each participant produced a list of 1,000
recommended names® for each such user. These lists were then used to evaluate
the quality of the algorithm by comparing for each test user the 1,000 names
to the two left-out names from the secret test dataset. As usual, it is assumed
that good algorithms will rank the left-out names high, since they represent the
actual measurable interests of the user at hand.

The chosen assessment metric to compare the lists of recommendations is
mean average precision (MAP@1000). MAP means to compute for each test
user the precision at exactly the ranking positions of the two left-out names.
These precision values are then first averaged per test user and finally in total
to yield the score for the recommender at hand. While MAP usually can handle
arbitrarily long lists of recommendations, for the challenge we restricted it to
MAP@1000, meaning that only the first 1,000 positions of a list are considered.
If one or both of the left out names were not among the top 1,000 name in
the list, they were treated as if they were ranked at position 1,001 and 1,002
respectively. More formally, the score assigned to a participant’s handed-in list

is
Ul
1

(R 7n)
|U| u—=1 T1u T2,u

where U is the set of all test users, 71, and 72, are the ranks of two left-out
names for user u from the secret evaluation dataset, and ry ,, > ro .

The choice of the evaluation measure is crucial in the comparison of rec-
ommender algorithms. It is well-known that different measures often lead to
different evaluation results and the choice of the metric must therefore be mo-
tivated by the use case at hand. In the case of Nameling, we had already seen
that recommending given names is a difficult task [3]. For many users, many
recommenders did not produce recommendation rankings with the test names
among top positions. Thus, measures like precision@k — with k typically ob-
taining low values like 5 or 10 — make it hard to distinguish between results,
especially for lower cut-off-thresholds k. MAP (Mean Average Precision) is a
measure that is suitable for (arbitrarily long) ordered lists of recommendations.
Like NDCG (Normalized Discounted Cumulative Gain) or AUC (Area Under
the Curve) it evaluates the recommendations based on the positions of the left

MAP@1000 :=

9 1,000 name sound like a large number but given that parents currently read much
longer and badly sorted name lists the number is reasonable (details below).

13

out items within the list of recommendations. It yields good scores when test
items appear on the top positions of the recommendations and lower scores if
they are ranked further below (unlike precision@k where lower ranked items are
cut off and thus do not contribute to the score).

The main difference to AUC and NDCG is how the ranks of the left-out
names are incorporated into the score. While AUC yields a linear combination
of the two ranks, MAP takes a linear combination of the reciprocal ranks and
NDCG a linear combinations of the (logarithmically) smoothed reciprocal ranks.
Among these measures, MAP is the one that discriminates the strongest between
higher or lower ranks and therefore was most suitable for the challenge.

Although we have just argued against cut-off-measures like precision@k it is
reasonable to cut off lists at some point. In contrast to many other areas where
recommendations are used (e.g., friend, movie, book, or website recommenders),
in Nameling the time needed to evaluate a recommendation is very short: if you
like a name, just click on it. Additionally, the cost in terms of money or time
spent for following a recommendation that turns out bad, is very low. At the
same time, finding the perfect name for a child is often a process of months rather
than minutes (like for finding the next book to read or deciding which movie
to watch) or seconds (deciding which tag to use or which website to visit on
the net). Thus it is reasonable to assume that parents-to-be are willing to scroll
through lists of names longer than the usual top ten — especially, considering
that one of the traditional ways of searching for names is to go through first
names dictionaries where names are listed unpersonalized, in alphabetical order.
In such books usually there are a lot more than 1,000 names that have to be
read and therefore it seems reasonable that readers of such books won’t mind
studying longer name lists on the web.

3.4 Summary of the Offline Challenge

Registered participants (or teams of participants) were given access to the public
training dataset and the dataset containing the names of all test users. The offline
challenge ran for about 17 weeks, beginning March 1st and ending July 1st, 2013.
Every week, participants were invited to hand in lists of recommended names
for the test users. These lists were evaluated (using the secret test dataset and
the evaluation described above) to produce a weekly updated leaderboard. The
leaderboard allowed the participants to check on the success of their methods
and to compare themselves with the other participants. Since frequently updated
results would constitute an opportunity for the participants to optimize their
algorithms towards this feedback or even to reverse-engineer the correct test
names, the leaderboard was not updated more often than once a week.

Participants and Winners More than 40 teams registered for the challenge
of which 17 handed in lists of recommended names. Of these 17, six teams
submitted a papers which are summarized below in Section 3.5. Table 1 shows
the final scores of the 17 teams and reveals the winners of the offline phase:

14

1. place goes to team wuefs.br for their approach using a features of names.

2. place is won by team ibayer using a syntactically enriched tensor factoriza-
tion model.

3. place goes to team all your base for their algorithm exploiting a generalized
form of association rules.

Table 1: The final results of the 17 teams in the offline challenge, showing all the
participants’ team names, together with the achieved MAP@1000 score.

Pos. Team Name MAP@1000
1 uefs.br 0,0491
2 ibayer 0,0472
3 all your base 0,0423
4 Labic 0,0379
5 cadejo 0,0367
6 disc 0,0340
7 Context 0,0321
8 TomFu 0,0309
9 Cibal 0,0262
10 thalesfc 0,0253
11 Prefix 0,0203
12 Gut_und-Guenstig 0,0169
13 TeamUFCG 0,0156
14 PwrInfZC 0,0130
15 persona-non-data 0,0043
16 erick_oliv 0,0021
17 Chanjo 0,0016

Figure 3 shows the scores of those six teams that handed in papers in time
describing their approach. Only described approaches can be judge and presented
at the workshop and therefore, all the other results are not considered in the
remaining discussion. Additionally, two baselines (NameRank from [3] and the
simple most-popular recommender) are presented in Figure 3. The latter simply
suggests to any user those names that have been queried the most often in the
past. It is thus unpersonalized and rather ad-hoc. NameRank is a variant of the
popular personalized PageRank algorithm [1]. From the baseline results we can
already tell that the recommendation problem is indeed hard, as the scores are
rather low (between 0.025 and 0.030). On the other hand, we can observe that the
simple most-popular is not that much worse than the much more sophisticated
PageRank-like approach. The first approaches of almost all participants yielded
scores lower or comparable to those of the baselines. However, over the course of
the challenge the scores improved significantly and by the end of the challenge
all teams had produced algorithms that outperformed both baselines.

To compare the recommenders’ performances in greater detail, Figure 4 shows
the cumulative distribution of the different ranking positions (1, ..., 1000) for the

15

0,050

0,045

\

0,040

0,035

—uefs.br
0,030

—ibayer
w
§ 0,025 all your base
bl —Labic
0,020 —cadejo
—disc
0,015
NameRank
0,010 Most Popular

0,005

0,000

‘; © o = E= = = =1 = E = = = =1 = E = = ©
e J = =] =] I =] =3 =] = = =] s =] =

= ~) < n) ~ o0) o — N] < n © <

- - - - - - - w

LEADERBOARD

Fig. 3: The scores of the six teams that handed in papers plotted of the 17 weeks
runtime of the offline challenge. For comparison, two baselines have been added
(the two constant lines): NameRank and Most Popular.

top three algorithms. For each recommender system and every ranking position
k, displayed is the number of hold-out names — out of the 8,280 hold-out names
from the 4,140 test users with two hold-out names each — that had a rank
smaller than or equal to k on the list of recommended names. We can observe,
that the three curves are very close together, indicating that the distributions
of ranks are similar. Comparing the results of the top placed two algorithms
(team wuefs.br and team ibayer), we see that the former has predicted more of
the hold-out names in its top 1,000 lists in total. However, the latter succeeded
in placing more hold-out names among the top ranking positions (k < 400). The
distribution of the third algorithm (team all your base) is almost identical with
that of team uefs.br over the first 300 ranks, but then falls behind.

3.5 Approaches

In the offline phase of the challenge, six teams documented their approaches in
the papers that are included in the challenges proceedings. In the following, the
key idea of each approach is summarized. Using the respective team name of
each paper’s authors, their scores can be identified in Figure 3.

A mixed hybrid recommender system for given names
The paper by Rafael Glauber, Angelo Loula, and Jodao B. Rocha-Junior
(team wuefs.br) presents a hybrid recommender which combines collaborative
filtering, most popular, and content-based recommendations. In particular
the latter contributes with two interesting approaches (Soundex and splitting

16

5000

Frequency
3000
|

o

S — 1. uefs.br

- --- 2.ibayer

o ----- 3. all your base

I I I I I I
0 200 400 600 800 1000

Position in Ranking

Fig. 4: Cumulative distribution of the ranking positions for the top three recom-
mendation systems described in Section 3.5.

of invalid names) that are fitted to the problem at hand. The combination of
the three approaches as a concatenation is likely the reason for the success in
the challenge, yielding the highest score on the test dataset and thus winning
the offline phase.

Collaborative Filtering Ensemble for Personalized Name Recommen-
dation
Bernat Coma-Puig, Ernesto Diaz-Aviles, and Wolfgang Nejdl (team cadejo)
present an algorithm based on the weighted rank ensemble of various collab-
orative filtering recommender systems. In particular, the classic item-to-item
collaborative filtering is considered in different, specifically adopted variants
(considering only ENTER_SEARCH activities vs. all activities, frequency biased
name sampling vs. recency biased name sampling), item- and user-based
CF as well as PageRank weights for filling up recommendation lists with
less than 1,000 elements. The weights of the ensemble are determined in ex-
periments and yield a recommender that outperforms each of its individual
components.

Nameling Discovery Challenge - Collaborative Neighborhoods
The paper by Dirk Schéfer and Robin Senge (team disc) created an algorithm
which combines user-based collaborative filtering with information about the
geographical location of the users and their preference for male/female and
long/short names. The paper further explores the use of two different similar-
ity measures, namely Dunning and Jaccard, and find that the rather exotic
one Dunning yields better recommendations than the Jaccard measure.

Improving the Recommendation of Given Names by Using Contex-
tual Information

17

The paper by Marcos Aurélio Domingues, Ricardo Marcondes Marcacini,
Solange Oliveira Rezende and Gustavo E. A. P. A. Batista (team Labic)
presents two approaches to tackle the challenge of name recommendation:
item-based collaborative filtering and association rules. In addition, the weight
post filtering approach is leveraged to weight these two baseline recom-
menders by contextual information about time and location. Therefore, for
each user-item pair the probability that the user accessed it at a certain
context (i.e., time or location) is computed and used to weight the baseline
results.

Similarity-weighted association rules for a name recommender system
The paper by Benjamin Letham (team all your base) considers association
rules for recommendation. The key idea here is the introduction of an ad-
justed confidence value for association rules, capturing the idea of inducing
a bias towards observations which stem from likeminded users (with respect
to the querying user). This generalized definition of confidence is addition-
ally combined with a previous approach of the author [4] which accounts for
association rules with low support values, by adding in a Beta prior distri-
bution. This recommender system achieved the third place in the challenge’s
offline task.

Factor Models for Recommending Given Names
The paper by Imannuel Bayer and Steffen Rendle (team ibayer) presents an
approach using a sequential factor model that is enriched with syntactical
name similarity — a prefix equality, called “prefiz smoothing”. The model is
trained with a slight adoption of the standard Bayesian Personalized Rank-
ing algorithm, while the final recommendation is obtained by averaging the
rankings of different, independently trained models. This recommender sys-
tem achieved the second place in the challenge’s offline task.

4 Online Challenge

Conducting offline experiments is usually the first step to estimate the perfor-
mance of different recommender systems. However, thus recommender systems
are trained to predict those items that users found interesting without being
assisted by a recommender system in the first place. In an online evaluation
different recommenders are implemented into the running productive system.
Their performance is compared in a test, where different users are assigned to
different recommenders and the impact of the recommendations is estimated by
analyzing the users responses to their recommendation. Like noted in [5] online
experiments provide “the strongest evidence as to the true value of the system
[...]7, but have also an influence on the users as the recommendations are dis-
played before users decide where to navigate (click) next. In the challenge, the
online phase gave the participants the opportunity to test the algorithms, they
had created during the offline phase in Nameling. In the following we describe
the setup that allowed the teams to integrate their algorithms with Nameling
before we discuss this phase’s results and winners.

18

' Recommendation (5)
=

N > h!
W | Sheldon, Lennart > - Sheldon seare 4 Shelan
Lennart
> [x] Sheldon [x] Lennart . N
Namelings for Sheldon: % @ & Kate
Recommended Namelings: Holly
e 1. Baker Dominik
@ " .
@ 1. Lennard Artisans, Baking, Food services occupations KO P
2. Julia 2. Johnson
3. Anna English-language surnames, Surnames derived
. from patronyms, Surnames originating in England
4. Michael
L 3. Warren
5. Lenny English given names, Masculine given names
6. Lennox 4. Robinson
7. Thomas English-language surnames, Lists of people

sharing a surname, Masculine given names.
Surnames of Ulster-Scottish origin, Surnames
originating in England

(a) interactive recommenda- (b) sidebar recommendation
tion

Fig. 5: Implemented recommendation use cases in Nameling: A user interactively
queries for suitable name recommendations (a) or gets recommended names
displayed in the sidebar of some regular Nameling page (b).

4.1 Recommendations in Nameling

The feature of recommendations in Nameling was introduced with the beginning
of the challenge’s online phase. To every page of the system was added a person-
alized list of recommended names. This list automatically adapts to the user’s
activities (e.g., the user’s clicks or entering of favorite actions). Users may use
this list to further search for names by clicking on one, add a name to his favorite
names, or ban a name which they do not want to be recommended again. Addi-
tionally, users can visit an interactive recommendation site in Nameling, where
they can enter names and will get personalized recommendations related to
those names. The latter functionality is very similar to the usual results Namel-
ing shows, the difference being that regular search results are non-personalized.
Figure 5 shows how recommendations are displayed in Nameling’s user interface.
To integrate their algorithms into Nameling, the participants had to imple-
ment a simple interface. The search engine itself provides a framework for the
easy integration of recommender systems based on lightweight REST (HTTP +
XML / JSON) interaction. Participants could choose to implement their recom-
mender in Java or Python and to run their recommender in a web service on
their own or to provide a JAR file to be deployed by the challenge organizers.
The recommender framework that integrates the different third-party recom-
mender systems into Nameling is sketched in Figure 6. When a user of Nameling
sends a request, a call for recommendations including the current user’s ID is
sent to each participating recommender. Recommendations are collected from
each such recommender within a time frame of 500 ms, i. e., recommendations
produced after that time are discarded. Using an equally distributed random

19

Query Recommender 1

Ox

Request
Recommendation
Jmelirng

B

£l

———
Select Result

X

Fig. 6: Schematic representation of Nameling’s online recommender framework.

function, one of the recommendation responses is selected and the recommended
names are displayed to the current user in the response to their request. Once
a recommender has been assigned to a user, this assignment is fixed for the
duration of the current session unless the user specifically requests new recom-
mendations.

4.2 Evaluation

Assessing the success of recommendations in a live system requires some quan-
tity that can be measured and that represents the use of the recommendations
to the user or to the system. Often used measures include a rise in revenue
(e.g., for product recommendations), click counts on the recommended items,
or comparisons to ratings that users assigned to recommended items. In the case
of name recommendations, no particular revenue is created for the system as
there are no products to be sold. Thus to evaluate different recommenders we
focused on the interest that users showed in the recommended names. For the
challenge we estimated this interest by the combined number of requests users
made responding to the recommendations. More precisely, we counted all interac-
tions that could be made on the recommender user interface (i. e., LINK_SEARCH,
LINK_CATEGORY_SEARCH, and ADD_FAVORITE events). Here, we excluded the pre-
viously mentioned option to ban names as their interpretations is unclear. On
the one hand, banning a name is certainly a negative response to that particular
recommendation. On the other hand, since users are not bound to react to the
recommendations at all, it is a clear sign of interest in the recommendations and
could well be interpreted as a deselection of one uninteresting name among from
a set of otherwise interesting names. Since the recommenders were assigned to
different users using an equally distributed random function, the final measure

20

BR22
SE2a
e —
NL3O.
UA32

RU 43

EU 69

CAT77_

FR 81

CH 104

GB 110

AT 161

Fig. 7: The countries (according to IP address) of Nameling’s visitors during the
online phase of the challenge.

was simply the sum of all considered requests in one of the three mentioned
categories.

4.3 Summary of the Online Challenge

The online phase ran from August, 1st to September 24th, 2013. During the time
of the online phase, more than 8,000 users visited Nameling engaging in more
than 200,000 activities there. Figure 7 shows the distributions of the users over
their countries (it is to be expected, the home country is an important influence
on the choice of names). While most of the requests came from Germany, followed
by Austria, the largest number of visitors from an English speaking country came
from the US.

Participants and Winners Of the teams that contributed to the challenge
proceedings, five entered their algorithms in the online challenge. Of those five
teams, four managed to produce recommendations within the time-window of
500 ms: “all your base”, “Contest”, “ibayer”, and “uefs.br”. Figure 8 shows for
each of these four teams the number of responses — in terms of clicks to one of
three categories of links related to the recommended names (see Section 4.2 — to
their recommendations. The clear winner of the online phase is team “ibayer”:
Immanuel Bayer and Steffen Rendle (Paper: Factor Models for Recommending
Given Names). Ranks two and three go to teams “all your base” and “uefs.br”
respectively. Compared to the offline challenge, we find, the three top teams
of the offline phase were the same that constituted the top three of the online

21

550
500
450
400
350

w 300

o
& 250]
B PICK_NAME
200
M LINK_CATEGORY_SEARCH
150 ® LINK_SEARCH
100
50
0
Rel o €
2 §] S
=
=
TEAM NAME

Fig. 8: Schematic representation of Nameling’s online recommender framework.

phase. It is however interesting to note that the order of the teams changed
— team “uefs.br” fell from rank one to rank three. It is also worth noting that
although team “Context” yielded a MAP@1000 score of only 0,0321 in the online
challenge, compared to team “uefs.br” with 0,0491, both teams were almost
equally successful in the online phase. It thus seems that the offline testing has
indeed been a reasonable precursor, yet also that the offline scenario does not
fully capture the actual use case.

5 Conclusion

The 15th Discovery Challenge of the ECML PKDD posed the task of recom-
mending given names to users of a name search engine. In the two parts of
the challenge, the offline and the online phase several teams of scientists imple-
mented and augmented recommendation algorithms to tackle that problem. In
their approaches, participants mainly chose to use well-established techniques
like collaborative filtering, tensor factorization, popularity measures, or associa-
tion rules and hybridization thereof. Participants adapted such algorithms to the
particular domain of given names exploiting name feature like gender, a name’s
prefix, a name’s string length, or phonetic similarity. In the offline challenge,
six teams entered their approaches and by the end of the phase, each team had
produced a new algorithm outperforming the previously most successful recom-
mender NameRank. The achieved scores of the individual recommenders were yet
rather low (compared to other domains were recommenders are applied). This
shows that there is yet much to be explored to better understand and predict the
attitude of users towards different names. Through the challenge, a multitude of

22

ideas and approaches has been proposed and a straight forward next step will
be to explore their value in hybrid recommender algorithms. Hybridization has
been used already by several participants with great success.

The online challenge opened the productively running name search engine
Nameling to the scientific community, offering the possibility to implement and
test name recommendation algorithms in a live system. Results showed that the
actual performance varied from that measured in the offline challenge. However,
it could also be observed that despite the low scores in the offline phase, the rec-
ommendations were perceived by users and were able to attract their attention.

As organizers, we would like to thank all participants for their valuable con-
tributions and ideas.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.

2. F. Mitzlaff and G. Stumme. Relatedness of given names. Human Journal, 1(4):205—
217, 2012.

3. F. Mitzlaff and G. Stumme. Recommending given names, 2013. cite
arxiv:1302.4412Comment: Baseline results for the ECML PKDD Discovery Chal-
lenge 2013.

4. C. Rudin, B. Letham, A. Salleb-Aouissi, E. Kogan, and D. Madigan. Sequential
event prediction with association rules. COLT 2011 - 24th Annual Conference on
Learning Theory, 2011.

5. G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,
pages 257-297. Springer US, 2011.

23

A mixed hybrid recommender system
for given names

Rafael Glauber!, Angelo Loula', and Joao B. Rocha-Junior?

! Intelligent and Cognitive Systems Lab (LASIC)
2 Advanced Data Management Research Group (ADaM)
State University of Feira de Santana (UEFS)
Feira de Santana, Bahia, Brazil
{rafaelglauber, angelocl, joao}@ecomp.uefs.br

Abstract. Recommender systems are data filtering systems that sug-
gest data items of interest by predicting user preferences. In this pa-
per, we describe the recommender system developed by the team named
uefs.br for the offline competition of the 15th ECML PKDD Discovery
Challenge 2018 on building a recommendation system for given names.
The proposed system is a hybrid recommender system that applied a
content-based approach, a collaborative filtering approach and a popu-
larity approach. The final recommendation is composed by the results of
these three different approaches, in which parameters where optimized
according to experiments conducted in datasets built from train data.

1 Introduction

Choosing a given name can be a hard task, considering the large amount of
available names and the diverse personal preferences and cultural contexts [4].
The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML PKDD 2013, organized a Discovery
Challenge on building a recommendation system for given names. The challenge
has two phases, an offline competition, for predicting search activity for users
based on data from the nameling.net website, and an online competition where
teams would integrate their recommender system into the nameling.net website.

Here we describe the recommender system developed for the offline compe-
tition by the team named wefs.br (initially called sertdo). The uefs.br team was
ranked first in the last public leaderboard of the offline competition, with a score
of 0,0491. The proposed system was a hybrid recommender system that applied
a content-based approach, a collaborative filtering approach and a popularity
approach.

In summary, the main contributions of this paper concern proposing a popularity-
based, content-based and collaborative-based recommender system; proposing a
mixed hybrid recommender system based on recommendations of the previous
systems; and evaluating the performance of the hybrid recommender system
using different settings.

25

2 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

The rest of this paper is organized as follows. In the next section, we present
an overview on recommender systems. Section 3 states the proposed offline
challenge task and how recommendations where evaluated. Then, we describe our
proposed hybrid recommender system in Section 4. In Section 5, experimental
results are presented along with parameters settings and the datasets used, and
the last section gives final remarks on the proposed solution.

2 Recommender Systems

A Recommender System (RS) is a filtering system that suggests items of possible
interest for a given user [6]. The problem of recommendation can be seen as the
problem of estimating the user rating for items not yet rated by the user. Items
predicted with high rating for a given user can be offered by the system as a
recommendation.

There are two main approaches for recommendation, Content-based and Col-
laborative Filtering. Different recommendation approaches can be combined in
a third approach, a Hybrid [1] one.

Content-based Approach. The Content-based (CB) approach [5] recom-
mends new items according to their content similarity with items of previous
user interest. It has its basis in Information Retrieval (IR) and Machine Learn-
ing (ML) [6,3,8]. This approach employs, for example, content representation
and comparison techniques from IR besides classification algorithms from ML to
represent items previously assessed by the user and compare with other items,
in order to recommend similar items.

Collaborative Filtering Approach. Instead of comparing items, the Collab-
orative Filtering (CF) approach [7] compares users based on their item interests,
and recommends new items that were of interest to such similar users. This tech-
nique, called the “automation of word-of-mouth” by Shardanand and Maes [9],
has a filtering principle in which the workload of identifying relevant content (or
quality from the perspective of an individual user) is partitioned among system
users, who record their personal rating for retrieved items.

Hybrid Approach. The previous approaches, and any other approach, can be
combined in order to employ complementary aspects of each other [1,2]. Rec-
ommender systems that employ more than one approach are named a hybrid
recommender systems. The main challenge of this approach is how to combine
approaches, for example, by combining items suggested by a collaborative filter-
ing approach and a content-based approach, in order to suggest items similar to
those previously “recommended” by the active users and items of interest that
are “recommended” by users with similar taste.

3 Problem Statement

The offline competition phase from 15th ECML PKDD Discovery Challenge
2013 defined the task of predicting future searches for users of the nameling.net

26

A mixed hybrid recommender system for given names 3

website. The nameling.net website is a search engine and a recommendation
system for given names, based on data observations from the social web [4]. As
the user enters the website, he enters a given name and gets a browsable list of
“relevant” names, called “namelings”. Each name listed, including the searched
one, has details associated with it, including Wikipedia articles (categories),
popularity in Twitter and Wikipedia and names commonly co-occuring.

Data captured from the nameling.net website was provided for offline com-
petition, regarding logged interactions from the website users, called activities.
Every user activity is supplied with the (obfuscated) user ID, the type of ac-
tivity, the associated name and a time stamp. The types of activities could
be ENTER_SEARCH, when the user entered a name into the search field,
LINK_SEARCH, when the user clicked a link on a result page, LINK_CATE-
GORY_SEARCH, when the user clicked on a wikipedia category related with
a name, resulting in a list of all name in the same category, NAME_DETAILS,
when the user gets details associated with a name, or ADD_FAVORITE, when
the user adds a name to his list of favorite names.

A subset of users is selected as test users, and for each user in this subset,
the last two ENTER_SEARCH activities were removed from his activity history.
Each competition team is challenged to build a recommender system that pro-
vides an ordered list of names (up to 1000 names) for each test user that should
include the names related to the two omitted activities. These two names are
present in a provided list of nameling.net known names, but they may not occur
as ENTER_.SEARCH or ADD_FAVORITE in the given user provided history.
This procedure provides two datasets, a secret evaluation dataset, with with-
hold names for test users, and a public challenge dataset, with all remaining
user activities.

To evaluate the recommended list of names for each test user, the Mean
Average Precision at position 1000 (MAP@1000) was used as the challenge score.
Given a user i and his first omitted name found at position n; and the second
one at position ns, the Average Precision AveP@1000; and M AP@1000 for N
users were given by:

AveP@1000; = l (L + l)
2 ny na

N
1
MAPQ@1000 = ¥ ; Ave PQ1000;

If one of the omitted names was not in the ordered list, no was admitted to
be at position 1001, and if both were not in the list, n; was set to 1001 and ne,
1002.

4 Proposed Solution

To address the offline competition task, we built a hybrid recommender system
that combines recommendations coming from different recommender systems, a

27

4 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

content-based one, a collaborative filtering one and a popularity based one. In
Section 4.1, we present the popularity-based approach that recommends names
based on the popularity of the names in the collection. In Section 4.2, we describe
our collaborative filtering approach that retrieves given names from users with
similar name interests. In Section 4.3, we describe our content-based approach
that recommends new names based on phonetic string matching with names in
the last activities of the given user. Finally, in Section 4.4, we present our hybrid
approach that combines the previous techniques for recommending names.

4.1 Popularity-based approach

The popularity-based approach recommends popular (frequent) names. The idea
is ranking names based on frequency in the collection and suggesting the same
result ordered list to every test user, but removing from the recommendation
list names that have previously being associated with an ENTER_SEARCH or
ADD_FAVORITE activity of the given user.

In order to determine name popularity, we parse the public challenge dataset
and, for each name we count the number of users that have such a name in their
history of activities. If a name appears more than once in the activities of a given
user, only one occurrence of the name is counted.

The big advantage of this approach is its simplicity and capacity for filling
the list of one thousand names. The big disadvantage is that it is not customized
for each user.

4.2 Collaborative Filtering approach

The collaborative filtering system produces a customized list of recommended
names for each test user coming from names in the list of activity of similar users
(neighbors). To determine neighbors for a given test user, a similarity measure
is computed between this test user and all other users. Those users with the
similarity measure above a given threshold are considered neighbors of the test
user. The list of names recommended to the given test user is composed by the
names appearing in the neighbors’ list of activities and that are not in the given
test user list as an ENTER_SEARCH and ADD_FAVORITE activity.

Computing the similarity between two users (neighborhood simi-
larity). The neighborhood similarity measure between two users is computed
taking into account only the valid (known) names associated with ENTER_SEARCH
and LINK_SEARCH activities for both users, defining a user profile. Profiles are
represented as a n-dimensional binary vector with each dimension representing
a name among the n valid names. If a name occurs in a profile, the profile vec-
tor has value 1 in that dimension, otherwise, it has value 0. As neighborhood
similarity measure, we use the well-known cosine similarity [3] between profile
vectors of a test user T and another user U:

iy Ti - U
Vi TP -2 U

similarity(T,U) = cos(0) = (1)

28

A mixed hybrid recommender system for given names 5

where n is number of valid names (vector size), T; and U; are the i-th dimension
value in vector T and U, respectively.

Selecting the neighbors. The neighbors of a test user T (test user) are
those users U whose cosine similarity is greater or equal a given Similarity
Threshold.

Selecting the names. After selecting neighbors, all names present in these
neighbors profiles compose a list of candidate names for recommendation. For
each name, the score is the sum of the cosine similarity of the neighbors that
contain the name. This score is used to rank the candidate names and order
the list. The final list of names recommended by the Collaborative Filtering
Approach is limited in the hybrid system (Collaborative Filtering Limit).

The advantage of this approach is that it suggests names from users of similar
taste, producing a customized list of names for each user. The limitation is that
it may not find enough neighbors (or no neighbors at all) and it may not be able
to provide a list of one thousand names.

4.3 Content-based approach

Our content-based approach checks the names in the last activities of the test
user in order to recommend similar names. The recommended names are selected
from a list of candidate names, which are determined comparing the names in
the last activities with the list of valid names using an algorithm for phonetic
string matching [10]. This algorithm can be used to suggest spelling variations of
a given name. For example, given the name “johane” and a list of valid names,
this procedure can suggest “johan”, “johanie”, and “johanne”. In our proposed
system, we have employed the Soundex algorithm [10], but any other phonetic
string matching algorithm could have been employed.

Soundex employs a parameter to define the minimum string similarity be-
tween two names and only names above this string similarity are considered.
Therefore, if we increase the parameter, less names are returned by content-
based recommendation, once only strictly more similar names are recommended.
The number of names provided by this approach depends not only on the string
similarity parameter but also on the specific name under consideration. Since
names are compared to the list of valid names, some names may have no similar
names (empty set), while others have more than 10 similar ones. Besides, we also
need to order the list of similar names and, to that end, we rank the suggested
names by popularity (Section 4.1), hence we can select the most popular names
suggested by the content-based approach.

The content-based approach is divided into two phases. In the first phase, we
find the candidate names and in the second phase, we select the best names for
recommendation.

Finding candidate names (first phase). In order to find the candidate
names, we employ three techniques.

— First. We check if the user’s last activity is an ENTER_SEARCH activity
associated with a valid name (a name in known names list), and insert all
similar names (using Soundex) in the candidates names list.

29

6 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

— Second. We check if the user’s last activity is a LINK_SEARCH, inserting
it as candidate. This name, when it appears, is always the first candidate.

— Third. We check the last four activities of a test user, looking for invalid
names (names not in known names list) associated with ENTER_SEARCH
activities. The invalid names are then split using the following delimiters:
“-#+.. The aim is to transform invalid names such as “stine#” in valid
names such as “stine” or invalid names such as “Christina Alexandra” in two
valid names “Christina” and “Alexandra’. The valid names are added to the
candidate names list. If, after name split, the result names are still invalid,
we search for similar valid names using Soundex, which are also added as
candidate names.

Selecting the best candidate names (second phase). The list of candidate
names produced in the first phase can contain many names. Therefore, in order to
select the best names, we rank the list of candidates by popularity (Section 4.1).
In a pure content-based approach, we can select up to one thousand names;
while in our hybrid approach, we limited the number of names according to a
parameter Content-based Limit.

The main limitation of this approach is that, in most cases, it does not fill
the list of one thousand names. Besides, it does not recommend names to users
with last activities associated with names with great phonetic difference to all
other known names. The big advantage is exploiting the names in the user’s
last activities for recommendation, once the challenge task is to predict two
subsequent names in the user profile, which are highly temporally dependent on
the last activities.

4.4 Hybrid approach

All the approaches proposed above have strong and weak points and, therefore,
they may not present the best results when considered individually. However, if
the list of recommended names is built by combining names obtained from all
the previous approaches, we can have a hybrid recommender system with better
results. In our proposal, the final list of recommended names is composed by the
resulting list of recommended names from each of the three different approaches,
characterized as a mixed hybrid system [1].

In order to find the best way to combine the results from the different ap-
proaches, we have tried different combinations of the previous approaches. Fig-
ure 1 presents the best combination found, where the two first items are obtained
using the content-based approach, the next names (up to three hundred) are ob-
tained using the collaborative filtering approach, and the remaining names are
obtained using the popularity-based approach.

The rationale behind the hybrid approach is putting first the names related
to the last few activities of the user (content-based approach), which is a short
list that exploits high scoring positions in the MAP score, but leaves a lot of
subsequent score positions for the following approach. Then, collaborative fil-
tering fills the 300 following names in the recommendation list, which is still a

30

A mixed hybrid recommender system for given names 7

content-based
~

I collaborative filtering popularity-based

o—>
N—>

300 1000

Fig. 1. Hybrid approach and its final combination.

user customized recommendation. Finally, to complete the list of 1000 names,
since the previous two may not do so, we add popular names with overall high
probability of being of interest.

5 Experimental Evaluation

An experimental evaluation was conducted to compare the different approaches
proposed and the impact of parameters in the hybrid recommender system. In
each experiment, we vary one parameter, while the others are fixed, therefore,
showing the impact of one parameter in system results.

5.1 Settings

Our hybrid recommender system combines different approaches for building a
recommendation list. Table 1 presents the parameters employed in the experi-
mental evaluation, the default values are presented in bold.

Parameters Values
Content-based limit 1,2,3,4,5
Collaborative filtering limit 100, 200, 300, 400, 500

Soundex parameter for valid names 0.93, 0.94, 0.95, 0.96, 0.97
Soundex parameter for invalid names 0.89, 0.90, 0.91, 0.92, 0.93
Similarity threshold 0.09, 0.10, 0.11, 0.12, 0.13
Dataset 1,2, 3

Table 1. Parameter settings used in the experiments.

Content-based Limit (ContentLimit) is the parameter that controls the maxi-
mum number of names recommended by the content-based approach.

Collaborative Filtering Limit (CollaborativeLimit) is the parameter that controls
the maximum number of names recommended by the collaborative filtering ap-
proach.

Soundex Parameter for Valid Names (SoundexValid) and Soundex Parameter
for Invalid Names (SoundexInvalid) defines minimum string similarity required
for phonetically similarity between two names.

31

8 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

Similarity Threshold (SimThreshold) defines minimum cosine similarity required
for a user to be considered neighbor of the test user (active user).

5.2 Datasets

In order to evaluate the impact of each parameter in our recommender system,
we have created three evaluation datasets from the public challenge dataset. The
datasets were created using the provided script to generate test users, then split-
ting the result test users dataset into three smaller datasets and combined with
users from the public challenge dataset, keeping similar characteristics to the
original dataset . In each new dataset, only test users have their profile changed
(the last two ENTER_SEARCH activities was removed), while the profile of the
other users are kept the same as in the public challenge dataset.

Properties Dataset 0 Dataset 1 Dataset 2 Dataset 3
#valid names 17457 17326 17309 17291
#invalid names 14638 14232 14277 14175
F#test users 4140 4139 4141 4728
avg #valid names per user 4.2643 4.1013 4.1017 4.0765
avg #invalid names per user 0.3087 0.2985 0.3000 0.2976
avg #users per valid name 14.8046 14.3463 14.3619 14.2884
avg #users per invalid name 1.2781 1.2714 1.2734 1.2725
max #valid names per user 1476 1476 1476 1476
max #invalid names per user 61 60 61 61
max Fusers per valid name 2263 2183 2189 2181
max #users per invalid name 57 54 55 56

Table 2. Datasets characteristics.

Table 2 shows the characteristics of the public challenge dataset (Dataset 0)
and the three new datasets created (Datasets 1, 2, and 3). These characteristics
were extracted from all activities, except LINK_CATEGORY_SEARCH. Each
new dataset has a distinct set of test users. The valid names are those that
are present in the provided list of known names, while the invalid names are
ENTER_SEARCH activities whose names are unknown names.

5.3 Defining the number of items for each approach

As an initial step, we study the maximum number of names taken from each
approach in our hybrid recommender system (Figure 2). The list of names rec-
ommended by the hybrid recommender system is composed by items obtained
using the content-based approach, followed by items obtained using the collabo-
rative filtering approach and, filling the rest of the list, with items obtained using
the popularity-based approach. First, we study the limits of the content-based
approach, then we study the limits of the collaborative-based approach.

32

A mixed hybrid recommender system for given names 9

0.053 . . . 0.053 . . .
0.052 /’\;__‘\4, 0.054———
0.05" = datasetl 0.051 :33‘3“%
-o-dataset2 -~ ataset.
o 005 —&-dataset3 a 005 dataset3
< <
= 0.049 = 0.049 . . -
>
00e8 /‘»_‘_\4 som
0.047 0.047
A/\ - . N
0.046 2 3 4 5 004855 200 300 400 500
ContentLimit CollaborativeLimit
(a) Content-based limit (b) Collaborative filtering limit

Fig. 2. Number of items from the (a) content-based and (b) collaborative filtering
approaches used in the hybrid recommender system.

Content-based limit (ContentLimit). Figure 2(a) presents the MAP ob-
tained with our hybrid recommender system, while the ContentLimit varies®.
The best result was obtained using only two items from the content-based ap-
proach. Besides the small number of items, the impact of the content-based ap-
proach in our recommender system is significant, since the items recommended
are the two first items in the list (Section 3).

Collaborative filtering limit (CollaborativeLimit). Figure 2(b) presents
the MAP obtained with our hybrid recommender system, while the Collabora-
tiveLimit varies. The CollaborativeLimit includes the items obtained using the
content-based approach. Therefore, when Collaborative Limit = 300, it means
that the two first items are obtained using the content-based approach, while
the other 298 items are obtained using the collaborative-based approach. Re-
sults show a really small difference in MAP for variations of CollaborativeLimit,
but a slightly better MAP for the value 300, which is the reason for using this
value. This small difference also evidences that the collaborative filtering and
the popularity approach almost compensates each other in MAP score, when
more names from one approach and less from the other are included.

5.4 Calibrating the phonetic string matching algorithm

The impact of the phonetic string matching algorithm (Soundex) in our hy-
brid recommender system was also evaluated. The Soundex algorithm compares
phonetic similar names and allows to locate known names similar to valid and
invalid names (Section 4.3). Therefore, we have configured Soundex differently,
depending whether the name is valid or invalid.

Figure 3(a) presents the MAP while varying the phonetic string similarity
threshold for valid names, while Figure 3(b) shows the MAP for invalid names.
Although there is no clear convergence of this parameters in all three datasets,
we have chosen Dataset 2 as our benchmark as it approaches better results
obtained (weekly) from the secret evaluation dataset and it also represents a

3 In all figures, we employ the default values presented in Table 1, while varying one
single parameter.

33

10 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

0.056 . : | - datasetl 0.053 . i ‘
-o-dataset2 b
0.0544 —A-dataset3 0.052
\‘\.\/ 0.051 L
0.052 —&datasetl
o 005 -o-dataset2
< 005 <§(—&-dataset3

0.049

<o
0.04 /——/\1» ”/a/’—’\"
045 0.0454
A
()_045“/A*.‘—/"“’/_4 0_047.\/_",/4‘
4

0'0%‘.93 0.94

0.96 0.97 0'0%6.89 0.9 0.92 0.93

0.95 0.91
SoundexValid SoundexInvalid

(a) Similarity for valid name (b) Similarity for invalid name
Fig. 3. String similarity threshold parameter in Soundex algorithm.

balance between the higher results obtained for Dataset 1 and lower results for
Dataset 3. Therefore, we employed the value 0.96 for valid names and 0.91, which
maximizes the MAP for Dataset 2.

5.5 Neighborhood selection

Another evaluation concerned the minimum similarity required for considering
a user to be a neighbor of a test user in the collaborative filtering approach (Sec-
tion 4.2). Only users whose similarity to a given test user is above this similarity
threshold are considered neighbors, who can recommend names to the test user.
Figure 4 presents the impact on the MAP for the similarity threshold varying
from 0.09 to 0.13. The best results are obtained when this value is set to 0.11.

0.053 T
0.05 - i —]
0.051 —=-datasetl
-e-dataset2
o 0.05 —A-dataset3
<
= 0.049)
—e
0.048
0.047
004009 0.1 0.12 0.1

0.11
SimThreshold
Fig. 4. The lowest degree of similarity required to be neighbor.

5.6 Comparing the different approaches individually

To evaluate the potential of each recommendation approach, we studied each
one as an isolated recommender system. Figure 5 presents the MAP score for
each of the three approaches, when they are considered individually. In these
experiments, we fill the list with items recommended by a single approach, with-
out limiting the number of items suggested. For example, for the content-based
approach, we list all names that can be recommended by this approach without
limiting to only two names.

34

A mixed hybrid recommender system for given names 11

0.055, : ; JpurecB 0.06 :
[IpurePop Wb
0.05 0.05 [ef
[purecF - 0
0.045 Il hybrid pop
0.04
0.04) N
o
< 0.035 < 0.03
= s
0.03 0.02
0.025
0.01
0.02 H H ﬂ
0.015 n) 5 0 . . .
dataset dataset
Fig. 5. Comparing approaches as iso- Fig. 6. Impact of each approach in the
lated recommenders. hybrid recommendation.

When considered individually as a pure recommender system, the collabo-
rative filtering approach (pureCF) presents the best results, while the content-
based approach (pureCB) is the one that presents the worst results, with popularity-
based (purePop) having intermediate results. The content-based approach does
not recommend many names, therefore, most lists of recommended names using
this approach have much less than one thousand items (or even no recommen-
dation at all). But pureCB has a considerable MAP score for such a limited list
of names. Besides the good results obtained with the pure collaborative-based
approach, the hybrid is able to combine characteristics from each approach pro-
ducing the overall best results. These experiments shows the efficacy of our
hybrid recommender system in aggregating recommendations from the different
approaches.

5.7 Studying the impact of each approach to the hybrid system

In order to assess the individual contribution from each recommendation ap-
proach to the hybrid approach, we evaluate the MAP score composition from
each one in the final recommendation list. Figure 6 presents the results obtained
using the hybrid approach, showing the contribution of each approach in the
result (cf:collaborative filtering, cb:content-based and pop:popularity-based). In
this experiment, we employ the default values presented in Table 1.

The first thing to notice is the contribution of the content-based approach
that provides only two items at most, but has a significant impact in the results
obtained by the hybrid approach. The main reason for this high impact is that
the two items recommended by this approach are put in the top of the list,
positions highly scored, and this items are based on the content of the last user
activities.

In accordance with the results presented in the previous section, collaborative
filtering is the approach with the highest impact in our hybrid recommender
system. The names suggested by this approach are also in the top of the list (two
positions after the content-based approach) and capture the diversity of names
suggested by similar users, ensuring good results for the hybrid approach.

35

12 Rafael Glauber, Angelo Loula, Jodo Rocha-Junior

Although with a small contribution, the popularity-based approach has its
importance. The popularity-based approach fills a great part of the recommen-
dation list (the tail of the list) that would not be filled properly by any of the
other approaches studied, ensuring that all recommended lists have one thousand
names.

6 Final Remarks

The task of recommending given names is very hard. Even though the list of
recommend names is quite long, with up to 1000 names, it is still difficult to
predict given names of interest for many users, even with a hybrid system that
combines efforts from different approaches. There are many cultural factors and
behavior (or even fashion!) that may influence the choice of a name. A deeper
understanding of such factors, particularly with a much larger and representative
dataset, can be a fruitful track to build more efficient recommender systems for
given names.

Acknowledgments. The authors would like to thank Ivo Romario Lima and
Matheus Cardoso Silva for their collaboration during system development.

References

1. R. Burke. Hybrid recommender systems: Survey and experiments. User modeling
and user-adapted interaction, 12(4):331-370, 2002.

2. J. Liu, P. Dolan, and E. Pedersen. Personalized news recommendation based on
click behavior. In Proceedings of the 15th international conference on Intelligent
user interfaces, pages 31-40. ACM, 2010.

3. C. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

4. F. Mitzlaff and G. Stumme. Namelings - discover given name relatedness based on
data from the social web. In Proceedings of the International Conference on Social
Informatics (Soclnfo), pages 531-534, 2012.

5. M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The
adaptive web, pages 325-341. Springer, 2007.

6. F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems hand-
book. In F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, chapter 1,
pages 1-35. Springer, Boston, MA, 2011.

7. J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative filtering
recommender systems. In The adaptive web, pages 291-324. Springer, 2007.

8. F. Sebastiani. Machine learning in automated text categorization. ACM Comput.
Surv., 34(1):1-47, 2002.

9. U.Shardanand and P. Maes. Social information filtering: algorithms for automating
“word of mouth”. In Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’95, pages 210-217, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

10. J. Zobel and P. Dart. Phonetic string matching: lessons from information retrieval.
In Proceedings of the Annual International ACM SIGIR Conference on Research
and Development in Information retrieval, pages 166-172, 1996.

36

Collaborative Filtering Ensemble for
Personalized Name Recommendation

Bernat Coma-Puig*, Ernesto Diaz-Aviles, and Wolfgang Nejdl

L3S Research Center, Leibniz University Hannover, Germany
{coma-puig, diaz, nejdl}@L3S.de

Abstract Out of thousands of names to choose from, picking the right one for
your child is a daunting task. In this work, our objective is to help parents
making an informed decision while choosing a name for their baby. We follow a
recommender system approach and combine, in an ensemble, the individual
rankings produced by simple collaborative filtering algorithms in order to produce
a personalized list of names that meets the individual parents’ taste.
Our experiments were conducted using real-world data collected from the query
logs of nameling (nameling.net), an online portal for searching and exploring
names, which corresponds to the dataset released in the context of the ECML
PKDD Discover Challenge 2013. Our approach is intuitive, easy to implement,
and features fast training and prediction steps.

Keywords: Top-N recommendation; personalized ranking; given name recommendation

1 Introduction

There are many considerations when parents are deciding on a name for their child.
Many parents choose to name their babies after a grandparent, other relative, or a close
friend. Some others pick names from the actors or actresses of their favorite soap opera.
Cultural and societal rules, the meaning of the name, family’s traditions, or religious
beliefs also play an important role in many countries at the time of choosing a given
name for a baby.

This is indeed a daunting task for the parents and their decision will mark the child
for the rest of his or her life. The given name should be unique, making the bearer stand
out from the crowd, but at the same time it should also avoid embarrassment of being
the source for nicknames, humiliating initials, or annoying email addresses'.

From thousands of names to choose from, how do parents pick the right one for
their baby? In this paper, we present an approach to help parents dealing with this
information overload problem. In particular, we take a recommender systems approach

*Work done at the L3S Research Center as part of the ERASMUS exchange
program while a student at Universitat Politcnica de Catalunya — BarcelonaTech (UPC)
<bernat.coma@est.fib.upc.edu>.

! such as the one of our friend H. Thomas Eatons, who has the (unfortunate) email address of
eatonsht@<anonymized>.com:) .

37

and show how an ensemble of simple collaborative filtering algorithms can help users
to find given names that match their needs from a big pool of names.

We conduct this study in the context of the ECML PKDD’13 Discovery Challenge.
This paper documents the approach of team “cadejo” on the offline phase of the chal-
lenge.

The main contribution of this paper is an intuitive approach for the task of given
name prediction that is easy to implement, and that features fast training and prediction
steps. Our study shows that, in this particular task, our ensemble of simple collaborative
filtering building blocks performs significantly better than state-of-the-art latent factor
models.

1.1 Preliminaries

We consider the dataset as sparse matrix X = [x,;], where we use through this paper
the letter u for users and i for names, which corresponds to the items in a recommender
system setting. We use bold letters for matrices and vectors, and non bold for scalars.
The set of users and names? are denoted by U and T, respectively. Predictions for user-
item pairs are denoted as x7,;. The set of names that the user has interacted with is written
as J(u). The set of users, who interacted with name i is U(i).

We use the notation C,(i) to represent the set of names co-occurring with name i
within J (u), thatis, C,(i) :={j|i,j€ T(u) Ni # j}.

We denote the bag of co-occurring names for a given item i, as follows:

C) := U (G P,mG,) lie) A jeCud},
uel
where m(i, j) : 7 X I — Ny is a function from the set name pairs (7, j) € 7 X I to the
set N of positive natural numbers. For each pair of names (i, j), m(i, j) represents the
number of occurrences of such pair in the bag, i.e., its multiplicity. The aggregated bag
C over all items corresponds to C := ;e C(0).

We use S, to represent the user u’s sequence of interactions ordered according to
the corresponding timestamp , e.g., if user u searches first for name i, after that for is
and finally for name i,, then his sequence S, is represented as:

Suzil —>i4—>i2.

For example, consider three users u,, u and u3, and their corresponding sequences
S of search actions in temporal order:

Si =i —ig— i — i3
Su2=i4—>i5—>i1 Hi4—)l.3

Sz =i3 —is — g —i7 — s

2 In this paper, we use the terms “names” and “items” interchangeably.

38

The bag of co-occurrences for item iy, C(i4), sorted in decreasing order of multiplic-
ity, is given by:

Cis) = {((i4, 13), 3), ((i4, 1), 2), ((ia, i5), 2), (i 12), 1), ((is, B6), 1), (g, £7), D}

1.2 The Dataset

The dataset provided for the offline challenge is based on the query logs of nameling
(nameling.net), an online portal for searching and exploring names. The collection
comprises the time period from March 6th, 2012 to February 12th, 2013. In total the
dataset contains 515,848 interactions (i.e., activities) from 60, 922 different users and
50, 277 unique names. Figure 1a shows the frequency of names per user. We can observe
that it corresponds to a characteristic graph of a long-tail distribution, where few names
tend to concentrate a large number of users. The frequency of users per given name is
shown in Figure 1b.

There are 5 different types of interactions within the dataset, which are described as
follows:

1. ENTER_SEARCH: the user explicitly writes a name in the search field of namel-
ing’s website in order to search for it.

2. LINK_SEARCH: the user clicks on a name of showed names at nameling’s website,
following a link to a search result page.

3. NAME_DETAILS: the user requests more detailed information of a name.

4. LINK_CATEGORY_SEARCH: Wherever available, a name is categorized accord-
ing to the corresponding Wikipedia article. Users may click on such a category link
to obtain all names in the corresponding category.

5. ADD_FAVORITE: the user saves the name in his list of favorite names.

In addition to these datasets there is a list of valid or known names provided by the
organizers of the challenge, which contains 36,436 given names.

10 10
3 [3L vl
g 10 e 2 10 -
% e §
2102 8 10
8 E
£ 8
€ 10t} =10t}
0 = 0 .
10 ' ' ' ' 10 ' ' ' '
10° 1000 10> 100 100 10° 10° 1000 10> 100 100 10°
users names
(a) Frequency of names per given user. (b) Frequency of users per given name.

Figure 1. Frequency of users and names.

39

1.3 The Task

The task for the offline challenge is to recommend a personalized ranked list of names
for each user in the test set, based on the users’ (partial) search history in nameling.

The recommender system’s quality is evaluated with respect to the set of names
that users have entered directly into nameling’s search field. The rationale to restrict
the evaluation to ENTER_SEARCH activities is that all other user activities are biased
towards the lists of names which were displayed to nameling users.

The test set is built by taking from the training data the chronologically last two
names, which had directly been entered into nameling’s search field (i.e., using the
ENTER_SEARCH activity) and which are also contained in the list of known names as
detailed in the challenge description’.

The assessment metric for the recommendations is Mean Average Precision at a
cut-off of 1000 (MAP@1000) [1]. That is, for each test user look up the left-out names
and take the precision at the respective position in the ordered list of recommended
names. These precision values are first averaged per test user and than in total to yield
the final score. MAP @ 1000 means that only the first 1,000 positions of a list are consid-
ered. Thus it might happen that for some test users one or both of the left out names do
not occur in the list of recommendations. These cases will be handled as if the missing
names were ranked at position 1001 and 1002 respectively.

1.4 Data Preprocessing and Validation Set

In our study we could not find a clear mechanism on how to exploit activities of
type LINK_CATEGORY _SEARCH, and therefore we drop such interactions from the
dataset. We also concentrate only on names which appear as part of at least one in-
teraction and that were also present in the known names list. In total our experiments
consider a total number of 260,236 user-name pair interactions, from |U| = 60,922
different users and |7| = 17,467 unique names. The mean of names per user is 4.35, the
median is 3 names per user, with a minimum 1 and a maximum of 1670 names per user.

To evaluate our results we built a cross-validation dataset using the script provided
by the organizers of the challenge. The script gives us a validation with 13,008 users and
two target names. From these 13,008 users, 2,264 are not within the 4,140 users in the
test set, which are the ones we are required to give recommendations. In order to have
a more representative cross-validation dataset, for each of these 2,264 users we also
selected, from the remaining transactions in the training set, the last 2 names the user
interacted with. Note that in this case we ignored the additional constraints imposed by
the script, e.g., the type of activity.

2 Related Work

Although top-N recommender systems have been studied in depth, the particular task
of recommending given names is rather new. For example recent work by Mitzlaff
et al. studies the relatedness of given names based on data from the social web [11].

3http://www.kde.cs.uni-kassel.de/ws/dc13/faq/ .

40

This work shows the importance of co-occurrence networks for the recommendation
task. Our approach also exploits name co-occurrences in the Name-to-Name algorithm
introduced in Section 3.

The NameRank algorithm introduced in [12] adapts FolkRank [8] for name recom-
mendation, showing promising results. The algorithm basically solves a personalized
version of PageRank [4] per user in the system, over a graph of names, which does not
scale gracefully to large-scale data. Our approach, on the other hand, is flexible enough
to combine multiple predictors from simple collaborative filtering models, which makes
it more attractive for big data scenarios.

3 Methods

Collaborative Filtering (CF) algorithms are best known for their use on e-commerce
Web sites, Online Social Networks, or Web 2.0 video sharing platforms, where they use
input about a user’s interests to generate a (ranked) list of recommended items. In this
section, we describe the collaborative filtering models which are used by our approach
as well as the assembling strategy to compute the final prediction.

3.1 Name-to-Name Collaborative Filtering

This approach for name recommendation is based on the classic item-based collabora-
tive filtering algorithm introduced by Amazon.com [10]. This algorithm matches each
user’s interaction with a name to a set of similar names, then combines those similar
items into a recommendation list.

To determine the most similar match for a given name, the algorithm constructs a
bag of co-occurring names across all user interactions in the collection. The rationale
behind this algorithm is that there are many names that do not co-occur in any of the
user’s name transactions (7 (#)), and thus the approach is efficient in terms of processing
time in memory, since there is no need to compute similarities over all possible pairs of
names in the collection.

To compute the final recommendation list, the algorithm finds names similar to each
of the ones in the user’s set of names 7 (u), aggregates those co-occurring names, and
then recommends the most popular or correlated names. This computation is very quick,
depending only on the number of names the user has interacted with.

The Name-to-Name algorithm is summarized in Algorithm 14,

3.2 Neighborhood-based Collaborative Filtering

Neighborhood-based recommendation is a classic approach for Collaborative Filtering
that still ranks among the most popular methods for this problem. These approaches
are quite simple to describe and implement featuring important advantages such as the
ability to explain a recommendation and to capture “local” relations in the data, which

*In Section 4, we explain the models used in our ensemble and provide more details about
Algorithm 1’s functions getRandomName() and getRandomCoName() in this context.

41

Algorithm 1 Name-to-NaMme CF
Input:
Target user u € U. Recommendations will be computed for this user;
I (u) C I: set of names that the user has interacted with;
C : bag of co-occurring names;
N € N: size of the recommendation list;
max_iterations: maximum number of iterations.
Output: Recs(u): ranked list of recommendations for user u.

1: procedure GETREcoMMENDATIONS(1t, Z (1), C, N, max_iterations)

2 Recs(u) « 0

3 Recs(u) « Name-to-NamEe(u, I (1), C, N, Recs(u), max_iterations)

4. while [Recs(u)| < N do

5: Recs(u) « Name-to-NaMmE(u, Recs(u), C, N, Recs(u), max_iterations)
6: end while

7: return sort(Recs(u))

8: end procedure

9: procedure NaME-To-NAME(u, I’ (u), C, N)

10: while |Recs(#)| < N and ¢ < max_iterations do
11: i «getRandomName(Z" (u))

12: ((@, j), m) «getRandomCoName(C(i))

13: if j ¢ Recs(u) and j ¢ 7'(u) then

14: Recs(u) < Recs(u) U {(j, m)}

15: end if

16: te—t+1

17: end while

18: return Recs(u)

19: end procedure

are useful in making serendipitous recommendations. In particular, we used the Top-N
variants of the User-Based and Item-Based algorithms [5] as part of our name recom-
mendation ensemble.

3.3 Ensemble

Our solution to the challenge consists of an ensemble of individual rank estimates of a
set of collaborative filtering algorithms, a method that has shown to improve the quality
of the recommendations [3].

Since the value estimates of our models, X, can be in different scales, we do not com-
bine their values directly, but rather we use their rank estimates. Formally, the ensemble
of the rank estimates of / models is given by:

Arank
s 1
Yui Z rank(x M

42

where q; is a weight associated to the predictors of model /, rank(fc’u ;) is the rank position
within the /th ranked list corresponding to the estimate value fcfli. That is, the combined

estimate ch‘}“k corresponds to the weighted reciprocal rank of the individual models.

4 Results

In this section, we detail the collaborative filtering models, report their parameters, and
individual recommendation performance in terms of MAP@ 1000. We also present the
performance boost achieved by our ensemble.

The ensemble of our solution consists of 9 collaborative models that we describe as
follows.

[mO0 — N2N-Freq] is a Name-to-Name CF model that is created using the names co-
occurring with the names of a given test user, according to Algorithm 1. This model
considers the “ENTER_SEARCH”, “LINK_SEARCH” and “NAME_DETAILS”
activites to build the bag of co-occurrences. We randomly select a name i for given
test user u via the getRandomName (-) procedure specified in Algorithm 1, where
the chance for a name to be chosen is proportional to how often user u has inter-
acted with it, which adds a positive bias towards those names that are more searched
by the user. Furthermore, we also bias the selection of the co-occurring name j
(getRandomCoName (-) procedure in Algorithm 1) towards the multiplicity of the
pair (i, j).

Example. To illustrate this approach, consider the following example. Our dataset
consists of five users, u; ...us, and our task is to predict a recommendation list of
names for user u;. The sequence of interactions for user u; is denoted as §,; (cf.
Section 1.1) is given by

Su] = i4 —> i] —> i4.

and for the other four users, their corresponding sequences are:

Spp=i1 — iy — 13
Sz =iy — s — i — iy — i3
Sus =iz — I — i7 —> Iy
Sis =10 —is — 0y

then, the bags of co-occurrences for the names in S,, i.e., i4 and ij, sorted in de-
creasing order of multiplicity, are given by:

Clia) = {((ia, 11), 3), (14, 13), 3), ((ia, I5), 1), (i, B), 1), (s, £7), 1)}
Cl) = {((1,14), 3), (11, 13), 2), (i1, i5), 2), (i1, 12), D)}

Using the N2N-Freq shown in Algorithm 1, we first chose one name from user u,’s
names (i.e., from Z(u;)), and the name’s corresponding bag of co-occurrences. Let
us assume that iy € JZ(u;) and its respective bag C(i4) are chosen.

43

The first item to be included in the list of recommendations is i3 (i; would not
be chosen because i} € 7 (uy)).

In the next iteration, consider that C(i4) is selected again, given that it has a higher
probability to be picked due to the frequency of item iy in the sequence S ;. In this
case, is would be the item chosen to be included in the list of recommendations.

In the third iteration, the list selected is C(iy), then the first item to be selected is i,.
Note that there are no more items from C(i;) that can be included in the list. Then,
R(uy) is filled up using items from C(iy).

Finally, the list of recommendations for u; corresponds to:

R(uy) = [i3, is, i, i, I7] .

[m1 — N2N-Freq-ES] follows the same approach as model m0, but the bag of co-
occurring names used to compute the predictions considers only the
“ENTER_SEARCH?” activity to build the bag of co-occurrences.

[m2 — N2N-Time] is also a Name-to-Name CF model similar to m0Q, but with the dif-

ference that the names 7 (u) are not selected biased towards frequency of user in-
teractions, but towards recency. That is, the names included in the recommendation
list are those that co-occur with the last searches of the test user. The goal of this
model is to capture the latest user preferences as input to compute the recommen-
dations.
Example. Using this algorithm, with S, Si2, Su3, Sua Sus, C(is) and C(i;) from the
example given for m0. Using this algorithm, biased towards recency, all selectable
items from C(is) have a higher probability of being chosen. The firsts items would
correspond to i3, is and ig. From C(i;) the selectable items are i7 and i,. A possible
recommendation list corresponds to:

R(uy) = (i3, is, 16, i7, 2] .

[m3 — N2N-Time-ES] follows the same temporal strategy as m2, but the bag of co-
occurring names only considers the “ENTER_SEARCH” activity.

[m4 — N2N-Time-NoTop5] this model is the same one as m2, but only the top-5 most
popular names are excluded from the bag of co-occurrences. The rationale behind
this model is to get a more specific list of names, avoiding the names that are too
popular.

[m5 — N2N-Time-NoTop10] This model is similar to model m2, with the exception
that the top-10 most popular names in the collection have not been considered to
build the bag of co-occurrences.

[m6 — UB-T] is a user-based collaborative filtering algorithm [5] using Tanimoto co-

efficient for binary feedback as similarity metric [14]. We used a neighborhood of
size 100°.

3> Observe that we did not optimize for this parameter.

44

Model Description MAP@1000

mO N2N-Freq 0.033449
ml N2N-Freq-ES 0.033430
m2 N2N-Time 0.032296
m3 N2N-Time-ES 0.032008

m4 N2N-Time-NoTop5 0.032526
m5 N2N-Time-NoTop10 0.032455

m6 UB-T 0.023921
m7 UB-LL 0.028365
m8 PR 0.026483

Final ensemble 0.036766

baseline Most Popular Names 0.028138

Table 1. Recommendation performance in terms of MAP@1000 for the individual models
and the final ensemble. The performance of a non-personalized model that always recom-
mends the most popular 1000 names is reported as baseline.

[m7 — UB-LL] is a user-based model that uses likelihood as similarity metric. As in
the previous model, we also used a neighborhood of size 100 in this case.

[m8 — PR] This model corresponds to PageRank [4] computed on the graph of co-
occurring names. This is a non-personalized recommendation algorithm biased to
the most popular items. We used this algorithm to “fill up” recommendation lists
with less than 1000 names per user.

All models, except m6 and m7, were implemented in the Python programming lan-
guage, using the numeric libraries of NumPy and SciPy®. For the user-based models
(m6 and m7), we used the Java implementation provided by Apache Mahout’.

Table 1 summarizes the individual performance of these models. We also report the
performance of a non-personalized model that always recommends the most popular
1000 names.

Engineering the Final Ensemble

We compute the final ensemble by first combining different flavors of the same ap-
proach, and then combining the resulting ranked lists as explained in Section 3.3. Fig-
ure 2 illustrates the assembling process.

All weights (the a’s in Equation 2) were determined experimentally based on the
performance achieved by the (sub-)ensambles in our cross validation set.

Shttp://www.scipy.org/ .
7 http://mahout.apache.org/ .

45

We found that the best way to combine the N2N-Freq* (m0 and m1) and N2N-
Time* (m2 and m3) algorithms was by giving them equal weights, this is not surprising
given their very similar performance. On the other hand, the performance of the User
Based algorithms differs more substantially. In this case, we found that the best way to
combine them was by giving a higher weight to UB-LL (ayp-r; = 0.8) and a weight of
ayp_t = 0.2 to UB-T, for a UB combination (m6 + m7) that achieved a MAP@ 1000 of
0.028880.

We combine the unpersonalized ranked list output by the PageRank (m8) with the UB
ensemble to fill up user’s lists with less than 1000 items, using an asymmetric weighting
scheme, favoring the UB combination.

The final ensemble combines the N2N family combinations with the ranked list
from the filled UB models. We found that the best combination was obtained by giving
the N2N and UB*+PR a weights of 0.8 and 0.2, respectively. The MAP@1000 for
the final ensemble reaches a value of 0.036766. Please refer to Table 1 to compare the
ensemble’s performance to the one of the individual models.

N2N-Freg* N2N-Time* uB*

m0 m1 m2 m3 m4 m5 m6 m7

0.5 0.5
0.2 0.8 PR
mO0 + m1 m2 + m3 + m4 +m5 | m6 + m7 | m8
0.034134 0.036079 0.028880
0.7 0.6 7
(m0 + m1) + (m2 + m3 + m4 +m5) (m6 + m7) + m8

0.036133 0.031127
0.8 0.2

((m0 + m1) + (m2 + m3 + m4 +m5)) + ((M6 + m7) + m8)

0.036766

Figure 2. Final ensemble. The o weights for the partial model ensembles are indicated next
to the corresponding arrow. The symbol ‘+’ indicates the assembling of the models. The
MAP@1000 for the corresponding sub-ensembles are shown below the respective boxes.

46

S General Thoughts

The low values of MAP @ 1000 obtained by our approach on this dataset give an idea of
how difficult the problem of recommending given names is.

Given the evaluation design of hiding the last two names the user interacted with,
models that capture the latest user preferences, e.g., from the session information, tend
to work well for us.

Neighborhood-based algorithms perform worse than item-to-item co-occurrences.
Within the item-based and user-based variants, we observed that results from item-
based collaborative filtering were inferior to the ones achieved by the user-based mod-
els, and therefore we did not consider them in the ensemble.

One of CF’s most successful techniques are low dimensional linear factor models,
that assume user preferences can be modeled by only a small number of latent factors.
One of such methods is matrix factorization, which has been effectively used for the
rating and item prediction task [9].

We conducted extensive experiments using state-of-the-art CF algorithms based
on matrix factorization. In particular, we evaluated the performance of BPR [13] and
RMFX [6] for the challenge’s task, but we found that the performance achieved was
only at the level of a baseline predictor that recommends the most popular names. This
poor performance of matrix factorization models has been also observed by Folke et
al. [12].

We also learned a name-to-name similarity matrix from the co-occurring names
adjacency via optimizing a ranking criteria, as suggested in [13], the results were also
discouraging.

Furthermore, we also tried to optimize directly for MAP following a Learning to
Rank framework suggested in [7] and [2]. This approach learns the latent factors for
users and items, and then applies standard Learning to Rank to optimize for a desired
metric. Our results did not reach the level of the baseline predictor of most popular
names.

Given this performance, we did not include any latent factor model in our ensemble.
Why the results achieved using latent factor models, for this particular task of name
prediction, are inferior to the ones obtained with simple methods? In our future research,
we plan to explore this question more in detail.

6 Conclusion

In this paper, we presented an ensemble of several algorithm for personalized ranked
recommendation of given names. We found that the co-occurring name information was
a key component for the Name-to-Name algorithms used in our ensemble. Our method
is intuitive and simple to implement, and does not suffer from the scalability issues as
previous methods introduced for this task.

As a future work, we plan to further explore this interesting challenge in order to
help parents deciding what is the best name for their baby.

47

Acknowledgements

We would like to thank Asmelash Teka and Rakshit Gautam for their valuable feedback.
This work is funded, in part, by the L3S IAI research grant for the FizzStream! Project.
Bernat Coma-Puig is sponsored by the EuRopean Community Action Scheme for the
Mobility of University Students (ERASMUS).

References

1

10.

11.
12.
13.

R. Baeza-Yates, G. Navarro, and N. Ziviani. Modern Information Retrieval. Addison-Wesley,
2nd edition, 2011.

S. Balakrishnan and S. Chopra. Collaborative ranking. In Proceedings of the fifth ACM
international conference on Web search and data mining, WSDM °12, pages 143-152, New
York, NY, USA, 2012. ACM.

. R. M. Bell, Y. Koren, and C. Volinsky. The bellkor solution to the netflix prize. Technical

report, AT&T Labs, 2007.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the seventh international conference on World Wide Web 7, WWW/, pages
107-117, Amsterdam, The Netherlands, The Netherlands, 1998. Elsevier Science Publishers
B. V.

C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommen-
dation methods. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 107-144. Springer, 2011.

E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl. Real-time top-n recom-
mendation in social streams. In Proceedings of the sixth ACM conference on Recommender
systems, RecSys *12, pages 59-66, New York, NY, USA, 2012. ACM.

E. Diaz-Aviles, M. Georgescu, and W. Nejdl. Swarming to rank for recommender systems.
In Proceedings of the sixth ACM conference on Recommender systems, RecSys *12, pages
229-232, New York, NY, USA, 2012. ACM.

A. Hotho, R. Jiaschke, C. Schmitz, and G. Stumme. Information retrieval in folksonomies:
Search and ranking. In Y. Sure and J. Domingue, editors, ESWC, volume 4011 of Lecture
Notes in Computer Science, pages 411-426. Springer, 2006.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30-37, Aug. 2009.

G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative
filtering. Internet Computing, IEEE, 7(1):76-80, 2003.

F. Mitzlaff and G. Stumme. Onomastics 2.0 - the power of social co-occurrences, 2013.

F. Mitzlaff and G. Stumme. Recommending given names, 2013.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian person-
alized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, UAI *09, pages 452-461, Arlington, Virginia, United
States, 2009. AUAI Press.

T. Tanimoto. IBM internal report 17th nov., 1957.

48

Nameling Discovery Challenge -
Collaborative Neighborhoods

Dirk Schéfer and Robin Senge

Mathematics and Computer Science Department
Philipps-Universitdt Marburg, Germany
dirkschaefer@jivas.de, senge@informatik.uni-marburg.de

Abstract. This paper describes a series of experiments designed to solve
the “Nameling” challenge. In this task, a recommender should provide
suggestions for interesting first names, based on a set of names in which
a user has shown interest. An approach based on dyadic factors is pro-
posed where side-information about names and users were incorporated.
Furthermore, factors based on User-based Collaborative Filtering play a
central role. The performance considering the neighborhood and binary
similarity measures was assessed.

Keywords: collaborative filtering, implicit feedback, dyad, competition

1 Introduction

Implicit feedback data can be collected whenever users are interacting with infor-
mation systems. In connection with recommender systems this data is appealing,
because it is obtainable in large quantities, e.g. from log files, and can be used
as a complementary information source to rating data. On the one hand, the
popularity of this kind of data is reflected by the numerous synonyms' in lit-
erature [6,5,12,11]. One the other hand, there are various applications ranging
from basket case analysis [7] to large scale news recommendation [2] and applied
machine learning fields, e.g. Information Retrieval and Recommender Systems
research to name a few.

2 The Challenge

The Nameling discovery challenge is part of a workshop held at the European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases? 2013.

1 0-1 data, one-class data, positive-only feedback, click-stream data, market basket

data, click-through data
? ECML PKDD

49

2.1 Task Description

Given is a set of names that has been recorded as input by users of the Nameling
web platform [8]. The task consists in recommending further names for a subset
of selected users. The recommender should build an ordered list of one thousand
names for each test user, where the most relevant names are placed at high rank
positions. As performance metric the Mean Average Precision (MAP@1000) had
to be used.

Table 1. Notations used in the paper

Symbols Definition

u Set of all users

A Set of all items

u,v Indices for users

1] Indices for items (=names)

Z(u) Item set of user u

U(i) Set of users that have an affiliation with item i

Wy Similarity between two item sets

Suj Propensity for user u to select item j

N Items that are listed in the file “Namelist.txt”
2.2 Dataset

The dataset contains a training set which is a sparse matrix consisting of 59764
users (rows) and 17479 names (columns) and a test set with 4140 user IDs.
Furthermore, a namelist file? is provided consisting of 44k names. For each user
of the test set, two names from the system activity “ENTER_SEARCH”, that
are also contained in the namelist, have been extracted and are held out by
the challenge organizers. Two Perl scripts were provided, the first one is able to
build an own training and test set with names from the challenge training set
exactly the same way as the challenge training and test set were built. The second
script can be used for evaluation. In Figure 1 the sparsity of the training set is
reflected by the frequencies of the most often chosen names. It shows a long-tail
distribution, i.e. a small amount of names is very popular and at position 2000
names occur, which were only chosen by few users.

3 Related Work

In recommender systems literature, algorithms are classified as either being
neighborhood-based (aka memory-based) or model-based. In the first group,
there are user-based and item-based collaborative filtering methods. For user-
based k-nearest neighbor collaborative filtering (UCF) the idea is to identify a

3 Namelist.txt, see abbreviation A in Table 1

50

2500 :
«—2273
2000 B

500 -

Frequen,
=
3
3
1

210
500 —
39
14
v

N L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pasitinn

Fig. 1. Frequencies of top 2000 names.

group of k most similar users for each user to infer a ranking of items that are
new for the user and also most interesting. Item-based nearest neighbor CF in
contrast identify new items that have a relation to the existing item set of a
user. The item-based CF approach has the advantage that a recommendation is
easily explainable to the user and much more efficient to generate compared to
UCF. On the other hand it lacks in accuracy.

For the model-based approaches and especially for this setting of implicit
feedback, various methods based on Matrix Factorization (MF) have been cre-
ated. In the One-Class Collaborative Filtering framework from Pan et al. two
extreme assumptions about the data are being made [11], these are, that all
missing values are all negative (AMAN) and all missing values are unknown
(AMAU). They use weighted matrix factorization and sampling strategies to
cope with the uncertainty about the unobserved data.

Another MF method that deals with side-information has been proposed
in [4], where an embedding of auxiliary information into a weighted MF has
been proposed. In [12] the Bayesian Personalized Ranking framework for implicit
feedback has been described where also MF in combination with a bootstrap
sampling approach is used to learn from pairwise comparisons.

NameRank is an item-based recommendation approach that has been pro-
posed recently in combination with the Nameling data set and showed very good
performance compared to the above mentioned approaches [10].

4 Recommendations Using Various Dyadic Factors

To begin with, we describe how dyadic factors can be used to induce rankings on
names. The rest of the section deals with the engineering of these factors with two
different approaches. The first one aims at improving the most popular items
approach by using side-information for users and names, whereas the second
approach is based on Collaborative Filtering.

4.1 Basic Scoring Scheme

In the following, each user-item pair (a dyad) receives a score based on the
following equation:

51

Sorting s,,; scores in descending order for user u provides a ranking of items that
can be recommended. The formula consists of a dyadic factor d,; and two filter
factors. The filters are indicator functions that adress the requirements of the
prediction task. f[l is 0 for names that are members of the user item-set I(u).
And the purpose of the other filter f2! is to comply with the demand to accept
only names that are part of the namelist /. The various possibilites to engineer
the dyadic factor are described below.

4.2 Discovering the “Most Popular” Baseline

In first experiments we found out that by simply considering a constant top
1000 majority vote for all names*, we were already able to outperform some of
the results others contributed to the leaderboard at an early stage. We could
even improve this result by considering the 2000 top items and filtering out
the training names of the individual users, which lead to the definition of the
filter factor fM. It turned out, that recommending items that way is known
in literature as the Most Popular (MP) approach [10]. In the course of the
challenge, we could identify other teams that scored equally, and we think they
recommended names using the same approach. Because of this and its simplicity
we say we discovered the “baseline method” within the leaderboards.

4.3 Side-Information on Names

In the given data set, there were no additional attributes on the item objects
provided. Therefore we constructed two features as side-information for names:
length of name and gender. Both features are characterized by having a finite set
of discrete values as co-domain. With that, the now explained general procedure
is applied, where the Most Popular Ranking is used as input. The idea is to
split the MP Ranking into several queues corresponding to the available discrete
values of a feature and later to adjust the MP recommendations for some of the
users on basis of their item sets. From the queues, items are sampled according
to proportions found in the item sets of the user. Since the item sets are typically
small (see Figure 2), some significance criteria have to be met, e.g. a minumum
size of the item-sets. Having found a ranking of at least 1000 names that way,
we turned the ordered list of names in to numerical factors by assigning score
values uniformly according to the rank position in an interval [max, min], e.g.
the top ranked names recieved scores of 1,0.9,0.8,...5.

Name Length Factor The general strategy of sampling from queues described
above had to be slightly adapted due to the fact that there are 13 discrete values
for name lengths, but item sets of users are too small to capture the proportions
sufficiently (see Figure 2). To be able to sample from all those queues, the user

4 that were used by the approx. 60k training users
® we actually used the interval [1,0.1]

52

15000

10000
5000 ‘
Illllt-_- PR | 1 1 1 1 1
0 10

0
20 30 40 50 60 70 80
Item Set Size

Frequency

Fig. 2. Item set sizes across the training data

preferences for items, in this case for short or long names, must be significantly
explainable. For this reason we decided to join the discrete values in two almost
equally balanced sets: the set of shorter names (length 1 to 5) and longer names
(length 6 to 13), see Table 2.

Table 2. Frequencies according to different lengths of names

Length of Name|1|2{3| 4 | 5| 6 | 7 | 8 |9]10]{11|12|13
98(354(522(455|277|158|85(25| 8 | 3 | 1

=)

Frequency 7

Gender Factor Since it was officially allowed and explicitly encouraged to use
additional data sources for the offline challenge, we decided to include gender
information for the names. By doing this, the Most Popular performance could be
considerably improved (see Table 5). We extracted all names from the training
set which were associated with the activity “ENTER_SEARCH” and used an
external program® to classify names into the following three classes: 0 - unisex
name or not identifiable, 1 - male, 2 - female. We used the idea described above
and sampled from three queues according to the item sets’ gender distributions
until the new recommendation set reached a size of 1000 names.

4.4 Side-Information on Users

In previous uses of side-information, one global Most Popular recommendation
was taken as basis and according to item set statistics the recommendation
was modified by reordering or filtering. In further experiments, we followed a
different approach: for groups of users, specified by their attributes, many Most
Popular recommendation lists are created. Approximate geo locations of users
were provided that were derived from IP addresses. We used in particular the
country information for defining a new factor as described next.

6 gender.c by Jérg Michael, which has been cited in the German computer magazine
¢’t 2007: Anredebestimmung anhand des Vornamens.

53

Demographic Factor Additional geographical information was available for
a subset of users. For every country we created a separate Most Popular rec-
ommendation list (see Table 3 for an excerpt). Unfortunately, the performance
could only be increased marginally by this effort (see Table 5).

Table 3. The most popular names for seven countries are listed. The ? symbol repre-
sents the group of users that could not be geo-located.

Country|Frequency|Names
? 36639 |emma anna julia michael paul thomas christian

DE 19411 |julia emma anna michael greta emil alexander
AT 1714 |emma paul andreas michael anna alexander katharina
CH 661 max sandra christian anna daniel katharina jan
US 350 laura sophie emma august sarah johann leo
GB 134 matilda emma pia martin caroline anja robert
FR 99 sebastian alma simon solveig emma lisa emil
1T 79 emma astrid katharina sophie johanna ida verena

4.5 The User-based Collaborative Filtering Factor

User-based collaborative filtering is known as a successful technique to recom-
mend items based on the ratings of items by different users. For this technique,
the choice of a similarity measure that captures how similar users are, and the
choice of neighborhood are the most important factors. In order to cope with
this kind of binary data, the similarity has to be chosen suitably for implicit
feedback data. And, as will be shown later, also the neighborhood size is even
more crucial for the performance. The general user-based CF formula provides
a score for each user-item pair as follows:

[UA]
Puj = H/Zwuvcvj (2)
v=1

with indicator function

and a normalization term

M,
v=1 Wuv
to ensure that p,; € [0,1]. Note that Equation (2) shows a special case, where
the similarities of user u to all other users v are considered. In literature often

only a neighborhood around u of the top N similar users are taken into account.

54

Similarity Measures A classical similarity measure between two vectors con-
sisting of binary numbers is the Jaccard Index, which is the proportion between
the sizes of the intersection and the union of two sets.

_)N Tw)
Y =) UZ() @)

In this context, it means two item-sets are more similar the more common items
they share.

Good and often superior results were reported regarding the “log-likelihood
similarity” which is implemented in the Mahout software package” for item- and
user-based collaborative filtering [10,3]. In computational linguistics Dunning
proposed the use of the likelihood ratio test to find rare events as alternative to
traditional contingency table methods [3]. In a bigram study he aimed at finding
pairs of words that occurred next to each other significantly more often than
expected from pure word frequencies. As basis for the log-likelihood statistics he
used the following contingency table (see Table 4).

Table 4. Contingency table as used for the Dunning similarity. The first table shows
the generic structure and below is the same table with the actual values in the UCF
context.

Event A Everything but A
Event B A and B together(k11)| B, but not A(ki2)
Everything but B| A without B(k21) |Neither A nor B(ka2)
Event A Everything but A
Event B |Z(uw) NZ(v)| |Z(v)| — |Z(u) N Z(v)|
Everything but B||Z(u)| — |Z(u) NZ(v)|||Z] — |Z(u)| — |Z(v)| + |Z(u) N Z(v)]|

The Dunning similarity, as we call it, is the log-likelihood ratio score defined®
as follows:

v = 2[H (k11 + k12, ko1 + ko) + H (k11 + ka1, k12 + ko2) — H(k11, k12, ka1, k22))

where H(X) is the entropy defined as

H(X) = =3 pla) log pla)-

Both similarity measures can be characterized regarding their use of infor-
mation from two binary vectors under consideration. In [1] a survey of 76 binary
similarity and distance measures had been carried out. All measures were de-
scribed by a table called Operational Taxonomic Units that is identical to the
contingency table shown above in Table 4. The measures fall in two groups re-
garding their use of negative matches that corresponds to the cell value kss.

" http://mahout.apache.org/ - scalable machine learning libraries
8 for implementation details refer to the Appendix

95

The Dunning similarity is not covered in that survey but falls into the category
of similarity measures that make use of that kind of information. In contrast,
the Jaccard similarity belongs to the negative match exclusive measures. The
general inclusion or exclusion of negative matches has been debated over years
and the particular choice of a measure is surely domain dependent.

4.6 Results

The MAP performances for the dyadic factor approaches based on MP are given
in Table 5. Among those, the dyadic factor using user geo-locations performs
best. Otherwise, the dyadic factor approaches based on UCF perform clearly
better, if neighborhood sizes of UCF factor p,,; are larger than 500 (see Figure 3).
The best performance values can be achieved when choosing the neighborhoods
as large as possible. This means to consider all users according to Equation
(2). To conclude, the choice between Dunning and Jaccard similarity for the
UCF factor is not that relevant. In contrast, the neighborhood size is much
more important. However, if not many users are available in the system and
furthermore not much is known about users and items, the MP approach then
provides a solid basis.

Table 5. MAP performance values for Most Popular experiments.

Method|Most Popular|Length of Name|Gender|Country
MAP 0.0247 0.0248 0.0252| 0.0256

0.028

0.026

0,024

0.022

0018

MAP Performance

0016

0014

0012

500 1000 Max

100
Neighborhood Size

Fig. 3. Dyadic factor approach with different neighborhood sizes and two different
similarity measures for the UCF factor. Mean MAP values measured on 50 test set
splits of size 1000.

56

5 Hybridization by Combining Multiple Dyadic Factors

We propose to combine the different dyadic factors presented in the last section
by extending the basic scheme. Furthermore, experimental results are shown for
different factor combinations.

5.1 Extended Scoring Scheme

In this section, we show how different dyadic factors can be combined into a
unified scoring scheme, which is an extension to Equation (1).

sui = DS, - fULfP (4)
D = (dyr - (d2ye - (dhy (5)

The choice of a dyadic factor combination is governed by the hyperparameter
set © = {v1,72,...}, where each parameter has the purpose of weighting the
contribution of a particlar dyadic factor to the score s,;.

5.2 Optimization

The optimization of the hyperparameter set @ for formula (4) for Vu € U and
Vi € 7 to maximize the overall MAP value is not trivial, because gradient based
methods are not applicable here. For this reason we used grid search and an
evolutionary algorithm?® to find a well weighted combination of dyadic factors.

5.3 Experiments and Results

For a random selection of 1000 test users the following dyadic factors described
in the last section were considered:

The demographic factor ¢,;, where the most popular items are recommended
according to the country of a user.

— The length of a name factor n,;.

— The gender of a name gy;.

User based Collaborative Filtering factor using Jaccard similarity py;.

According to Table 6 the combination of multiple dyadic factors can be ben-
eficial. However, regarding the MAP performance only minimal improvements
can be observed.

? CMA-ES from Apache Commons (http://commons.apache.org).

o7

10

Table 6. MAP performance values for different combinations of factors

DS, Hyperparameters MAP Best Single Factor
ctn? 1.751, 0.066 0.0261 cui (0.0257)
cgn? 1.082, 0.941 0.0255 cui (0.0257)
pte? 1.137, 0.516 0.0350 pui (0.0350)

p e3¢ | 2,449, 1.365, 0.726, 0.877 | 0.0356 pui (0.0350)

6 Discussion

During the challenge phase we could confirm findings reported in literature:
The baseline method described in section 4.2 performs well compared to statical
methods using relational data from co-occurrence networks [9]. We found out
that the choice of input for the recommendation has a large impact on the
performance, e.g. restricting the item sets for the UCF approach a-priori to
names contained in N has a negative effect. Furthermore, we introduced an
approach based on weighted dyadic factors, which enabled us to combine different
information sources and assumptions in a formal way. That allowed us to express
the preferences of users by different factors and provides further possibilities, that
are out of the scope of this paper, e.g. to combine User-based with Item-based
Collaborative Filtering. Even though this approach seems to be appealing at first
sight, the MAP performance improvements are only minimal compared to single
dyadic factors. Introducing the various dyadic factors using side-information,
they performed not as well as factors based on Collaborative Filtering, which
shows the effectiveness of UCF despite its simplicity.

References

1. Seung-Seok Choi, Sung-Hyuk Cha, and C Tappert. A survey of binary similar-
ity and distance measures. Journal of Systemics, Cybernetics and Informatics,
8(1):43-48, 2010.

2. Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pages 271-280. ACM, 2007.

3. Ted Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational linguistics, 19(1):61-74, 1993.

4. Yi Fang and Luo Si. Matrix co-factorization for recommendation with rich side
information and implicit feedback. In Proceedings of the 2nd International Work-
shop on Information Heterogeneity and Fusion in Recommender Systems, pages
65-69. ACM, 2011.

5. Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme.
Learning attribute-to-feature mappings for cold-start recommendations. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 176-185.
IEEE, 2010.

o8

10.

11.

12.

11

Michael Hahsler. Developing and testing top-n recommendation algorithms for 0-1
data using recommenderlab, 2010.

Andreas Mild and Thomas Reutterer. An improved collaborative filtering approach
for predicting cross-category purchases based on binary market basket data. Jour-
nal of Retailing and Consumer Services, 10(3):123-133, 2003.

Folke Mitzlaff and Gerd Stumme. Namelings - discover given name relatedness
based on data from the social web. In Karl Aberer, Andreas Flache, Wander
Jager, Ling Liu, Jie Tang, and Christophe Guret, editors, SocInfo, volume 7710 of
Lecture Notes in Computer Science, pages 531-534. Springer, 2012.

Folke Mitzlaff and Gerd Stumme. Relatedness of given names. Human Journal,
1(4):205-217, 2012.

Folke Mitzlaff and Gerd Stumme. Recommending given names. arXiv preprint
arXiv:1302.4412, 2013.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on, pages 502-511. IEEE, 2008.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 452-461.
AUALI Press, 2009.

Appendix

Calculation of the Entropies for the Dunning Similarity

The entropies for the Dunning similarities using the notation of Table 4 can be
calculated as follows :

LLR = 2[H(row) + H(col) — H(row, col)]

H(row) = —((k11 + ki2) log(ki1 + k12) + (k21 + ko2) log (ka1 + ka22))
H(COZ) = —((k‘n + ko1) log(k:11 + k‘gl) + (klg + k‘gg) log(km + kgg))

H(row,col) = —((Z kij log(z kij) — (Z kijlog kij)).

59

Improving the Recommendation of Given Names
by Using Contextual Information

Marcos Aurélio Domingues', Ricardo Marcondes Marcacini?, Solange Oliveira
Rezende!, and Gustavo E. A. P. A. Batistal

! Institute of Mathematics and Computer Science — University of Sdo Paulo
Av. Trabalhador Sao-Carlense, 400, Cx. Postal 668, 13560-970, Sdo Carlos, SP, Brazil
mad@icmc.usp.br, solange@icmc.usp.br, gbatista@icmc.usp.br
http://labic.icmc.usp.br
2 Federal University of Mato Grosso do Sul
Trés Lagoas, MS, Brazil

ricardo.marcacini@ufms.br

Abstract. The people who have to choose a given name, know how
challenging it is to find a suitable name that fits the social context, the
language, the cultural background, and especially, the personal taste. For
example, future parents end up browsing through several lists of given
names in order to choose a name for their unborn child. A recommender
system can help a person in this task by recommending given names
which are of interest to the user. In this paper, we exploit contextual
information (e.g., time and location) in two state-of-the-art recommender
systems for the task of recommending given names. The empirical results
have shown that we can improve the recommendation of given names by
using contextual information.

Key words: Given Names, Recommender Systems, Item-based Collab-
orative Filtering, Association Rules, Contextual Information

1 Introduction

The task of finding a suitable name for an unborn child is not so easy. Future
parents usually face many books or web sites, listing given names, in order to find
a suitable name for their child. Here, a suitable name is represented by a given
name which satisfies a set of factors such as the social context, the language,
the cultural background, and especially, the personal taste. Although this task
is relevant in practice, little research has been performed on the analysis and
application of interrelations among given names from a recommender system
perspective. A recommender system is an information filtering technology which
can be used to output an ordered list of items (e.g., given names) that are likely
to be of interest to the user [1,2].

In different scenarios, recommender systems are subject to scientific research,
as, for example, recommending products [3], mobile applications [4], places of
interest [5], movies [6], music [7]. In this paper, we exploit two state-of-the-art

61

recommender systems for the task of recommending given names. In addition, we
also incorporate contextual information (e.g., time and location) in such systems
in order to capture tendencies in choosing given names and, thus, to improve
the recommendations.

The paper is organized as follows: In Section 2 we present some work related
to the recommendation of given names. In Section 3 we describe the two state-of-
the-art recommender systems used in this work and an approach to incorporate
contextual information in these systems. We present our empirical evaluation in
Section 4. We discuss the data set, the pre-processing of the data, the experi-
mental setup and evaluation metric, and the empirical results. In Section 5 we
show our contribution to the 15th Discovery Challenge: Recommending Given
Names. In Section 6 we present final remarks.

2 Related Work

In this section, we present some work related to the recommendation of given
names. A search engine and recommender system for given name is described
in [8]. This system, called Nameling®, can be used by users to find a suitable
given name. For example, the user enters a given name and obtains a browsable
list of names.

In [9], the authors analyze the co-occurence of names from the Nameling sys-
tem. They show how basic approaches from the field of social network analysis
and information retrieval can be applied for discovering relations among names.
In [10], a recommendation method for given names, based on co-occurence within
Wikipedia?, is proposed. The method, called preferential PageRank, is a mod-
ification of the well known PageRank algorithm [11]. There, the preferential
PageRank method is evaluated by using a data set from the Nameling system.

An empirical evaluation comparing the preferential PageRank method against
some state-of-the-art recommender systems, for the task of recommending given
names, is presented in [12]. By using a data set from the Nameling system,
the authors compare the user-based collaborative filtering [13], the item-based
collaborative filtering [14], the weighted matrix factorization method [15], the
most popular recommendation approach (that recommends the most popular
names), and the random approach (that recommends names randomly) against
the preferential PageRank method [10]. The results show that the preferential
PageRank method provides good performance in terms of prediction accuracy
as well as runtime complexity.

Our contribution for the Nameling system consists in exploiting the contex-
tual information (i.e., the month and the city) contained in the data from the
system to capture tendencies in choosing given names, and, thus, to improve the
recommendations. Our proposal will be described in the next sections.

3 http://nameling.net/
4 http://www.wikipedia.org/

62

3 Recommender Systems

A recommender system for the web is an information filtering technology which
can be used to predict preference ratings of items (e.g., movies, music, books,
news, images, web pages, given names, etc) not currently rated by the user [16],
and/or to output a set of items/recommendations that are likely to be of interest
to the user [1,2].

We focus our work on the task of selecting the top-N items/recommendations
which are of interest to a user. We formalize this task as follows:

Let p be the number of users U = {uq, ug, ..., u,} and ¢ the number of all
possible items that can be recommended I = {i1,i2, ..., iq}. Now, let j be
the number of historical sessions in a web site S = {s1, s2, ..., s;}. Each
session s = (u, I) is a tuple defined by a user u € U and a set of ac-
cessed items Iy C I. The set S is used to build a top-N recommendation
model M.

Given an active session s, defined by an active user u, and a set of
observable items O C I, the recommendation model M uses the set O
to identify the interest of the user u, and recommend N items from the
set of items/recommendations R, such that R C I and RN O = @, that
are believed to be the top preferences of the user u,.

In this section, we present two state-of-the-art recommender systems: Item-
based Collaborative Filtering and Association Rules based. In this work we use
these systems for recommending given names. In addition, we present an ap-
proach which is used to incorporate contextual information in the two state-of-
the-art systems in order to generate context-aware recommendations.

3.1 Item-Based Collaborative Filtering

The Item-based Collaborative Filtering technique analyzes items to identify re-
lations among them [17]. Here, the recommendation model M is a matrix rep-
resenting the similarities between all the pairs of items, according to a given
similarity metric. An abstract representation of a similarity matrix is shown in
Table 1. Each item i € I is an accessed item, for example, a given name.

Table 1. [tem-item similarity matrix

i ia iq
i1 1 sim(i1,i2)|- - - |sim(i1,iq)
7:2 Sim(iz, ’Ll) 1 e Sim(ig, Zq)

1
iq |stm(iq,i1)|sim(iq,2)]| - - 1

According to [17], the properties of the model and consequently the effective-
ness of this recommendation algorithm depend on the method used to calculate

63

the similarity among the items. To calculate the similarity between pairs of
items, for example, 71 and iy, we first isolate the users who have rated both of
these items, and then, we apply a metric on the ratings to compute the similarity
sim(i1, i) between i1 and i9. Metrics to measure the similarity between pairs of
items are cosine angle, Pearson’s correlation and adjusted cosine angle. In this
paper, we use the cosine angle metric, defined as

S B
sim(iy, i) = cos(iy, iz) = ————=— 1'2.) (1)
x| * [l éz |l

where 77 and iy are rating vectors with as many positions as existing users in
the set U. The operator “.” denotes the dot-product of the two vectors. In our
case, the rating vectors are binary. The value 1 means that the users accessed
the respective item. The value 0 has the opposite meaning.

Once we obtain the recommendation model, we can generate the recommen-
dations. Given an active session s, containing a user u, and its set of observable
items O C I, the model generates the N recommendations as follows. First, we
identify the set of candidate items for recommendation C' by selecting from the
model all items ¢ ¢ O. Then, for each candidate item ¢ € C, we calculate its
similarity to the set O as

ZieKcﬂO sim(c, 1)
ZieKc Sim(cv 7’)

SiMme,0 = (2)
where K. is a set with the k most similar items (the nearest neighbors) to the
candidate item c.

Finally, we select the top-N candidate items with the highest similarity to
the set O and recommend them to the user u,.

3.2 Association Rules Based

A recommendation model M based on association rules is a set of rules. Each
rule m has the form m : X — Y, where X C I and Y C I are sets of items
and X NY = &. Here, we generate association rules with one single item in the
consequent of the rule [18], i.e., Y is a singleton set. Each association rule is
characterized by two metrics: support and confidence [19].

The support of a rule in a set of sessions S is defined as

support(X —Y) = X|L;Y|, (3)
where | X UY| is the number of sessions in S that contain all items in X UY and
|S| is the number of sessions in S.

The confidence of a rule is the proportion of the number of sessions which
contain X UY with respect to number of sessions that contain X, and can be
formulated as

64

confidence(X —Y) = |X|XU|Y| (4)

Discovering all association rules from a set of sessions S consists in gener-
ating all rules whose support and confidence are greater than or equal to the
corresponding minimal thresholds, called minsup and minconf. The classical al-
gorithm for discovering association rules is Apriori [19].

To build the recommendation model M using association rules, the set of
sessions S is used as input to an association rules algorithm to generate a set
of rules. Once we have the model, we can make recommendations, R, to a new
session. Given an active session s, containing a user u, and its set of observable
items O, we build the set R as follows [18]:

R = {consequent(m)|m € M and antecedent(m) C O
and consequent(m) ¢ O}. (5)

To obtain the top-N recommendations, we select from R the N distinct
recommendations corresponding to the rules with the highest confidence values.

3.3 The Weight Post-Filtering Approach

There are many definitions of context in the literature depending on the field
of application and the available customer data [2]. For example, in [20], context
is defined as any information that can be used to characterize an item. In this
paper, we use time and location (i.e., month and city) as context to identify
tendencies in the choice of a given name to improve the recommendations.

To incorporate contextual information in the previous recommender systems,
we have extended the Weight Post-Filtering (PoF) approach, proposed in [21],
for the task of item recommendation. The original approach was proposed for
rating prediction [21].

The Weight PoF approach first ignores the contextual information in the data
(in our case, the month and the city from each access) and applies a traditional
algorithm (e.g., Item-based Collaborative Filtering or Association Rules based)
to build the recommendation model. Then, it computes the probabilities of user’s
access items under a given context. The probability P.(u,) that a user u accesses
an item ¢ under the context ¢ can be computed as follows

Nume(u,)

Pelu, i) = Num(u,i)’ (©)

where Num,(u, 1) is the number of users that, like the user u, also accessed the
item 4 under the context ¢; and Num(u,i) is the total number of users that
accessed the item 1.

The score of the items computed by using the previous recommender sys-
tems are multiplied by the probabilities P.(u,%), incorporating context into the

65

recommendations and improving the performance of the recommender systems.
Finally, the items are reordered and the top-V items are recommended to the
user.

4 Empirical Evaluation

In this section, we empirically evaluate the recommender systems, presented in
Section 3, in the task of recommending given names.

4.1 Data Set

The empirical evaluation is carried out using an usage data set from Nameling.
According to [8], Nameling is a search engine and a recommender system for
given names. In this system, the user enters a given name and obtains a browsable
list of recommended names, called “namelings”.

The data set is derived from the Nameling query logs, ranging from March
6th, 2012 to February 12th, 2013. It contains 515,848 accesses from 60,922
users to 20,714 different items (i.e., given names). There are five types of ac-
cesses/activities®:

1. ENTER_SEARCH: The user enters a name directly into the Nameling’s
search field;

2. LINK_SEARCH: The user follows a link on some result page;

3. LINK_CATEGORY _SEARCH: Wherever available, names are catego-
rized according to the corresponding Wikipedia articles;

4. NAME _DETAILS: Users can get some detailed information for a name;

5. ADD_FAVORITE: Users can maintain a list of favorite names.

Additionally, for each access there are a timestamp and a proxy for the user’s
geographic location (i.e., country code, province, city, latitude and longitude)
which is obtained by using the MaxMind’s GeoLite City data base®.

As part of the data set, there is also a list of known names’ containing all
names which are currently known in the Nameling web site. As we will see in
Section 4.3, all names that occur in the evaluation data set are contained in this
list of names.

4.2 Pre-processing of the Data Set

Before running the experiments, we pre-processed the data set by replacing in-
valid names and removing singleton sessions, as described below:

 We use the terms access and activity interchangeably.
5 http://www.maxmind.com/
" http://www.kde.cs.uni-kassel.de/nameling/dumps

66

Replacing invalid names: In real-world data sets, it is common to find several
variations of a name, for example, spelling variations due to typographical
errors (like “Richard” and “Ricahrd”) and differences in punctuation marks
(like “O’Reilly” and “O Reilly”). Considering the existence of a reference
list with valid names, we can use string comparison measures to replace an
invalid name by the nearest valid name, thus believing that we are correcting
a name typed incorrectly. Thus, in the data pre-processing step, we use the
list of known names, described in the previous section, and apply the Jaro-
Winkler measure [22] for detection and replacement of invalid names. For
this purpose, it is necessary first to define the Jaro (j) measure between two
strings wy e wy (Equation 7):

_ 0 ifth=0
](wlan): 1 h h

h—t :
3 (‘wl‘ —+ m —+ T) OtheI‘VVlse7

(7)

where h is the number of matching characters and ¢ represents the number
of transpositions. The matching between two characters ¢; and co, with
c1 € wy and co € ws occurs when ¢; = ¢ and they are not further than
max(lwiliwal) _ 1 The number of transpositions is obtained by considering
different orders for matching characters. The Jaro-Winkler (jw) is based on
the Jaro measure, according to Equation 8, in which I(w;,ws) represents the
length of common prefix at the start of the string up to a maximum of 4
characters.

ML) 0). ®)
The Jaro-Winkler measure was selected for this work because it shows better
performance in studies involving name-matching [23].

Removing singleton sessions: For different reasons, users often access only
one item on a web site and then leave it. The use of these sessions containing
a singleton access by a recommender system can affect its accuracy nega-
tively [24]. For example, singleton sessions will never count for the item-item
similarity in the Item-based Collaborative Filtering technique. Thus, we have
removed the singleton sessions from the data set.

Jw(wy, we) = j(wi,ws2) +

After pre-processing the data, we obtained a set with 510,705 accesses from
55,779 users to 20,318 different names.

4.3 Experimental Setup and Evaluation Metric

To carry out the experiments, we use a Perl script® to split the data set in
training and test sets.

The script selects some users with at least five different names for the test set.
Then, for each test user, it withholds the last two entered names for evaluation.

8 http://www.kde.cs.uni-kassel.de/nameling/dumps/process_activitylog.pl

67

To withhold the last two entered names, the script uses the following rules. For
each test user, the script selects for evaluation the last two names which had
directly been entered into the Nameling’s search field (i.e., ENTER_SEARCH
access) and which are also contained in the list of known names. The script only
considers those names which were not previously added as a favorite name by the
test user (i.e., ADD_FAVORITE access). Finally, the script removes the accesses
after the names for evaluation and keeps in the test set only users with at least
three accesses. The remaining users in the data set are used as training set.

To evaluate the recommender systems, we compute the metric Mean Average
Precision (MAP) [25]. For each test user, the metric takes the left out evaluation
names and compute the precision at the respective position in the ordered list
of recommended names. These precision values are first averaged per test user
and than in total to obtain the final score. Here, we use a Perl script? to com-
pute the MAP@1000 which means that only the first 1,000 positions of a list of
recommendations are considered.

With respect to the recommendation algorithms, we use the Item-based Col-
laborative Filtering and the Association Rules based, which were described in
Section 3. In the Item-based Collaborative Filtering, the top-N recommenda-
tions are generated based on their 1, 5, 10, 15 and 20 most similar items (i.e.,
the 1, 5, 10, 15 and 20 nearest neighbors). In the Association Rules based al-
gorithm, the recommendation models are built using a minimum support value
determined to generate around 10,000; 50,000 and 100,000 rules. The minimum
confidence values are defined as being the support value of the one thousandth
most frequent item in the training set. This allows the generation of at least 1,000
rules without antecedent that can be used by default, in the case that no other
rule applies. Here, as the left out names for evaluation are only names which had
been directly entered into the Nameling’s search field (i.e., ENTER_SEARCH
access), we have selected only this type of access from the training set to build
the recommendation models.

Finally, we use the month and the city from the accesses as contextual in-
formation in the Weight PoF approach, as described in Section 3.3. Such infor-
mation can capture tendencies of names in a given city, in a given month. The
month is obtained from the timestamp of the access. We obtain the city by using
the proxy for the user’s geographic location provided with the data set.

4.4 Empirical Results

We start by comparing the Item-based Collaborative Filtering technique (CF)
against its contextual version that makes use of the Weight PoF approach (CF-
PoF). In Table 2, we see that the values of MAP@1000 decrease when we in-
crease the number of neighbors. This fact occurs because when we increase the
number of neighbors, less similar items are used to generate the recommenda-
tions. Comparing the CF-PoF against the CF, we see an improvement of the

9 http://www.kde.cs.uni-kassel.de/nameling/dumps/evaluate_recommender.pl

68

recommendations by using the contextual information. The CF-PoF algorithm
provides gains of MAP@1000 ranging from 6.9% to 22.6%.

Table 2. Comparing the MAP@1000 values between CF and CF-PoF algorithms

K-neighbors CF CF-PoF
K=1 0.0092 0.0099
K=5 0.0038 0.0042
K =10 0.0033 0.0039
K=15 0.0031 0.0038
K =20 0.0029 0.0031

In Table 3, we can see that the difference between the Association Rules
based algorithm (AR) and its, respective, contextual version (AR-PoF) is quite
small. In this case, the AR-PoF algorithm provides gains of MAP@1000 around
2.4%.

Table 3. Comparing the MAP@1000 values between AR and AR-PoF algorithms

Number of Rules AR AR-PoF
10,000 0.0337 0.0343
50,000 0.0314 0.0321
100,000 0.0290 0.0299

We also compare the results between both Tables 2 and 3. We see that
the AR-PoF recommender system with 10,000 rules provides the best value for
MAP@1000, i.e., 0.0343. If we compare this value against the one provided by
the best recommender system in Table 2, the CF-PoF with K = 1, we see a
gain of 246.5%. Besides, our Association Rules based algorithms are quite fast.
We measured the computational time to build the recommendation model and
generate the 1,000 recommendations. In our experimental scenario, we used an
Intel Core i7 Ivy Bridge with a CPU clock rate of 3.4 GHZ, 32 GB of main
memory, and running the Debian Linux operating system. To build a recom-
mendation model, the algorithms take around 26 seconds (10,000 rules) to 2
minutes (100,000 rules). Here, the top-1000 recommendations are generated in
approximately 1 second.

5 The 15th Discovery Challenge: Recommending Given
Names

After analyzing the results presented in Section 4.4, we applied our best scenario
to the data set from the 15th Discovery Challenge: Recommending Given Names.

69

We pre-processed the data set, selected only names entered into the Namel-
ing’s search field, and then ran the algorithm which provided the best MAP@1000,
i.e., the AR-PoF algorithm with about 10,000 association rules. With this sce-
nario, our Labic team obtained a score of 0.0379 in the final leaderboard.

6 Final Remarks

Although the task of recommending given names is relevant in practice, little
research has been performed on the perspective of recommender systems. In
this paper, we exploited two state-of-the-art recommender systems in the task
of recommending given names. In addition, we also incorporated contextual in-
formation in such systems to capture tendencies in choosing given names and,
thus, to improve the recommendations. Although the gains obtained by using the
Weight PoF approach are small, the results of our empirical evaluation present
evidences that we can improve the recommendation of given names by using
contextual information.

There are some directions to be explored in future research. For example,
other pre-processing tasks can be applied on the data set in order to improve the
quality of the data. We can also try other context-aware recommender systems
in the task of recommending given names [26,27]. On the other hand, we can
also combine the two state-of-the-art recommenders, presented in this paper, in
a hybrid algorithm.

Acknowledgments. This work was supported by the grants 2010/20564-8,
2011/19850-9, 2012/13830-9, 2012/07295-3, Sao Paulo Research Foundation
(FAPESP).

References

1. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM
40(3) (1997) 56-58

2. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B., eds.: Recommender Systems
Handbook. Springer (2011)

3. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing 7(1) (2003) 76-80

4. Karatzoglou, A., Baltrunas, L., Church, K., Béhmer, M.: Climbing the app wall:
enabling mobile app discovery through context-aware recommendations. In: Pro-
ceedings of the 21st ACM international conference on Information and knowledge
management. CIKM 12, New York, NY, USA, ACM (2012) 2527-2530

5. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context-aware places of interest
recommendations for mobile users. In Marcus, A., ed.: Design, User Experience,
and Usability. Theory, Methods, Tools and Practice. Volume 6769 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2011) 531-540

6. Ko, S.K., Choi, S.M., Eom, H.S., Cha, J.W., Cho, H., Kim, L., Han, Y.S.: A smart
movie recommendation system. In Smith, M., Salvendy, G., eds.: Human Interface
and the Management of Information. Interacting with Information. Volume 6771
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 558-566

70

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Domingues, M.A., Gouyon, F., Jorge, A.M., Leal, J.P., Vinagre, J., Lemos, L.,
Sordo, M.: Combining usage and content in an online recommendation system for
music in the long tail. International Journal of Multimedia Information Retrieval
2(1) (2013) 3-13

Mitzlaff, F., Stumme, G.: Namelings: discover given name relatedness based on
data from the social web. In: Proceedings of the 4th international conference on
Social Informatics. SocInfo’12, Berlin, Heidelberg, Springer-Verlag (2012) 531-534
Mitzlaff, F., Stumme, G.: Onomastics 2.0 - the power of social co-occurrences
(2013)

Mitzlaff, F., Stumme, G.: Relatedness of given names. Human Journal 1(4) (2012)
205217

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7) (1998) 107-117

Mitzlaff, F., Stumme, G.: Recommending given names (2013)

Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. Advances
in Artificial Intelligence (2009)

Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: WWW’01: Proceedings of the Tenth International
Conference on World Wide Web, New York, NY, USA, ACM (2001) 285-295

Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Eighth IEEE International Conference on Data Mining (ICDM’08).
(2008) 263-272

Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-
rithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence. (1998) 43-52

Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM
Transaction on Information System 22(1) (2004) 143-177

Jorge, A.M., Alves, M.A., Azevedo, P.J.: Recommendation with association rules:
A web mining application. In: Proceedings of Information Society (IS-2002): Data
Mining and Warehouses, Ljubljana, Slovenia (2002)

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Pro-
ceedings of Twentieth International Conference on Very Large Data Bases. (1994)
487-499

Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing
5(1) (2001) 4-7

Panniello, U., Gorgoglione, M.: Incorporating context into recommender systems:
an empirical comparison of context-based approaches. Electronic Commerce Re-
search 12(1) (2012) 1-30

Winkler, W.E.: Methods for evaluating and creating data quality. Information
Systems 29(7) (2004) 531-550

Christen, P.: A comparison of personal name matching: Techniques and practical
issues. In: Proceedings of the Sixth IEEE International Conference on Data Mining
- Workshops, Washington, DC, USA, IEEE Computer Society (2006) 290-294
Domingues, M.A., Soares, C., Jorge, A.M.: An empyrical study on the impact of
singleton web accesses on the accuracy of recommender systems. In: Proceedings of
the SBIA 2008 First Workshop on Web and Text Intelligence (WTI 08), Salvador,
Bahia, Brazil (2008) 43-50

Voorhees, E., Harman, D., of Standards, N.I., (US), T.: TREC: Experiment and
evaluation in information retrieval. Volume 63. MIT Press Cambridge (2005)

71

26. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Transactions on Information Systems 23(1) (2005) 103-145

27. Domingues, M.A., Jorge, A.M., Soares, C.: Dimensions as virtual items: Improving
the predictive ability of top-n recommender systems. Information Processing &
Management 49(3) (2013) 698-720

72

Similarity-Weighted Association Rules for a
Name Recommender System

Benjamin Letham

Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA, USA
bletham@mit.edu

Abstract. Association rules are a simple yet powerful tool for making
item-based recommendations. As part of the ECML PKDD 2013 Dis-
covery Challenge, we use association rules to form a name recommender
system. We introduce a new measure of association rule confidence that
incorporates user similarities, and show that this increases prediction
performance. With no special feature engineering and no separate treat-
ment of special cases, we produce one of the top-performing recommender
systems in the discovery challenge.

Keywords: association rule, collaborative filtering, recommender sys-
tem, ranking

1 Introduction

Association rules are a classic tool for making item-based recommendations. An
association rule “a — b” is a rule that item(set) a in the observation implies that
item b is also in the observation. Association rules were originally developed for
retail transaction databases, although the same idea can be applied to any setting
where the observations are sets of items. As part of the ECML PKDD 2013
Discovery Challenge, in this paper we consider a setting where each observation is
a set of names in which the user has expressed interest. We then form association
rules “a — b,” meaning that interest in name a (or, in general, set of names
a) implies interest in name b. The strength with which a implies b is called
the confidence of the rule, and in Section 2.2 we explore different measures of
confidence.

Association rules provide an excellent basis for a recommender system be-
cause they are scalable and interpretable. The scalability of association rule
algorithms has been well studied, and is often linear in the number of items
[1]. Using rules to make recommendations gives a natural interpretability: We
recommend name b because the user has expressed interest in name a. Inter-
pretability is an important quality of predictive models in many contexts, and
is especially important in recommender systems, where it has been shown that
providing the user an explanation for the recommendation increases acceptance
and performance [2, 3].

73

2 Benjamin Letham

One of the most successful tools for recommender systems, particularly at a
large scale, is collaborative filtering [4, 5]. Collaborative filtering refers to a large
class of methods, of which here we focus on user-based collaborative filtering
and item-based collaborative filtering [6]. In user-based collaborative filtering,
recommendations are made by finding the most similar users in the database
and recommending their preferred items. In item-based collaborative filtering,
similarity is measured between items and the items most similar to those already
selected by the user are recommended. Like association rules, collaborative fil-
tering algorithms generally have excellent scalability.

Our main contribution is to use ideas from collaborative filtering to create
a new measure of association rule confidence, which we call similarity-weighted
adjusted confidence. We maintain the excellent scalability and interpretability
of collaborative filtering and association rules, yet see a significant increase in
performance compared to either approach. Our method was developed in the
context of creating a name recommender system for the ECML PKDD 2013
Discovery Challenge, and so we compare the similarity-weighted adjusted confi-
dence to other collaborative filtering and association rule-based approaches on
the Nameling dataset released for the challenge.

2 Similarity-Weighted Association Rule Confidence

We begin by introducing the notation that will be used throughout the rest of
the paper. Then we discuss measures of confidence, introduce our similarity-
weighted adjusted confidence, and discuss strategies for combining association
rules into a recommender system.

2.1 Notation

We consider a database with m observations x1,...,Z,,, and a collection of n
items Z = {z1, ..., 2z, }. For instance, it may be m visitors to a name recommen-
dation site, with Z the set of valid names. Each observation is a set of items:
x; C Z,Vi. We denote the number of items in x; as |z;|.

We will consider rules “a — b” where the left-hand side of the rule a is an
itemset (a C Z) and the right-hand side is a single item (b € Z). Notice that
a might only contain a single item. We denote as A the collection of itemsets
that we are willing to consider: a € A. One option for A is the collection of all
itemsets, A = 2%. If Z is very large this can be computationally prohibitively
expensive and some restriction may be necessary. In our experiments in Section
3 we took A = Z, that is, all itemsets of size 1.

2.2 Confidence and Similarity-Weighted Confidence

The standard definition of the confidence of the rule “a — b” is exactly the
empirical conditional probability of b given a:

’(Ti 1a T; an z;
Zz—l [Cx; d be z] (1)

Conf(a — b) = S T ,
i=1 oLz,

74

Similarity-Weighted Association Rules 3

where we use ljcondition) to indicate 1 if the condition holds, and 0 otherwise.

This measure of confidence corresponds to the maximum likelihood estimate
of a specific probability model, in which the observations are i.i.d. draws from
a Bernoulli distribution which determines whether or not b is present. Because
of the i.i.d. assumption, all observations in the database are considered equally
when determining the likelihood that a implies b. In reality, preferences are often
quite heterogeneous. If we are trying to determine whether or not a new user
xp will select item b given that he or she has previously selected itemset a, then
the users more similar to user x, are likely more informative. This leads to the
simialarity-weighted confidence for user xy:

E;’ll 1[a§wi and bEmi]Sim('xZa ‘rl)
Z;il 1[ain]Sim(xg, .17,)

SimConf(a — blxy) =

(2)

where sim(z¢, z;) is a measure of the similarity between users z; and ;. The
similarity-weighted confidence reduces to the standard definition of confidence
under the similarity measure sim(z,, z;) = 1, as well as

R 1, ifzyNax; #a.
sim(zy, x;) =)
0, otherwise.
Giving more weight to more similar users is precisely the idea behind user-based
collaborative filtering. A variety of similarity measures have been developed for
use in collaborative filtering, one of the more popular of which is the cosine
similarity, which we use here:

Nx;
sim(xp, ;) = [z O] (3)

 Vidlel

2.3 Bayesian Shrinkage and the Adjusted Confidence

In [7], we show how the usual definition of confidence can be improved by adding
in a beta prior distribution and using the maximum a posteriori estimate. The
resulting measure is called the adjusted confidence:

mo1
Zi:l [aCz; and bEx;]

Confg (a — b) = ST e 4K
i=1 +[aCa;

(4)

where K is a user-specified amount of adjustment, corresponding to a particular
pseudocount in the usual Bayesian interpretation. In particular, the adjusted
confidence is equivalent to there being an additional K observations containing
a, none of which contain b. This reduces the confidence of “a — b” by an amount
inversely proportional to the support of a, allowing low-support-high-confidence
rules to be used in the computation, but giving more weight to those with higher
support. In terms of the bias-variance tradeoff, adjusted confidence leads to an
increase in performance by reducing the variance of the estimate for itemsets

75

4 Benjamin Letham

with low support. The Nameling dataset used here is quite sparse, so we add the
same adjustment to our similarity-weighted confidence, producing the similarity-
weighted adjusted confidence:

Zyil 1[“2%‘ and bExi]Sim(x£7 xl)

SimConfi(a = blee) = ==m e sim(ze,z) + K
i=1 ~[aCax; B

()

When K = 0, this reduces to the similarity-weighted confidence in (2).

2.4 Combining Association Rules to Form a Recommender System

The similarity-weighted adjusted confidence provides a powerful tool for deter-
mining the likelihood that b € x, given that a C x,. In general there will be
many itemsets a satisfying a C xy, so to use the association rules as the basis for
a recommender system we must also have a strategy for combining confidence
measures across multiple left-hand sides. For each left-hand side a € A satisfying
a C xp, we can consider SimConfg (a — b|z,) to be an estimate of the probabil-
ity of item b given itemset x,. There is a large corpus of literature on combining
probability estimates [8,9], from which one of the most common approaches is
simply to compute their sum. Thus we score each item b as

Score(b|zy) = Z SimConfg (a — b|xy). (6)

aCxy

acA

A ranked list of recommendations is then obtained by ranking items by score.

A natural extension to this combination strategy is to consider a weighted
sum of confidence estimates. We consider this strategy in [10], where we use
a supervised ranking framework and empirical risk minimization to choose the
weights that give the best prediction performance. This approach requires choos-
ing a smooth, preferably convex, loss function for the optimization problem. In
[10] we use the exponential loss as a surrogate for area under the ROC curve
(AUC), however in the experiments that follow in Section 3 the evaluation metric
was mean average precision. Optimizing for AUC in general does not optimize
for mean average precision [11], and we found that the exponential loss was a
poor surrogate for mean average precision on the Nameling dataset.

2.5 Collaborative filtering baselines
We use two simple collaborative filtering algorithms as baselines in our exper-

imental results in Section 3. For user-based collaborative filtering, we use the
cosine similarity between two users in (3) to compute

SCOI‘GUCF(HI@) = Z 1[bezi]sim(scg, .CEZ) (7)

i=1

76

Similarity-Weighted Association Rules 5

For item-based collaborative filtering, for any item b we define Nbhd(b) as the set

of observations containing b: Nbhd(b) = {i : b € z;}. Then, the cosine similarity

between two items is defined as before:

_ |Nbhd(b) N Nbhd(d)|
/INbLd(®)]/INbhd(d)]

(®)

Simitem (ba)

And the item-based collaborative filtering score of item b is

SCOI‘QICF(H{E@) = Z Simitem(b, d) (9)

dexy

In addition to these two baselines, we consider the extremely simple baseline of
ranking items by their frequency in the training set. We call this the frequency
baseline.

3 Name Recommendations with the Nameling Dataset

We now demonstrate our similarity-weighted adjusted confidence measure on the
Nameling dataset released for the ECML PKDD 2013 Discovery Challenge. We
also compare the alternative confidence measures and baseline methods from
Section 2. A description of the Nameling dataset can be found in [12], and
details about the challenge task can be had in the introduction to these workshop
proceedings. For the sake of self-containment, we give a brief description here.

3.1 The Nameling Public Dataset

The dataset contains the interactions of users with the Nameling website http:
//nameling.net, a site that allows its users to explore information about names
and provides a list of similar names. A user enters a name, and the Nameling
system provides a list of similar names. Some of the similar names are given
category descriptions, like “English given names,” or “Hypocorisms.” There are
five types of interactions in the dataset: “ENTER_SEARCH,” when the user
enters a name into the search field; “LINK_SEARCH,” when the user clicks on
one of the listed similar names to search for it; “LINK_CATEGORY_SEARCH,”
when the user clicks on a category name to list other names of the same category;
“NAME_DETAILS” when the user clicks for more details about a name; and
“ADD_FAVORITE” when the user adds a name to his or her list of favorites.
The dataset contains 515,848 interactions from 60,922 users.

The data were split into training and test sets by, for users with sufficiently
many “ENTER_SEARCH” interactions, setting the last two “ENTER_SEARCH”
interactions aside as a test set. Some other considerations were made for dupli-
cate entries - see the introduction to the workshop proceedings for details. The
end result was a training set of 443,178 interactions from the 60,922 users, and
a test set consisting of the last two “ENTER_SEARCH” names for 13,008 of the
users. The task was to use the interactions in the training set to predict the two

7

6 Benjamin Letham

names in the test set for each of the test users by producing for each test user
a ranked list of recommended names. The evaluation metric was mean average
precision of the first 1000 recommendations - see the proceedings introduction
for more details.

3.2 Data Pre-processing

We did minimal data pre-processing, to highlight the ability of similarity-weighted
adjusted confidence to perform well without carefully crafted features or manual
consideration of special cases. We discarded users with no “ENTER_SEARCH”

interactions, which left 54,439 users. For each user i, we formed the set of items
x; as “name, interaction type” for all interactions from that user. For example,

“Primrose, ENTER_SEARCH” was the feature indicating that the user did an
“ENTER_SEARCH?” for the name Primrose. The total feature collection Z con-

tained “name, interaction type” for all of the entries in the interaction database.

The total number of items in Z was n = 34,070. No other data pre-processing
was done.

To form rules, we took as left-hand sides a all individual interaction entries:

A = Z. We considered as right-hand sides b all valid names to be recommended
(among other things, this excluded names that were previously entered by that
user - see the proceedings introduction for details on which names were excluded
from the test set). An example rule is “Primrose, ENTER_SEARCH — Katniss.”

3.3 Results

We applied confidence, adjusted confidence, similarity-weighted confidence, and
similarity-weighted adjusted confidence to the training set to generate recom-
mendations for the test users. For the adjusted measures, we found the best
performance on the test set with K = 4 for similarity-weighted adjusted confi-
dence and K = 10 for adjusted confidence, as shown in Figure 1. We also applied
the user-based collaborative filtering, item-based collaborative filtering, and fre-
quency baselines to generate recommendations. For all of these recommender
system approaches, the mean average precision at 1000 on the test set is shown
in Table 1.

Similarity-weighted adjusted confidence gave the best performance, and sim-
ilarity weighting led to a 4.2% increase in performance over (unweighted) ad-
justed confidence. The adjustment also led to a 9.7% increase in performance
from similarity-weighted confidence to similarity-weighted adjusted confidence.
User-based collaborative filtering performed well compared to the frequency
baseline, but was outperformed by similarity-weighted adjusted confidence by
11.4%. Ttem-based collaborative filtering performed very poorly.

An advantage of using association rules as opposed to techniques based in
regression or matrix factorization is that there is no explicit error minimization
problem being solved. This means that association rules generally do not have
the same propensity to overfit as algorithms based in empirical risk minimization.

78

Similarity-Weighted Association Rules 7

0.044

0.043

0.042

0.041

0.040

Mean average precision at 1000

0039 1 1 1 1 1
0 5 10 15 20 25 30

Adjustment K

Fig. 1. Test performance for adjusted confidence (blue) and similarity-weighted ad-
justed confidence (red) for varying amounts of adjustment K.

Table 1. Mean average precision at 1000 for the recommender system approaches
discussed in the paper.

Recommender system | Mean average precision
Similarity-weighted adjusted confidence, K =4 0.04385
Adjusted confidence, K = 10 0.04208
Similarity-weighted confidence 0.03998
User-based collaborative filtering 0.03936
Confidence 0.03934
Frequency 0.02821
Item-based collaborative filtering 0.01898

We found that the performance on the discovery challenge hold-out dataset was
similar to that which we measured on the public test set in Table 1.

4 Conclusions

Similarity-weighted adjusted confidence is a natural fit for the Nameling dataset
and the name recommendation task. First, the dataset is extremely sparse (see
[12]). The Bayesian adjustment K increases performance by reducing variance
for low-support itemsets, and this dataset contains many low-support yet infor-
mative itemsets. Second, preferences for names are very heterogeneous. Incor-
porating the similarity weighting from user-based collaborative filtering into the
confidence measure helps to focus the estimation on the more informative users.

Association rules and similarity-weighted adjusted confidence are powerful
tools for creating a scalable and interpretable recommender system that will
perform well in many domains.

79

8 Benjamin Letham

Acknowledgments. Thanks to Stephan Doerfel, Andreas Hotho, Robert Jaschke,
Folke Mitzlaff, and Juergen Mueller for organizing the ECML PKDD 2013 Dis-
covery Challenge, and for making their excellent Nameling dataset publicly avail-
able. Thanks also to Cynthia Rudin for support and for many discussions on
using rules for predictive modeling.

References

1. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: 3rd ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(1998)

2. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recom-
mendations. In: Proceedings of the 2000 ACM conference on Computer Supported
Cooperative Work. pp. 241-250. CSCW 00 (2000)

3. McSherry, D.: Explanation in recommender systems. Artificial Intelligence Review
24(2), 179-197 (2005)

4. Herlocker, J.L., Konstan, J.A., Terveen, L.G., John, Riedl, T.: Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems
22, 5-53 (2004)

5. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence. pp. 43-52. UAI'98 (1998)

6. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th international conference
on World Wide Web. pp. 285-295. WWW ’01 (2001)

7. Rudin, C., Letham, B., Salleb-Aouissi, A., Kogan, E., Madigan, D.: Sequential event
prediction with association rules. In: Proceedings of the 24th Annual Conference
on Learning Theory. pp. 615-634. COLT ’11 (2011)

8. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. TEEE
Transactions on Pattern Analysis and Machine Intelligence 20, 226-239 (1998)

9. Tax, D.M., Breukelen, M.V., Duin, R.P., Kittler, J.: Combining multiple classifiers
by averaging or by multiplying? Pattern Recognition 33, 1475-1485 (2000)

10. Letham, B., Rudin, C., Madigan, D.: Sequential event prediction. Machine Learn-
ing (2013), in press

11. Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for
optimizing average precision. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
pp. 271-278. SIGIR 07 (2007)

12. Mitzlaff, F., Stumme, G.: Recommending given names (2013), http://arxiv.org/
abs/1302.4412, preprint, arxiv:1302.4412

80

Factor Models for Recommending Given Names

Immanuel Bayer and Steffen Rendle

University of Konstanz, 78457 Konstanz, Germany,
{immanuel.bayer, steffen.rendle}@uni-konstanz.de

Abstract. We describe in this paper our contribution to the ECML
PKDD Discovery Challenge 2013 (Offline Track). This years task was to
predict the next given names a user of a name search engine interacts
with. We model the user preferences with a sequential factor model that
we optimize with respect to the Bayesian Personalized Ranking (BPR)
Optimization Criterion. Therefore we complement the sequential factor
model with prefix smoothing in order to explicitly model syntactical
similarity.

Keywords: factor model, given names, recommender system

1 Introduction

We describe in this paper our contribution to the ECML PKDD Discovery Chal-
lenge 2013 (Offline Track). This years task was to recommend given names to
user of the name search engine ”Nameling”[1] based on their historical search and
clicking behavior. We interpret the problem as a classical recommender problem
and use a purely statistical approach based on the user history. No meta data
such as word similarity lists or geographic information for the users are used.
We use a factorized personalized Markov Chain (FPMC) [4] model in order to
capture the user specific name preferences. The Bayesian Personalized Ranking
(BPR) Optimization Criterion [3] is used to learn the latent variables of this
model. We complement this factor model with syntactical similarity information
by applying prefix smoothing to the name ranking.

2 Terminology and Formalization

Let U = {uq,uq,...} be the set of all users and N = {ny,no,...} the set of all
names. We further use 7= N to identify user action over time.
The scoring function

g:UxTxN—=R (1)

returns the estimated preference of a user U at time T for a name N. To ob-
tain the user specific ranking for every user u € U, each name is scored — i.e.
9(u,t,n1), §(u,t,ng), etc. is computed — and the names are sorted by their score.
We further define D C U x T' x N as the training set of available names which
have been observed in the logs.

81

3 Sequential Factor Model

In order to extract training samples from the user activities, we first defined
four indicator functions. These are then used to encode the training samples as
sparse real valued features that can be used in a factorization machine. Finally,
we give a formal definition of our prefix smoothing approach.

3.1 Indicators

Our model assumes that the name preference of a user u at time ¢ can be
explained by:

. The ID of the user: u.

. The ID of the name: n.

. The last name selected by the user: [: U x T — N.

. The history of all names selected by the user up to time ¢:
h:UxT — P(N).

N

Besides these four indicators, the model should also take into account all inter-
actions between indicators. E.g. the interaction between name n and last name
{(u, t) would model the effect for choosing name n if the name [(u,t) has been
selected before. In total, the first three indicators correspond to a personalized
Markov chain [4]. The forth indicator can be seen as a Markov chain with long
memory where all the history is aggregated into a single set.

3.2 Factorization Machine

The number of pairwise interactions between variables is high and cannot be
estimated reliably with standard parametrization. Thus, we use a factorized
parametrization [4] which allows to estimate parameters even in highly sparse
data.

The ideas described so far can be realized with a factorization machine [2].
For this purpose, the four indicator variables are translated into a sparse real
valued feature vector x € RP with p = |U| + |N| 4+ |N| + |N| many predictor
variables. The standard encoding described e.g. in [2] is used.

For example, for a case (u,t,n) let the values of the four indicators be:

. user ID: 0,

. name to rank: Anna,

. last name selected by user: Jana,
. history of all names selected by the user up to time ¢: { Petra, Annabelle, Maria}.

N

This can be encoded as a real valued feature vector of the form

x(u,t,n) = (1,...,0,0,1,0,...,0,...,1,0,...,0,0.33,...,0.33,...,0.33,...0).
—

Ul |V [V [V

(2)

82

The factorization machine (FM) model [2] of order d = 2 can be applied to
the generated feature vector x and reads

p p P k
9™ (x(u, tn)) = wo + Y wimi+ > Y @y y v vy g (3)
j=1 f=1

j=14'=j+1

Here, wy € R,w € RP,V € RP** are the model parameters, k € N is the size/
dimensionality of the latent space. Thus, the model has one feature vector v; for
each variable z;.

Empirically inspecting the generated recommendations with this model shows
(see Table 2) that the semantic meaning of names is found: e.g. if a user searches
mainly for female names, female names are recommended; if the user selects typ-
ically short names, short ones are recommended, etc. The reason for the success
is that the model automatically finds latent features v,, € RF for each name
n which describe its characteristics. Such characteristics could be gender, name
length, etc.

3.3 Prefix Smoothing

In general, the proposed model can express any kind of pairwise relation be-
tween names'. However, under small data sizes, the model might have problems
to find relations between infrequent names. To make an example, the model can
express and will automatically learn that Anna and Anne are syntactically sim-
ilar or that Farid and Behrouz are semantically similar (both Persian masculine
names) if the data logs are large enough. However, the size of the observed logs
is limited and the model cannot learn all these relations reliably — especially not
for infrequent names.

To overcome the problem, we inject some syntactical relations manually
into the model. We create indicators stating that two names (name n and
last name [(u,t)) share a prefix of length m — we consider prefix lengths of
m € {1,2,3,4,5,6}. We add these indicators about syntactical similarity to the
FM model mentioned above:

G(u, t,n) == §™(x(u, t,n))

+ Z zm O(prefix(n, m) = prefix(l(u, t),m)), (4)
me{1,2,3,4,5,6}

where § is the indicator function — i.e. 6(b) = 1 if b is true — and prefix(s, m)
returns the prefix of string s of length m.

The final model is slightly more complex and considers also syntactical sim-
ilarity with the next-to-last name:

g(u,t,n) = QFM(X(u,t,n))

+ Z Zm.v O(prefix(n, m) = prefix(l(u,t'),m)). (5)
t'e{t,t—1} me{1,2,3,4,5,6}

! Note that semantic or syntactical similarities are also just pairwise relations.

83

Please note that the idea of prefix smoothing —i.e. the indicator é (prefix(n, m) =
prefix({(u, t), m)) — can be used directly in the FM by enlarging the feature vector
x. Using this representation, the parameters z,,; are part of the w parameters
of the original FM. Extending the prefix smoothing to longer prefixes as well as
taking into account names earlier then ¢t — 1 could further improve the model.

4 Learning

We have a lot of positive samples if we assume that the user likes names he
interacts with but we know little about other names. Encoding all names the user
didn’t interact with as negative samples can introduce wrong user preferences
since we can not distinguish between a name the user knowingly ignored and a
name the user has never seen. We avoid this problem by using a pairwise loss
function.

4.1 Optimization Criterion

The model parameters of the FM are learned by discriminating between previ-
ously selected and unselected names. This optimization criterion has been pro-
posed for item recommendation as BPR (Bayesian Personalized Ranking) [3]
and has been used in several other recommendation tasks including sequential
recommendation [4]. For the task of name recommendation it reads:

BPR-OPT :=) > o(i(u,t,n) — §(u,t,n)) — Ae|O]]* (6)
(u,t,n)ED na€(N\{n})

where ¢ is the FM (using the predictor variables encoded in the real valued
vector x) and O is a vector containing the model parameters V, w, wy.

4.2 Algorithm

The standard BPR algorithm [3] is a stochastic gradient descent (SGD) algo-
rithm. The algorithm samples first a positive observation (u,t,n) € D and then
a negative name ng uniformly from N\ {n}. A gradient step is done on this pair-
wise comparison. In our implementation, instead of using a uniform distribution
for negative names, the names are sampled approximately proportional to their
expected rank.

Even though FM parameters and prefix smoothing could be learned jointly
with BPR, for simplicity? we learned only the FM parameters with BPR and
selected the prefix smoothing parameters (only 12 parameters) manually.

2 The reason for separating both parts were only of practical matter because we reused
an existing implementation.

84

4.3 Ensembling Factor Models

The BPR algorithm is a point estimator and returns one ranking. We consider
uncertainty in the ranking by running the learning algorithm three times, each
time with a different sampling hyperparameter. While training each model, we
select? in total 20 iterations for which we predict the ranking each — i.e. we have
20 (slightly) different scores g(u,t,n) for each triple (u,t,n). The final scoring
function is an unweighted average of the 20 scoring functions.

5 Experimental Results

In this section, we first present our scores from the official leaderboard and then
discuss the latent features learned by our model on randomly selected samples.

5.1 Evaluation on Holdout Set

We separate the training data into a new validation and training set using the
splitting script provided. This gives us a training set with 60.922 user and a
test set with 13.008 user. We use the first 3.000 user from the new test set to
calibrate our models.

5.2 Results

Table 1 shows the results we achieved on the official leaderboard. The table con-
tains also the scores that we obtained on our validation set. The score difference
between validation and challenge data might be partially explained by the differ-
ent ensemble size that we used in the two evaluations. We ensemble 20 rankings
for the last submitted model (as described in section 4.3) but an ensemble of
100 rankings for our validation set evaluation. After some last minute changes
we had only time to select 20 rankings for the final submission.

Table 1. Results as reported on the challenge leaderboard and the official evaluation
script (modified MAP@1000).

Model validation challenge
most-popular-item 0.0294 0.0259
FM-ens (with prefix smoothing) 0.0550 0.0472

3 The selected iterations were chosen close to the best iterations on the holdout set,
i.e. slightly before and after the best iteration.

85

1.00 -

% female
(e»)
(6]
(e»)

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.25 -

r o *+r +r *r *+r °r +r °r °»r & 1°r 1 1 1 1 1 1
0O Nl IO O 0O ~ IO O~ IO A

S e - EN o0 ON®O - - O K ® = O

2888 soNE2RE328E
— — —

- T MO0 0 - - AN AN ANNANOOO

userld

Fig. 1. Each bar pair represents the percentage of female names in the user history
h(u,t) (left) and the top 14 recommended names (right). The users evaluated here are
the same as listed in Table 2. Similar height of both bars (left and right) for one user
indicates that the user-preferred ratio of female to male names is closely reflected in
the recommendations.

5.3 Ranking Analysis

In this section, we demonstrate on samples that our model is able to represent
name similarities and user preferences through its latent variables. We illustrate
this on name characteristics such as gender or length because the effects of those
items are easy to recognize. More subtle effects might also be captured by our
model but an casual inspection on a small sample might not suffice to identify
them.

We select a subset of users from the challenge test set that have at least 30
and at most 50 activities (This is done to avoid users without history and to
save space by avoiding user with a very large history). From this set, we ran-
domly select 18 users and list them in table 2. The first line h(u, t) for each user
lists all names in his user history. Duplicates and names that are not used in
the competition (not listed in namelist.txt) have been removed. The second line
lists the top 14 recommendations generated by our FM model?.

4 The number of listed recommendations and the number of randomly selected users
are adjusted to the available space.

86

ueyjeuol ‘xiey ‘emed ‘“ejo18 ‘sniml ‘ernl ‘[rey ‘uueyol ‘ooyy ‘zjurow ‘ewrwo ‘qoyel ‘(ned ‘uojue| Frdoy
JoLI9Pad) ‘JIaq[e ‘[Ie ‘Ieso ‘oImSud ‘elfiue ‘eurjjeq ‘euue ‘esmf|(2‘n)y| 8050

ernl “epriy ‘osse[‘9)10[IeYD ‘©110[‘epoLyj ‘[TWo ‘e[[o ‘eUUR ‘“eTW ‘eul] ‘e)}0] ‘ewwo ‘e101d| ydoy
us[rew “epul] ‘oun(‘ofou ‘efIow ‘e(yey ‘erew ‘erue[eur ‘o[res ‘epl|(7‘n)y| LE6TE

xew ‘“erwr ‘ernl ‘uensuys ‘uowrs ‘Iepuexoe ‘Z}LIOW ‘URIIsR|es ‘Sewloy) ‘[oruep ‘euue ‘uoo] ‘med ‘ewrws| 1doj
es[ny ‘errue ‘xijoj ‘seryyyewr ‘elew ‘urwsel|(7n)y| g61F1

ey ‘uel ‘werrurxew ‘wol ‘sexny ‘oo ‘uernl ‘xew ‘seuol ‘geou ‘uuy ‘“eony ‘ueq ‘smy| Fydoy
1qo3 ‘pIeuos] ‘uosl ‘med ‘ouru ‘our ‘st ‘wiy|(2‘n)y| 1£99

URI[IUIIXRU ‘SNYIRW ‘UILIRW ‘“RUWWS ‘RUUR ‘UeI)segas ‘I9jod ‘plaep ‘URIISLIYD ‘Sealpue ‘[oRUDIUW ‘[oluep ‘sewoy)] ‘Iopuexoe| 1do)
SOTIeD ‘)UoOUIA ‘RULI ‘Ouel] ‘exIru((1‘n)y| ¢L191

sero ‘urAey ‘seuol ‘U09[‘sealpUe ‘eUUR ‘[ORUDIW ‘URTISLIYD ‘LW ‘URIJSRJOS ‘PIARD ‘sewIO) ‘Iopuexole ‘[oruep| 1doj
snouryd ‘uose(‘uoser ‘soyoresu ‘oou ‘[orjel ‘Jol ‘uowry ‘spruued ‘qoeyder|(z‘n)y| GTReE

uojue ‘euueyol ‘eurreyjes ‘seuol ‘oruep ‘praep ‘qoyel ‘repuexore ‘e1o1s ‘ruue ‘ernl ‘med ‘euue ‘ewrws| FTdo)
preya8 ‘souuel ‘preuus| ‘zuolo] ‘epul] ‘sirewr ‘efue ‘Ietrpise ‘euue ‘seuol|(1‘n)y| 29¢€9

rvipues ‘orydos ‘euur ‘ernl ‘es[‘OTHOS] ‘YrIes ‘erew ‘UII[I] ‘eIne] ‘@I ‘edn| ‘ewrws ‘erru| F1dog
uof ‘ourd ‘UoqNI ‘OUNS ‘TUIORU ‘90Z ‘@AOU ‘THAA ‘UNIPIOY ‘pIeSym| ‘“eou|(7 ‘n)Yy| G687

souureyol ‘seuol ‘rojed ‘XI[oJ ‘zjrIow ‘PRI ‘eIl ‘sewoy) ‘seaipue ‘Iopuexoe ‘qoxel qrue ‘euue ‘ewrws| F1dol
[eqest ‘seryjewr ‘uojue ‘mned ‘suewia]d|((7‘n)y| OFTI

rou ‘19 ‘uojue ‘seuol ‘xew ‘o0 ‘09 ‘(ned ‘uuy ‘1a9] ‘Ueq ‘[Twe ‘rrusy ‘smoy| FTdog
Tedseo ‘syew ‘spewn ‘smj ‘outaq ‘ouus ‘opoq ‘[[ply ‘esse((2‘n)y| 0,768

es1] ‘“erydos ‘eony ‘yeres ‘ed] ‘prarp ‘eusd] ‘uosl ‘et ‘euur ‘ernl ‘einer ‘srgdos ‘ewrs| F1dog
uer[Iy ‘Uaq ‘eUIA®] ‘BIe[‘SIUIS] ‘SLIPUR ‘Se[YIU ‘se[ooru ‘urwsel ‘erpne[d ‘emu|(1‘n)y| 1161

med ‘e1013 ‘[ruep ‘OLIRW ‘SNIRW ‘SdIPUR ‘IopUeXS[R ‘“RTUI ‘URJO)S ‘URIISLIYD ‘SRWOY) ‘[oRyDIW ‘euur ‘ewwd| FT1do)
[ned ‘1sa1 ‘uoypned ‘sowrel ‘IolARX ‘UI[OPOLY ‘UDOLIPALI) ‘IJo ‘eAd ‘ruue ‘Aey ‘eusaloa|(‘n)Yy| G6ET

ern(‘zyuow ‘uaq ‘qosel ‘ened ‘uojue ‘rexso ‘euue ‘epolly ‘09Y) ‘ewrwe ‘med ‘elerd ‘rue| F1dol
eIRW ‘OI[IUId ‘OIUO09] ‘09] ‘eIOU ‘810l “BUIUId ‘9))0[Ieyd ‘eres ‘eud] “e110] “epl|(12‘n)y| 08T LI

Jeqest[e ‘qoxel ‘urIIuIxXew ‘Ueuuey ‘OLIRW ‘[oRUDIW ‘eud| ‘urIjseqes ‘euuryol ‘“eurreyjey ‘ernl ‘repuexole ‘euue ‘ewrws| 1do)
Xore ‘seyn| ‘yeres ‘[rey ‘ownl ‘1ojed ‘mned ‘ddiyd ‘ydojstyo ‘oger ‘ewfe|(7‘n)y| 7G8]E

POl ‘elrewr ‘epl ‘epiyjewr ‘euuetol ‘mned ‘orrewr ‘eus| ‘ernl ‘esmy ‘euue ‘@)o1d ‘eurned ‘ewrws| F1do)
aLIeUI ‘RIAI[O ‘OUIOIRD ‘eSOl ‘WL ‘osin| ‘9jjorreyd ‘ened ‘utrey ‘qoxel|(7‘n)y| 11€5T

snur] ‘rygewt ‘ned ‘Usq ‘UUY ‘eI ‘SIe[‘WI} ‘S[IU ‘syewr ‘o0 ‘eure ‘uel ‘ejrewr| Fydoy
sngsnl ‘uojue ‘ojewr ‘sepyru ‘ossey ‘seiqol|(7n)y| L196

uraey ‘ernl ‘uel ‘ned ‘uerjseqes ‘(eeYOIW ‘SeaIpur ‘URIISLIYD ‘PIARD ‘RUUR ‘SRWOL) ‘Iopuexa[e ‘[Pruep ‘ewws| j1dol
uerjseq ‘YLIUoY ‘uIo ‘ueiqej ‘uernl ‘eIruursels] ‘Ieyrs ‘praep ‘uiqol ‘uoo] ‘stioq ‘uewol|(1‘n)y| 89T

RUI[‘9)0[IRYD ‘URISLIYD ‘IopurXs[e ‘eAd ‘orydos ‘sewoy) ‘oLrew ‘“eurreyjey ‘[eeyoru ‘euuryol ‘ernl ‘euue ‘ewrws| 1do)
eIUI ‘T8 ‘OUT[eD ‘POUIURYOUT ¢ ‘INTLIe ‘RLIRW ‘UIASY ‘Oploy ‘urrey ‘oljue ‘4181iq ‘efue}|(2n)y| L10€
soureu 19s|p11osn

‘proq ut petid ST 1osn
o1} Aq PaYIS[as SUIRT SB[ST T,) W) S[CR[TRAR }SR] Y} 01 dN AIOJSTY I9SN BY[) UT SOUIRU [1€ (7 ‘N)Yy "oUO papuswiodal doj o) ST owreu
1SOWIJI] YY) SISYM ‘SOUIRU POPUSTOIAI JO JSI[9} SMOys FTdOT, "SIOSN JO UOT}D9[6S WOPURI & I0J ‘Souleu papuswtnoddl T doJ, *g a[qel,

87

5.4 Discussion of Learned Effects

Even though the predictive strength is best jugged by the leaderboard score,
we want to give an impression of the kind of relationships that our model has
learned from the training data. Please note that the rankings presented here
are without prefix smoothing. This means that the model had no information
on how long or which characters a certain name contains since names are only
represented by unique identifiers.

Our model learns to distinguish between female and male names and recog-
nizes if a user prefers male or female names. For users that have very strong
preferences, such as user 6631, 9617, 29470, 3017, 28995, the recommendations
that are accordingly balanced (see Table 2 and Figure 1). For users with very
few user activities this becomes less reliable as can be seen on users; 16175 and
14192.

The model also learned if a name is long (user 3017, 38852, 16175) or very
short (user 9617, 29470). It also recognizes if a user prefers infrequent names
User 28995 for example has kjell and enno in his history and gets names like levi
and finn recommended. Double consonant names are surprisingly frequent in
the recommendations for user 31937, while names with similar prefixes have
similar ranks for user 16175 (martin, markus, mazimilian) or user 20508 (julia,
Julius) and also lotte and charlotte are ranked next to each other for user 31937.
A more detailed analysis of the learned ranking could reveal more information
on how people judge the similarities of given names.

6 Conclusion

In this paper, we have shown that a Factorization Machine [2] is well suited
for the task of recommending given names. When the model parameters are
optimized with respect to the personalized ranking criterion BPR-Opt [3], the
latent variables are able to express name preferences such as name length and
gender. Is important to note that this information is not part of the model input.
Being able to learn this characteristic is useful if this information is not readily
available.

The data used in this competition were strongly dominated by German speak-
ing users (according to the user location obtained from the ip addresses) but our
approach is supposed to work equally well with data that contain names from dif-
ferent alphabets or a user base that contains strong regional preferences without
any modification.

We like to point out the close relation of given name recommendation to tasks
such as movie recommendation where factor models have been very successful.
The latent variables in this competition represent here syntactic and semantic
similarity instead of movie related characteristics like genres or common actor.
We have further shown that for infrequent names and small data sets the injec-
tion of regularizing information such as syntactical similarity does improve the
prediction quality. We however expect that the benefit of information injection
diminishes with the size of available data.

88

7 ACKNOWLEDGMENTS

We gratefully acknowledge funding by Baden- Wiirttemberg Stiftung.

References

1. Mitzlaff, F., Stumme, G.: Namelings - discover given name relatedness based on
data from the social web. In Aberer, K., Flache, A., Jager, W., Liu, L., Tang,
J., Guret, C., eds.: SocInfo. Volume 7710 of Lecture Notes in Computer Science.,
Springer (2012) 531-534

2. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol.
3(3) (May 2012) 57:1-57:22

3. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI 2009). (2009)

4. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov
chains for next-basket recommendation. In: WWW ’10: Proceedings of the 19th
international conference on World wide web, New York, NY, USA, ACM (2010)
811-820

89

	Preface
	Summary of the 15th Discovery Challenge – Recommending Given Names
	A mixed hybrid recommender system for given names
	Collaborative Filtering Ensemble for Personalized Name Recommendation
	Nameling Discovery Challenge - Collaborative Neighborhoods
	Improving the Recommendation of Given Names by Using Contextual Information
	Similarity-weighted association rules for a name recommender system
	Factor Models for Recommending Given Names

