ELECTRICAL ENGINEERING & COMPUTER SCIENCE, UNIVERSITY OF KASSEL

ENDOWED CHAIR OF THE HERTIE FOUNDATIGN Y Geschichte
. . [
Knowledge and Data Engineering

B lhre Entwicklung wurde inspiriert durch semantische Netze und
Frames.

B Frihere Namen:
= KL-ONE like languages

Te]l I”' = terminological logics

Vorlesung Kiinstliche Intelligenz Wintersemester 2008/09

Wissensrepri‘:isentation u nd Infe renz B Ziel war eine Wissensreprasentation mit formaler Semantik.

B Das erste Beschreibungslogik-basierte System war KL-ONE (1985).
B Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991),

Kap 1 O. BeSCh reibungs logi ken CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).

Mit Material von
Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
lan Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Beschreibungslogiken (Description Logics) X Literatur X}

Beschreibungslogiken
B sind eine Familie von logik-basierten Wissensreprasentationssprachen
B stammen von semantischen Netzen und KL-ONE ab. B D. Nardi, R. J. Brachman. An Introduction to Description
Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
P.F. Patel-Schneider (eds.): Description Logic Handbook,
Cambridge University Press, 2002, 5-44.
W F. Baader, W. Nutt: Basic Description Logics. In: Description
Logic Handbook, 47-100.

» und eng verwandt mit aussagenlogischen Modal- und Temporallogiken. W lan Horrocks, Peter F. Patel-chneider and Frank van
Harmelen. From SHIQ and RDF to OWL: The making of a web

B bieten Inferenzmechanismen fiir zentrale Probleme. ontology language

= Korrekte und vollstandige Entscheidungsverfahren existieren. http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoP
» Hoch-effiziente Implementierungen existieren. HO3a.pdf

B beschreiben die Welt mit Konzepten (Klassen), Rollen (Relationen) und
Individuen.

B haben eine formale (typischerweise modell-theoretische) Semantik.
» Sie sind entscheidbare Fragmente der PL1

B Einfache Sprache zum Start: 4L (Attributive Language with
Complement)

B |Im Semantic Web wird SHOIN(D,) eingesetzt. Hierauf basiert die
Semantik von OWL DL.

Recall: Logics and Model Theory

What is the Problem?

Consider a typical web page:

hitpui
WHNZ002.01

THE ELEVENTH INTERNATIONAL
WORLD WIDE WEB CONFERENCE

Sheraton Walkiki Hotel
Henolulu, Hawail, USA

741 May 2002

1LOCATION. 5 DAYS. LEARN. INTERACT.
HAWAILI
e Registered participants coming from:
Al Austrsla - Canada - Chile - Denmark - France- Germany - Ghana - Hong Keng - India - Hsly - Ireland - Japan - Ml - New Zesland - The
Callfor Hetherlands - Norway - Singapare - Switzeriand - The United States - Vietnam - Zambla
Paticipation
0
Registration 7.) o o
Information
Hotel
Accommodation
Conference The conferenca is being organized by
Commitiee the Pacilc Telacommunications Counci §

Exhibition FEATURED $PEAKERS (COMFIRMED)
Opportunities

i WO T Beners e ivento of e Worigwie e [T Richard A DeMlin, vie presient and chief
! i ewscwnanon oisthe scom B3 tachnologyofcr for Hewet Packara Compary
Information (! Eounders thar atthe Laboratary for Compates & |
about Hawail Sclence (LCS) atthe Massachusets insthde of
Technoio

i
Prauious & Future !

B s
WWW Canforances | TR an Foste o conptny agsate R A"*W‘:":i' Mg P Winee
Lol : L = g8 i ¥ g W

Recall: Logics and Model Theory

What information can we see...

WWW2002

The eleventh international world wide web conference
Sheraton waikiki hotel

Honolulu, hawaii, USA

7-11 may 2002

1 location 5 days learn interact

Registered participants coming from

Markup consists of:

B rendering
information (e.g.,
font size and
colour)

B Hyper-links to
related content

Semantic content is
accessible to humans
but not (easily) to
computers...

australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland,
italy, japan, malta, new zealand, the netherlands, norway, singapore,
switzerland, the united kingdom, the united states, vietnam, zaire

Register now

On the 7t May Honolulu will provide the backdrop of the eleventh international world

wide web conference. This prestigious event ...
Speakers confirmed
Tim berners-lee
Tim is the well known inventor of the Web, ...
lan Foster
lan is the pioneer of the Grid, the next generation internet ...

Recall: Logics and Model Theory

What information can a machine see...

*44BOICIR

®220, MM <M mesn Xmem OmSeXOmse
SAMOSOON +SBHEHESH mOeM e
PONCIOGOOS uDeTHHG To¥
@ryry OSHE BCICIR

JOOen eXafn oM MHOE2M O =,

7 eOMSexOm B ASHE. eNMSOm XmenOSme
QM VeXe oM ON L OSOSXMKOSHSs MHOQKMY, X000

SO H0T XS B MTESASE hruxel,

AN EOBOLE LOSEMGNG %N OOSERD

WriGEGE MO &GON%E ¥EAXGE XONeSEAD X4SeNm erdOGRm
OTeTH Hile HNTOSHRSE ¢4 W 62N OeSHLm BOJSHED
HELGBOOOM B +o XN TOTHEE 4N, SWHN L &HEHLAOOMm 231,
OEHOME 0B o5 SXN OMSOB RSHOM,

G YoXeoMO WO«

pE e &** ¢*SHE PfOmOeeed +xee OOOOLX2N N LSWE&s2000 OR
4z2N, Mmen emmezz XmenOmSSeXOmSe OO0 X2, <N&
mOmamommEmm e wxie OONM X %XOGs MM Ee 6

ONS&M O MOmRHIAOM 2
S¥O QM .Omn O«chenm

BHO Mo 6N, oNee &EOem XmenmeOd O ¢z NS ©

toom Oe¢M 0

BOE Mo 6, OXOEMMO 2 622N, dO0XQE ez, ENEe YoM OSexOm

Xmenomne ©

Recall: Logics and Model Theory

Solution: XML markup with “meaningful” tags?

<location> exmOce0m +SHEHEH wOM @
fOmCeeedm =BeBHHm +6¥ </location>

<date> medr>ry OsA BB </date>

<slogan> > eOMsexOm B ASEe oM EOIm HmeN OSIhe</slogan>
<participants> ¢ X+ OM 2 OSOXpHOSESs HOOKEY, 2000

SO OSONTH HBABLBE Mruxell, 2N EOSOESS AOSHNI

w0EY &GOEY%m XEEXSHm XOMNOSHLM H4SeHE orSOSEE ODe4sSH ml e

R GOSHAM ¢z, M| ¢22M OSHL e

B00SAB +*B%SOO0ME ++XeRkN OeTHL2 0

O OMMMM 2 &GHEHAOOMm $0M, SEXOML 4Bl XN MSOm RIBHOM,

</participants>

YoM, OOSEAEEG YSRGS E

Recall: Logics and Model Theory

But What About...

<place> sxMOSIOR +BHEHESH =16 0

pOmCedeem :mS+SHXm +6¥ </place>

<date> s~ osA mrice </date>

<slogan> 7 eOmsexOm A 2Ee emMssOm ¥méemOosme </slogan>

<participants> cm oX+enOme OSOeXMHHOSESe HOOKMY, 2000

GO+ #0SOHTBHE HHBMIBAIFAE Mpzayel,
2OY GONGM XEAXGE XONOSHLAM H4SeHED oSOSES O0TeéSH HNe
RN SOSHAD ¢4, WM ¢ OeSHLE BOOSEG +HENLSOOON G ++}éEMOesnam
Oz, GEXON L2 EHEWLAOOMm 420, SEXML +4SHN B XN INSOB #SSHOM,
</participants>

Recall: Logics and Model Theory

Machine sees...

<OOMTOXOM-42MOSION +DHEHEH 2O @
PONCIOGOOE nIS+ISHHB Té¥</0OMTeXOm>
<2SSHM >@Arryry OBA BOICIB</25eM >
<od% -~ oOpSeXOm B 2GHE+ eMSSOm XmeN OSIpe</e0Vpsm>
<OBOHPHOTHE >N XN OML OSOXMHOSHSs MHOOKEY, R2OOQ
SO 0SeHSH MHSASLBH Mhanxeln|,
wOmYy &OEYm XEL}Sm XOMeSHLMm XHeSeHN epSOSHEm OSesssa MmN e
BN Sesomaz 2, mi ¢ OeSHL ey BOOSHEA +KEVNSOOOMNEE +*Xe8M O00SHLm
421, OEHOM L &SHEB2OOM 42N, SEXOML 145N B SHN NSO
BBHOM </OSTSHMHHOTSHE >

ANEOBOLE AOSENIE W OOSERG HGEGE

Recall: Logics and Model Theory

Ontology/KR languages aim to model (part of) world
Terms in language correspond to entities in world

Meaning given by, e.g.:
B Mapping to another formalism, such as FOL, with own well defined
semantics

B or a Model Theory (MT)

amEOSO&LE XOSENNE M O0SEAER YMISHISHE

MT defines relationship between syntax and interpretations
B There can be many interpretations (models) of one piece of syntax
B Models supposed to be analogue of (part of) world
= E.g., elements of model correspond to objects in world
B Formal relationship between syntax and models
= Structure of models reflect relationships specified in syntax
B Inference (e.g., subsumption) defined in terms of MT
= E.g., TE A C B iff in every model of 7, ext(A) C ext(B)

Recall: Logics and Model Theory

Many logics (including standard First Order Logic) use a model theory based
on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as A)

Objects in the world are interpreted as elements of A
B Classes/concepts (unary predicates) are subsets of A
W Properties/roles (binary predicates) are subsets of A x A (i.e., A?)
W Ternary predicates are subsets of A3 etc.

The sub-class relationship between classes can be interpreted as set
inclusion.

Recall: Logics and Model Theory X

Model Interpretation

Daisy isA Cow
Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Mary drives Z123ABC

Recall: Logics and Model Theory X

Formally, the vocabulary is the set of names we use in our
model of (part of) the world
W {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
An interpretation Z is a tuple (A, T)
B Ais the domain (a set)
m Z is a mapping that maps
= Names of objects to elements of A

= Names of unary predicates (classes/concepts) to subsets
of A

= Names of binary predicates (properties/roles) to
subsets of A x A

= And so on for higher arity predicates (if any)

DL Architecture X

Man = Human r Male

Happy-Father = Man 1 3 has-child
Female ...

John : Happy-Father
(John, Mary) : has-child

DL Knowledge Base X

DL Knowledge Base (KB) normally separated into 2 parts:

B TBox is a set of axioms describing structure of domain (i.e., a conceptual
schema), e.g.:

= HappyFather = Man A 3hasChild.Female A ...
= Elephant = Animal A Large A Grey
= transitive(ancestor)

B ABox is a set of axioms describing a concrete situation (data), e.g.:
= John:HappyFather
= <John,Mary>:hasChild

Separation has no logical significance
B But may be conceptually and implementationally convenient

DL Semantics X)

Interpretation function 2 extends to concept expressions in
the obvious way, i.e.:

(cnD) =cTnDpD*

(cubD)YX =cTupt

(—|C)I — AI \ CI

{z}t = {z*}

(EIR.C)I = {z | Jy.(z,y) € R A y € CI}
(VR.C)L = {z | Vy.(z,y) € RT = y € CT}
(<nR) = {z | #{y | (z,y) € RT} <n}
(cnR)T = {z | #{y | (z,y) € RT} > n}

DL Knowledge Bases (Ontologies) X
A DL Knowledge Base is of the form K = (T, A)

B 7 (Tbox) is a set of axioms of the form:
= C C D (concept inclusion)
= C =D (concept equivalence)
= R C S (role inclusion)
= R =S (role equivalence)
= Rt C R (role transitivity)

B A (Abox) is a set of axioms of the form
= x € D (concept instantiation)
* (x,y) € R (role instantiation)

Two sorts of Tbox axioms often distinguished
B “Definitions”
= CLC DorC=D where C is a concept name
B General Concept Inclusion axioms (GCls)
= C C D where C is an arbitrary concept

Knowledge Base Semantics

An interpretation Z satisfies (models) an axiom A (ZF A):
B 7ECCDIiffCZC DT

IEC=Diff CZ=DT

IERLCSIiffRZC ST

IER=SIiffRT=5%

Tk RT CRiff (RE)* C R

IExeDiff xLe DT

TE (x,y) € Riff (xL,yT) € R?

7 satisfies a Tbox T (Z E T) iff Z satisfies every axiom A in T

7 satisfies an Abox A (Z E A) iff Z satisfies every axiom A in A

7 satisfies an KB K (Z E K) iff Z satisfies both 7 and A

Inference Tasks

Knowledge is correct (captures intuitions)
B C subsumes D w.r.t. K iff for every model Z of K, CT C D?

Knowledge is minimally redundant (no unintended synonyms)
B Cis equivalent to D w.r.t. K iff for every model Z of K, CZ = DT

Knowledge is meaningful (classes can have instances)
B C is satisfiable w.r.t. K iff there exists some model Z of K s.t. CT =0

Querying knowledge
B x is an instance of C w.r.t. K iff for every model Z of K, xZ € CZ
B (x,y) is an instance of R w.r.t. K iff for, every model Z of K, (x%,y%) € R*

Knowledge base consistency
B A KB K is consistent iff there exists some model Z of K

20

Syntax fiir DLs (ohne concrete domains)

Hitzler & Sure, 2005

Ontology (=Knowledge Base)
Atomic A, B
Not -C
o| And cno Subclass cCCoD
_I .
<|or cubD Equivalent c=po
Exists JR.C
For all VR.C
T | Subrole RLC s
S| At least >n R.C (2n R)
0| Transitivity Trans (S)
| At most <n R.C (<n R)
O| Nominal (i, 1y}
Instance C(a)
Role R(a,b)
Atomic R Same a=>b
Inverse R™ Different a#b

S = ALC + Transitivity OWL DL = SHOIN(D)

AIFB ©

(D: concrete domain)

Folie 22

The Description Logic ALC: Syntax

Atomic types: concept names A, B, ... (unary predicat

role names R, S, . ..

Constructors: - ~C (negation)

es)

(binary predicates)

-CnbD (conjunction)
-CubD (disjunction)

-3R.C (existential restriction)
-VR.C (value restriction)

Abbreviations: - C —- D =-Cu D

-CeD=C—=D
npD—=c=C

(implication)

(bi-implication)
-T =(AU-A) (top concept)
b -1l =AnN-A

resden

(bottom concept)

Examples

D

U
resden

[+]

Qo

(]

[~]

Person M Female

Person M Jattends.Course

Person M Vattends. (Course — —Easy)

Person M Jteaches. (Course M Vattended-by. (Bored LI Sleeping))

Interpretations

resden

Semantics based on interpretations (A%, -%), where

- AT is a non-empty set (the domain)
— T is the interpretation function mapping
each concept name A to a subset AZ of AT and

each role name R to a binary relation R over AZ.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure

with only unary and binary predicates

Example

D)

U
resden

Person
Course teaches Lecturer

attends
attends attends
]

Course

Difficult
Student Student
Person Sleeping

Person

Semantics of Complex Concepts

resden

(=C)f=AT\c* (cnD)y=c*nD* (CuD)®=cCc*uD?
(3R.C)T = {d | there is an e € AT with (d,e) € RT and e € CT}
(VR.C)E = {d | forall e € AT, (d,e) € R implies e € CT}

Person

Course teaches Lecturer
attends
attends attends
Course
Difficult
Student Student
Person Sleeping

Person

Person M Jattends.Course

Person M Vattends. (—Course LI Difficult)

TBoxes

Capture an application’s terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:
finite set of concept equations A = C'
with A concept name and C concept
left-hand sides must be unique!
Semantics:

interpretation T satisfies A = C iff AT = C?

T is model of 7 if it satisfies all definitions in 7~

E.g.: Lecturer = Person M 3teaches.Course

b Yields two kinds of concept names: defined and primitive

U
resden

TBox: Example

TBoxes are used as ontologies:

Woman = Person Il Female

Man = Person M —=Woman
Lecturer = Person M Jteaches.Course
Student = Person M1 Jattends.Course

BadLecturer = Person N Vteaches.(Course — Boring)

resden

TBox: Example Il

A TBox restricts the set of admissible interpretations.

D)

U
resden

Lecturer = Person M Jteaches.Course
Student = Person M Jattends.Course
Student

Person
Course teaches Lecturer

attends
attends attends
Course
Student Student Difficult
Person Sleeping
Person

Reasoning Tasks — Subsumption

Intuition:

Example:

resden

C subsumed by D w.r.t. T (written C T+ D)
iff

CT C D7 holds for all models Z of T

If C C”+ D, then D is more general than C

Lecturer = Person M Jteaches.Course

Student = Person M Jattends.Course

Then

Lecturer M Jattends.Course C 7 Student

Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a

hierarchy w.r.t. generality

. Person
Woman = Person " Female ¢ sg\
Man = Person M —=Woman Man Woman
MaleLecturer = Man 11 3teaches.Course /

MaleLecturer

Can be computed using multiple subsumption tests

Provides a principled view on ontology for browsing, maintaining, etc.

D

U
resden 15

Hierarchy

[
Oxygen Toxicity #1 —
Physiology #1
= Procedure #1
[E] Buctdy Breathing #1
[S] Budcy Check #1
E‘ Cardiopulmonary Eesuscitation #1
[2] off Cassing #1
[E] on Gassing #1
[E] rRecompression #1
E‘ Safety Stop #1
[C] staoed Decomprassion #1
o [E] qualification #1
[E] act #1
[c] a0 #1
[2] & #1
[c] cr#1
Redundancy #1
Respiration #1
Rule of Thirds #1
SCUBA #1
SEEDS #1
o [E] second Stage #1
Octopus #1
Technical Diving #1 ¥
& [E] Timing Device #1
Computer #1
Watch #1
B [E] wet Suit #1
Full et Suit #1
Long Jahin #1
Shortie #1
et Suit Jacket #1 b

D

resden 16

3]

A Concept Hierarchy

Excerpt from a process engineering ontology

iRy

e —— (TR
T

_——(COMPORTERGED—=——__ _ (O ARSESTETE)
T ———{COMPOSITECONNECT O = {CETRCSTR-POLYMER-REACTION-SECTION,
Tl
_ PHASE-BOUNDARY)
e @
S T oy @B

__{PLUG FLOW-POLYMERIZATION-REACTOR

~ __ {CONTINUOUS-STIRAED-POLYMERIZATION-REACTOR)

——{VAPOR PHASE)

{RBSTRACTFHASE) ——{REACTING LIQUID-PHASE
U
resden 17
14
Reasoning Tasks — Satisfiability
C is satisfiable w.r.t. 7 iff 7 has a model with CT # 0
Intuition: If unsatisfiable, the concept contains a contradiction.
Example: Woman = Person M Female
Man = Person M —=Woman
Then sibling.Man M Vsibling.Woman is unsatisfiable w.r.t. ‘T~
Subsumption can be reduced to (un)satisfiability and vice versa:
o C L+ Diff C N ~D is not satisfiable w.r.t. 7
@ (' is satisfiable w.r.t. T ifnot C C+ L.
b Many reasoners decide satisfiability rather than subsumption.
U

resden 18

Definitorial TBoxes

D

U
resden

A primitive interpretation for TBox 7 interpretes
@ the primitive concept names in T~

< all role names

A TBox is called definitorial if every primitive interpretation for 7~

can be uniquely extended to a model of 7.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

Person?

Person = Jparent.Person parent

Non-definitorial TBoxes describe constraints, e.g. from background knowledge

Acyclic TBoxes

resden

TBox T is acyclic if there are no definitorial cycles:

Lec urse

as-title. Title ht-by.Lecturer

Expansion of acyclic TBox 7:

exhaustively replace defined concept names with their definition

(terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, thenset AZ :=CZforal A=C € T

20

21

Acyclic TBoxes Il

For reasoning, acyclic TBox can be eliminated:
o to decide C C+ D with T acyclic,
- expand T~
- replace defined concept names in C, D with their definition
- decide C C D

@ analogously for satisfiability

May yield an exponential blow-up:
Ag = V’I’.Al M VS.Al
Al = V'I’.AQ M VS.AQ

Iy A, 1 =Vr.A, NVs.A,

U
resden 22
18

General Concept Inclusions

View of TBox as set of constraints

General TBox: finite set of general concept implications (GCls)
cCD
with both C and D allowed to be complex

e.g. Course 1 Vattended-by.Sleeping = Boring

Interpretation Z is model of general TBox 7T if
CTC D*foral CCD€T.

C = D is abbreviationfor CC D, DC C
e.g. Student M Jhas-favourite.SoccerTeam = Student M Jhas-favourite.Beer

b Note: C C D equivalentto T = C — D

resden 23 19

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C (a individual name, C concept)

(a,b) : R (a,b individual names, R role name)
E.g. {peter : Student, (dI-course, uli) : tought-by}
Interpretations Z map each individual name a to an element of AZ,

T satisfies an assertion
a:C iff
(a,b) : R ff

(a”,b7) € RE

T is a model for an ABox A if T satisfies all assertions in .A.

D

U
resden

ABoxes Il

Note:
@ interpretations describe the state if the world in a complete way

@ ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : tought-by uli : Female

does not imply

dl-course : Vtought-by.Female

An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox

resden

24

25

Reasoning with ABoxes

ABox consistency

Given an ABox A and a TBox 7, do they have a common model?

Instance checking

Given an ABox A, a TBox 7, an individual name a, and a concept C

does a € C* hold in all models of A and 7?

(written A, 7 = a : C)

The two tasks are interreducible:

D)

U
resden

o A consistent wrt. Tiff A, 7T fEa: L
@ AT Ea:Ciff AU {a: —~C} is not consistent

Example for ABox Reasoning

ABox

TBox

resden

dumbo : Mammal t14 : Trunk

M (dumbo, t14) : bodypart

(dumbo, g23) : color
dumbo : Vcolor.Lightgrey

Elephant = Mammal M Ibodypart. Trunk M Vcolor.Grey
Grey = Lightgrey LI Darkgrey
1 = Lightgrey 1 Darkgrey
1. ABox is inconsistent w.r.t. TBox.

2. dumbo is an instance of Elephant

26

27

2. Tableau algorithms for ALC and extensions

We see a tableau algorithm for ALC and extend it with
@ general TBoxes and

@ inverse roles

Goal: Design sound and complete desicion procedures for
satisfiability (and subsumption) of DLs which are

University o
Manchester

f

wel

I-suited for implementation purposes

A tableau algorithm for the satisfiability of ALC concepts

Goal:

Recall:

Idea:

design an algorithm which takes an ALC concept C and
1. returns “satisfiable” iff Cy is satisfiable and
2. terminates, on every input,

i.e., which decides satisfiability of ALC concepts.

such an algorithm cannot exist for FOL since
satisfiability of FOL is undecidable.

our algorithm
e is tableau-based and
e tries to construct a model of C
e by breaking Cy down syntactically, thus

e inferring new constraints on such a model.

Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C, into an equivalent C; in NNF

Equivalent: Cy C C; and C; C C)

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

—|(C|_|D) ~ =C U =D

—|(CL1D) ~» =aC M =D
-VR.C ~ IR.-C
—-3R.C ~ VR.-C

From now on: concepts are in NNF and
sub(C) denotes the set of all sub-concepts of C

niversity of
Manchester

f

More intuition

Find out whether AM3IR.BTMVR.—-B

is satisfiable...

AM3R.BAVR.(-BU3S.E)

Our tableau algorithm works on a completion tree which

niversity of
Manche:

o represents a model Z:

nodes represent elements of AZ
~- each node z is labelled with concepts £ (x) C sub(Cy)
C € L(x) is read as “x should be an instance of C”

edges represent role successorship
~~ each edge (x, y) is labelled with a role-name from C
R € L((z,y)) is read as “(x, y) should be in RZ"

o is initialised with a single root node o with £(xz¢) = {Co}

e is expanded using completion rules

f

Completion rules for ALC

iversity o
nchester

M-rule:

LI-rule:

F-rule:

V-rule:

f

if C,NC, e L(x)
then set L(z) = L(x) U {C4, C2}

if CiUC, € L(x)
then set L(xz) = L(x) U {C} for some C € {C4, C>}

if 38.C € L(=x)
then create a new node y with L({x,y)) = {S} and L(y) = {C}

if VS.C € L(x) and there is an S-successor y of
then set L(y) = L(y) U {C}

Properties of the completion rules for ALC

We only apply rules if their application does “something new”

M-rule:

LI-rule:

F-rule:

V-rule:

if C1 M Cz € L(m) and {Cl, Cz} Z L(LU)
then set £L(x) = L(z) U {C4, C2}

If Cl L Cz e L(w) and {Cl, Cz} M L(ZE) = @
then set L(x) = L(x) U {C} for some C € {C;,C>}

if 3S.C € L(x) and x has no S-successor y with C € L(y),
then create a new node y with £({x,y)) = {S} and L(y) = {C}

if VS.C € L(x) and there is an S-successor y of = with C' ¢ L(y)

then set L(y) = L(y) U {C}

Properties of the completion rules for ALC

The U-rule is non-deterministic:

M-rule: if C1MCy € L(x) and {C1, Co} Z L(x)

niversity of
Manchester

then set L(z) = L(x) U {C, C2}

U-rule: if Cl LJ Cg € L(IZZ) and {Cl, Cz} N L(:I}) = 0

then set L(z) = L(x) U {C} for some C € {C4, C>}

J-rule: if 3S.C € L(x) and x has no S-successor y with C € L(y),

V-rule: if VS.C € L(x) and there is an S-successor y of x with C ¢ L(y)

f

then create a new node y with L({x,y)) = {S} and L(y) = {C}

then set L(y) = L(y) U {C}

Last details on tableau algorithm for ALC

niversity of
Manchester

Clash: a c-tree contains a clash if it has a node = with L € L(x) or
{A, A} C L(x) — otherwise, it is clash-free

Complete: a c-tree is complete if none of the completion rules can be

applied to it

Answer behaviour: when started for Cy (in NNF!), the tableau algorithm

f

e is initialised with a single root node x, with £(xz¢) = {Co}

e repeatedly applies the completion rules (in whatever order it

likes)

e answer “Cy is satisfiable” iff the completion rules can be ap-
plied in such a way that it results in a complete and clash-free

c-tree (careful: this is non-deterministic)

...go back to examples

8

Properties of our tableau algorithm

Lemma: Let Cy an ALC-concept in NNF. Then
1. the algorithm terminates when applied to Cy and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff Cj is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.
2. Satisfiability (and subsumption) in ALC is decidable in PSpace.

3. ALC has the finite model property
i.e., every satisfiable concept has a finite model.

4. ALC has the tree model property
i.e., every satisfiable concept has a tree model.

5. ALC has the finite tree model property
i.e., every satisfiable concept has a finite tree model.

Extend tableau algorithm to ALC with general TBoxes |

Recall: e Concept inclusion: of the form C L D for C, D (complex) concepts
¢ (General) TBox: a finite set of concept inclusions
o T satisfies C L D iff CT C DY
e 7 is a model of TBox 7 iff Z satisfies each concept equation in 7~
e Cy is satisfiable w.r.t. 7 iff there is a model Z of 7 with CT # 0

Goal — Lemma: Let C, an ALC-concept and 7 be a an ALC-TBox. Then
1. the algorithm terminates when applied to 7~ and Cj and

2. the rules can be applied such that they generate a clash-free
and complete completion tree iff Cj is satisfiable w.r.t. 7.

Extend tableau algorithm to ALC with general TBoxes: Preliminaries A tableau algorithm for ALC with general TBoxes

Example: Consider satisfiability of C w.r.t. {C C 3R.C}

We extend our tableau algorithm by adding a new completion rule: Tableau algorithm no longer terminates!
o remember that nodes represent elements of AZ and
oif C E D € T, then for each element z in a model Z of T Reason: size of concepts no longer decreases along paths in a completion tree
if z € C?, then z € D* Observation: most nodes on this path look the same and
hence z € (~C)* or z € D* we keep repeating ourselves

T € (—|C L D)I
x € (NNF(-C u D))*

for NNF(E) the negation normal form of E

Regain termination with a “cycle-detection” technique called blocking

Intuitively, whenever we find a situation where y has to satisfy
stronger constraints than x, we freeze x, i.e., block rules from

iﬁ(w) CL(y)
being applied to x :

niversity of
Manchester

Completion rules for ALC with TBoxes A tableau algorithm for ,ALC with general TBoxes: Blocking

e x is directly blocked if it has an ancestor y with £(x) C £L(y)
e in this case and if y is the “closest” such node to x, we say that x is blocked by y
e a node is blocked if it is directly blocked or one of its ancestors is blocked

@ restrict the application of all rules to nodes which are not blocked

~ completion rules for ALC w.r.t. TBoxes

T-rule: if C; C Cy € T and NNF(—C; U Cs) & L(x)
then set £L(x) = L(z) U {NNF(-C; LU C3)}

niversity of
Manchester

University of
Manchester 2y

A tableau algorithm for ALC with general TBoxes Tableaux Rule for Transitive Roles

M-rule: if C1MCy € L(x), {C1,Ca} € L(x), and x is not blocked
then set L(z) = L(x) U {C1, C2}

U-rule: if CyUCsy € L(x), {Cy,C2} N L(x) = 0, and x is not blocked 1]:%. {vr.C,...} TV 2. {vR.C,...}

then set £L(z) = L(x) U {C} for some C € {C4, C>}

J-rule: if 3S.C € L(x), « has no S-successor y with C' € L(y), el ye v,)
and z is not blocked . o .
then create a new node y with £({(x,y)) = {S} and L(y) = {C} Where R is a transitive role (i.e., (R?)" = R”)
V-rule: if VS.C € L(z), there is an S-successor y of x with C ¢ L(y) = No longer naturally terminating (e.g., if C' = 3R.T)
and x is not blocked < Need blocking
then set L(y) = L(y) U {C} e Simple blocking suffices for ALC plus transitive roles

e |.e., do not expand node label if ancestor has superset label

e More expressive logics (e.g., with inverse roles) need more
sophisticated blocking strategies

T-rule: if C; C Cy €T, NNF(=C;UC,) & L(x)
and z is not blocked
then set £L(z) = L(x) U {NNF(-C; LU C>)}

Reasoning with Expressive Description Logics— p. 6/27
38 40

Tableaux Rules for ALC Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is

Q?’{ClﬂCQ,...} —n :L'.{Cll_ICQ,Cl,CQ,...} a transitive role

.T.{CluCQ,...} — .I.{CluCQ,C,...}
for C ¢ {01,02}

ze {3R.C,...} —3 ze {3R.C,...}

R

ye{C}
ze {VR.C,...} —y ze {VR.C,...}
R R

Reasoning with Expressive Description Logics — p. 5/27 Reasoning with Expressive Description Logics—p. 7/27
39 A

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C MVS.(~C U-D)N3R.CNVR.(AR.C)}

Reasoning with Expressive Description Logics — p. 7/27
42

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {3S.C NVS.(~C' U ~D) N 3R.C NVYR.(AR.C)}

Reasoning with Expressive Description Logics — p. 7/27
43

Tableaux Algorithm — Example

Test satisfiability
a transitive role

of 35.C' MVS.(~C U—~D) N 3R.CMVR.(3R.C)} where R is

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(AR.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability
a transitive role

of 3S.C NVS.(-C U-D)N3IR.CMNVR.(IR.C)} where R is

L(w) = {35.0,YS.(~C' U ~D),IR.C,YR.(AR.C)}

Reasoning with Expressive Description Logics—p. 7/27

44

45

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3IR.C,VR.(IR.C)}
S

L(z) ={C}

Reasoning with Expressive Description Logics — p. 7/27
46

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -D),3R.C,¥R.(3R.C)}
s

L(@) = {C} @

Reasoning with Expressive Description Logics — p. 7/27
47

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(-C' U~D),3R.C,YR.(AR.C)}
s

L(z) = {C,~C LU ~D}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -D),3R.C,¥R.(3R.C)}
S

L(x) = {C,~C'U-D} (=

Reasoning with Expressive Description Logics—p. 7/27

48

49

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(3R.C)}
s

L(2) = {C,(~CU-D),~C} (7} dlash

Reasoning with Expressive Description Logics — p. 7/27

50

51

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(~C U ~D),3R.C,¥R.(3R.C)}
S

L(z) = {C,~C U ~D}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -D),3R.C,¥R.(3R.C)}
s

L(x) = {C, (-C'u-D), —|D} @

Reasoning with Expressive Description Logics—p. 7/27

52

53

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(AR.C)}
s R

L(@) = {C,(~CU=D),~D} (& @ LW =1{C)

Reasoning with Expressive Description Logics — p. 7/27

54

55

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(-C U ~D),3R.C,VR.(3R.C)}

S R

@ LW =1{C)

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,¥R.(3R.C')}
s R

L(z) ={C,(=CU-D),~D} () () L) ={C,3RC,YR.(3R.C)}

Reasoning with Expressive Description Logics—p. 7/27

56

57

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}
s R

L(z) ={C,(-CU-D),~D}) L) = {C,3R.C,YR.(FR.C)}

Reasoning with Expressive Description Logics — p. 7/27
58

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(3R.C)}
s R

L(z) ={C,(=CU-D),~D} () L(y) = {C,3R.C,YR.(3R.C)}
R

L(z) ={C}

Reasoning with Expressive Description Logics — p. 7/27
59

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(AR.C)}

S R
L(z) = {C,(~C U-D),~D} L(y) = {C,3R.C,YR.(3R.C)}
R
L(z) ={C}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -~D),3R.C,¥R.(3R.C)}
s R

L(z) ={C,(-CU-D),-D} ©) L(y) = {C,3R.C,YR.(3R.C)}
R

L(z) = {C,3R.C,YR.(3R.C)}

Reasoning with Expressive Description Logics—p. 7/27

60

61

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

S R
L(z) = {C,(=C U-D),-D} L(y) = {C,3R.C,YR.(3R.C)}
R
blocked (2)L(z) = {C,3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(~C U ~D),3R.C,YR.(3R.C)}

S R
L(z) ={C, (=€ U~D),~D} (z) L(y) = {C,3R.C,YR.(3R.C)}
R
blocked L(z) = {C,3R.C,YR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics — p. 7/27

62

63

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(~C U ~D),3R.C,¥R.(3R.C)}

S R

i Cj@ L(y) = {C,3R.C,YR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics—p. 7/27

Properties of our tableau algorithm for ALC with TBoxes

Lemma: Let 7 be a general ALC-Tbox and Cy an ALC-concept. Then

1. the algorithm terminates when applied to 7~ and Cj and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff Cj is satisfiable w.r.t. 7.

Corollary: 1. Satisfiability of .ALC-concept w.r.t. TBoxes is decidable

2. ALC with TBoxes has the finite model property
3. ALC with TBoxes has the tree model property

21

64

niversity of
Manchester

A tableau algorithm for ,ALC with general TBoxes: Summary Summary

The tableau algorithm presented here < Description Logics are family of logical KR formalisms

< Applications of DLs include DataBases and Semantic Web
e Ontologies will provide vocabulary for semantic markup
e OWL web ontology language based on SHZQ DL

-+ decides satisfiability of .ALC-concepts w.r.t. TBoxes, and thus also
- decides subsumption of .ALC-concepts w.r.t. TBoxes

- uses blocking to ensure termination, and e Set to become W3C standard (OWL) & already widely adopted
- is non-deterministic due to the —-rule e Use of DL provides formal foundations and reasoning support
- in the worst case, it builds a tree of depth exponential in the size of the input, < DL Reasoning based on tableau algorithms

and thus of double exponential size. Hence it runs in (worst case) 2NExpTime, = Highly Optimised implementations used in DL systems
- can be implemented in various ways, = Challenges remain

— order /priorities of rules e Reasoning with full OWL language

— data structure e (Convincing) demonstration(s) of scalability

— etc. e New reasoning tasks
+ is amenable to optimisations — more on this next week e Development of (high quality) tools and infrastructure

2 Reasoning with Expressive Description Logics— p. 23/27

Challenges Resources

< |ncreased expressive power Slides from this talk

e Existing DL systems implement (at most) SHZQ

e OWL extends SHZQ with datatypes and nominals
< Scalability

e Very large KBs

e Reasoning with (very large numbers of) individuals

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/
FaCT system (open source)
http://www.cs.man.ac.uk/FaCT/
OIlEd (open source)

) http://oiled.man.ac.uk/
< Other reasoning tasks

. OIlL
e Querying
e Matching http://www.ontoknowledge.org/oil/
e Least common subsumer W3C Web-Ontology (WebOnt) working group (OWL)
° ... http://www.w3.0rg/2001/sw/WebOnt/
< Tools and Infrastructure DL Handbook, Cambridge University Press
e Support for large scale ontological engineering and deployment http://books.cambridge.org/0521781760.htm

Reasoning with Expressive Description Logics—p. 16/27 Reasoning with Expressive Description Logics— p. 25/27
67 69

