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Beschreibungslogiken (Description Logics) X

Beschreibungslogiken
B sind eine Familie von logik-basierten Wissensreprasentationssprachen
B stammen von semantischen Netzen und KL-ONE ab.

B beschreiben die Welt mit Konzepten (Klassen), Rollen (Relationen) und
Individuen.

B haben eine formale (typischerweise modell-theoretische) Semantik.

» Sie sind entscheidbare Fragmente der PL1

= und eng verwandt mit aussagenlogischen Modal- und Temporallogiken.
B bieten Inferenzmechanismen fir zentrale Probleme.

= Korrekte und vollstandige Entscheidungsverfahren existieren.

» Hoch-effiziente Implementierungen existieren.

B Einfache Sprache zum Start: 4 L( (Attributive Language with
Complement)

B Im Semantic Web wird SHOIND,) eingesetzt. Hierauf basiert die
Semantik von OWL DL.



Geschichte

B |hre Entwicklung wurde inspiriert durch semantische Netze und
Frames.

B Frihere Namen:
= KL-ONE like languages
= terminological logics

B Ziel war eine Wissensreprasentation mit formaler Semantik.

B Das erste Beschreibungslogik-basierte System war KL-ONE (1985).

B Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991),
CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).
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Recall: Logics and Model Theory

What is the Problem?

Consider a typical web page:
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Recall: Logics and Model Theory

What information can we see...

WWW2002

The eleventh international world wide web conference
Sheraton waikiki hotel

Honolulu, hawaii, USA

7-11 may 2002

1 location 5 days learn interact

Registered participants coming from

australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland,
italy, japan, malta, new zealand, the netherlands, norway, singapore,
switzerland, the united kingdom, the united states, vietnam, zaire

Register now

On the 7t May Honolulu will provide the backdrop of the eleventh international world
wide web conference. This prestigious event ...

Speakers confirmed

Tim berners-lee

Tim is the well known inventor of the Web, ...

lan Foster

lan is the pioneer of the Grid, the next generation internet ...



Recall: Logics and Model Theory

What information can a machine see...
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Recall: Logics and Model Theory

Solution: XML markup with “meaningful” tags?

<location> exMOSeOm +SSHEHEH O0eM @

fOmOedeem S+SH¥® +46¥ </location>

<date> @ahrory OsAE Bk </date>

<slogan>r=~ edOmexOm AcSHe OMISOm Xmem OSSN e</slogan>

<participants> um YoxeomOm 2 OSOEXMHYOSHEs MHOOKEY, XO0Q

SO+ 405N TH MSHMDBATE i e 2MEOSOLH LOSEMNE YWNOOSEREG Y nSHSE
O &OmYpas XELXSas XOMOSHLE HeSeRs erSOSEE 0S54 HN e
BMSOTHAG 41 ENEMNOSHLE BODSHG +HENSOOON G ++Xé%MNOeSHAE
2 OMYON L CHENAOOMm 4% GEXON L +0SeM B +XMNOBSOMm BISHOM,

</participants>

<introduction> &m Y )X+om o mOde

R el &% ¢SHAE pPONCGe® +Xee OOOLXLN x| QSm&L0O0d Ox e
mem <Mmess XmenONSeXOImTse O XN «M& MHORAMON MM @ wm)e
OOm «exXvexOees MM Ee O

ams&smoe momaxoom<e </introduction>
<speaker> #xQ QmoOmmOd«ahemnm </speaker>



Recall: Logics and Model Theory

But What About...

<place> exMOSeOm +THREEHEH wOeMm @
pOmOe e e neSH¥m +o6¥ </place>
<date> @ahrory oA Boe  </date>
<slogan> 7 eOmexOm agre eNosOm xmemosme </slogan>

<participants> wm YoXeomOmM 2 OSOEXMHH¥OSHEs MHOOKEY, XOOQ

GO O0TOHTH HSHDADEm hwKell LMEODO&LE Q2OSHMN G N OOSERE YmSHSEH
O &OmYpas XELXISasd XOMOSHLE HeSeRs erSOSEE O0SeéSas HN e
BN SOTHAm 4210 EN SN O0SELyE BOJSHAG +HENLSOOONMN G +eXéEMO0SHAT

¢, GEMXOM L EHEAOOMm ¢x2, GEXON L SN+ SHN IMTOrE  BHAM,
</participants>
<introduction> z&m YeX+«om o mOe

FE e &% ¢FSHE PONC0Gee® +}ee OOOXLN e QSNW&LLO0OO O emm
MOM <N Mes: XHONOMSOHOMSO +[I0102 oXal oM MORAM O WG G  Hm)e
O0Om+exvexXOee MM me O©

O ss&Moe mom2xogome  </introduction>
<speaker> #xQ QmoOmmode«hemm </speaker>



Recall: Logics and Model Theory

Machine sees...

<OOMCOXOM>e2M OIS OOM +BHEHESH w06 @

PONCIOGO@ 2 21TSeISHKA Té¥d</@ONTsexOIm>

<2 B >@ANrry OBHA BOOME</2S6NM>

<oV m>r~y  eOdNoseXOm L05He oM SOm XmeNOSMe</+00Vom>

<OSOOHMHOSHE SN e oMOM L OSOeXpHOSHer MHOOKMY, 2000

T OTOHTE MHTWMBLISEHR  [hanxell 2MEOBO&LHE XOSHENNE YNOOSEREG ViSRS
Oy &OmYpas XELXSA XOMOSHLE XeSeRds erSOSEE QOSeéeSa HN e
BMSOTHAm 40| EN RN OSHLy G BOJ+SHME +HENLSOOONM M +e¥eéRMNOJeSHLH
N OEXOML &CHEAOOMm 4241 GEXNL +0SeN B X 6BSOm
BOHOM </OSTEHMHOTSHE +>

<HEOOOL@MeXOm>BM Vo XeomM O mOe

R e &% ¢SEA PORC0eee +Xee OO0 e HSH&SO0OO Oxr exxn
men<mmesn XmemOmSSEXOMIse <000 «xap N8 MHOmRMOMEpM @  HnHe
O0OM XV XOes MemMme O

éONSS&&M O MOWMAHKOOM </ XEeOOL S ¢ XOm>

<OMBEMO>%¥Q QM Omm Oechom m </+0On s&sn 0>

<O SEMO>% S e O</+OM SEM >
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Recall: Logics and Model Theory

Ontology/KR languages aim to model (part of) world
Terms in language correspond to entities in world

Meaning given by, e.g.:

B Mapping to another formalism, such as FOL, with own well defined
semantics

B or a Model Theory (MT)

MT defines relationship between syntax and interpretations
B There can be many interpretations (models) of one piece of syntax
B Models supposed to be analogue of (part of) world
= E.g., elements of model correspond to objects in world
B Formal relationship between syntax and models
= Structure of models reflect relationships specified in syntax

B Inference (e.g., subsumption) defined in terms of MT
= E.g., TF ALC B iffin every model of 7, ext(A) C ext(B)

11



Recall: Logics and Model Theory X
EEE

Many logics (including standard First Order Logic) use a model theory based
on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as A)

Objects in the world are interpreted as elements of A

B Classes/concepts (unary predicates) are subsets of A
B Properties/roles (binary predicates) are subsets of A x A (i.e., A?)

B Ternary predicates are subsets of A3 etc.

The sub-class relationship between classes can be interpreted as set
inclusion.

12



Recall: Logics and Model Theory

Model Interpretation

Daisy isA Cow
Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Mary drives Z123ABC

13



Recall: Logics and Model Theory X

Formally, the vocabulary is the set of names we use in our
model of (part of) the world
m {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
An interpretation Z is a tuple ( A, )
B Ais the domain (a set)
M 7 is a mapping that maps
= Names of objects to elements of A

= Names of unary predicates (classes/concepts) to subsets
of A

= Names of binary predicates (properties/roles) to
subsets of A x A

= And so on for higher arity predicates (if any)

14



DL Architecture

Man = Human n Male

Happy-Father = Man N 3 has-child
Female n ...

John : Happy-Father
(John, Mary) : has-child

15



DL Knowledge Base X

DL Knowledge Base (KB) normally separated into 2 parts:

B TBox is a set of axioms describing structure of domain (i.e., a conceptual
schema), e.g.:

» HappyFather = Man A JhasChild.Female A ...
= Elephant = Animal A Large A Grey
» transitive(ancestor)

B ABox is a set of axioms describing a concrete situation (data), e.g.:
= John:HappyFather
» <John,Mary>:hasChild

Separation has no logical significance
B But may be conceptually and implementationally convenient

16



DL Semantics X

Interpretation function X extends to concept expressions in
the obvious way, i.e.:

(cnD)yY=ctnpt
(CuD)l=ctupt

(-C)f =\t

{z}t = {z*}

(3R.C)L = {z | Jy.(x,y) € Rt Ay € C%}
(VR.C)L = {z | Vy.(z,y) € R = y € C1}
(<nR)! = {z | #{y | (z,y) € R"} <n}
(znR)! = {z | #{y | (z,y) € R*} > n}

17



DL Knowledge Bases (Ontologies)

A DL Knowledge Base is of the form K = (T, A)

B 7 (Tbox) is a set of axioms of the form:
= C C D (concept inclusion)

C = D (concept equivalence)

R E S (role inclusion)

R = S (role equivalence)

R+ C R (role transitivity)

B A (Abox) is a set of axioms of the form
» x € D (concept instantiation)
» (x,y) € R (role instantiation)

Two sorts of Thox axioms often distinguished
W “Definitions”
= CCE Dor C=Dwhere C is a concept name
B General Concept Inclusion axioms (GCIs)
= C C D where C is an arbitrary concept

18



Knowledge Base Semantics

An interpretation 7 satisfies (models) an axiom A (ZE A):
B ZECCDIffCICD?

IEC=DIiffCZT=D?

IFRCSIffRIC ST

IER=SiffRT=5%

Tk Rt CRiff(RH)T C RT

ITExeDiffxft e D

TE (x,y) € Riff (x1,y%) € R?

7 satisfies a Thox 7 (Z E T) iff Z satisfies every axiom A in T

7 satisfies an Abox A (Z E A) iff Z satisfies every axiom A in A

7 satisfies an KB K (Z E K) iff Z satisfies both 7 and A

19



Inference Tasks
N

Knowledge is correct (captures intuitions)
B C subsumes D w.r.t. K iff for every model Z of K, CT C D?

Knowledge is minimally redundant (no unintended synonyms)
B Cis equivalent to D w.r.t. K iff for every model Z of K, C* = D?

Knowledge is meaningful (classes can have instances)
B C is satisfiable w.r.t. K iff there exists some model Z of £ s.t. CT = ()

Querying knowledge
B xis an instance of C w.r.t. K iff for every model Z of K, xX € CZ
B (x,y) is an instance of R w.r.t. K iff for, every model Z of K, (x%,y%) € R

Knowledge base consistency
B A KB K is consistent iff there exists some model Z of K

20



Syntax fiir DLs (ohne concrete domains)

Hitzler & Sure, 2005

Ontology (=Knowledge Base)

Atomic A, B
Not —C
Ol And CMmD
ZEI Or C upD
Exists dR.C
For all VR.C
=1 At least >n R.C (=n R)
5 At most <n R.C (£n R)
O| Nominal {i1,..,1,}
Atomic R
- Inverse R~

S = ALC + Transitivity

Subclass C LD
Equivalent C =D
T | Subrole R L S
N Transitivity Trans (S)
Instance C(a)
Role R(a,b)
Same a =>b
Different a #b

OWL DL = SHOIN(D)

AIFB ©

(D: concrete domain)

Folie 22



The Description Logic ALC: Syntax

Atomic types: concept names A, B, ... (unary predicates)
role names R, S, ... (binary predicates)
Constructors: - =C (negation)
-CnbD (conjunction)
-CuUuD (disjunction)
-3dR.C (existential restriction)
-VR.C (value restriction)

Abbreviations: - C — D = —C U D (implication)
.C+ D=C — D (bi-implication)
NnD—C
-T=(AU-A) (top concept)
B -1l =AMN-A (bottom concept)

resden



Examples

resden

Q

)

Person M Female

Person M dattends.Course

Person M Vattends.(Course — —Easy)

Person M Jteaches.(Course M Vattended-by.(Bored LI Sleeping))



Interpretations

Semantics based on interpretations (AZ, -%), where

— A7 is a non-empty set (the domain)
— T is the interpretation function mapping

each concept name A to a subset AZ of AZ and

each role name R to a binary relation RZ over AZ.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure

with only unary and binary predicates

resden



Example

resden

attends

Student
Person

Course

o<

Person
teaches Lecturer
attends
attends
[ J

Course
Difficult

Student

Sleeping

Person



Semantics of Complex Concepts I

(—-C) =AT\c* (cnD¥}=c*nD* (CuDb)*=cCc*uD?
(IR.C)* = {d | thereis an e € AT with (d,e) € R? and e € C*}
(VR.C)t = {d | forall e € AZ, (d,e) € R* implies e € C*}

Person
Course teaches Lecturer

o
el

attends

attends attends
Course
Difficult

Student Student

Person Sleeping

Person

Person M dattends.Course

b Person M Vattends. (—Course U Difficult)

resden 10



TBoxes

Capture an application’s terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:
finite set of concept equations A = C
with A concept name and C' concept
left-hand sides must be unique!
Semantics:

interpretation Z satisfies A = C iff AT = C?

Z is model of 7 if it satisfies all definitions in 7T~

E.g.: Lecturer = Person M 3teaches.Course

b Yields two kinds of concept names: defined and primitive

resden 11



TBox: Example

resden

TBoxes are used as ontologies:

Woman = Person M Female

Man = Person M —=Woman
Lecturer = Person M Jteaches.Course
Student = Person M Jattends.Course

BadLecturer = Person M1 Vteaches.(Course — Boring)

12



TBox: Example Il

A TBox restricts the set of admissible interpretations.

Lecturer = Person M Jteaches.Course

Student = Person M Jattends.Course

Student
Person
Course teaches Lecturer

o<

attends
attends attends
Course
Difficult
Student Student
Person Sleeping
B Person

resden

13
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Reasoning Tasks — Subsumption

C subsumed by D w.r.t. 7 (written C C+ D)
iff

C* C D7 holds for all models Z of T~

Intuition: If C C+ D, then D is more general than C

Example:

Lecturer = Person M 3teaches.Course

Student = Person M Jattends.Course

Then

Lecturer M Jattends.Course L Student

resden



Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a

hierarchy w.r.t. generality

Person

Woman = Person M Female / v\

Man = Person M1 =Woman Man Woman

MaleLecturer = Man 1 Jteaches.Course /
MaleLecturer

Can be computed using multiple subsumption tests

Provides a principled view on ontology for browsing, maintaining, etc.

resden 15
12



resden

Hierarchy

=] Procedure #1

B

il QIR NS P R Py Ty PR

[=]

[2]a]l=]a]E [a]l=]a]e]=]a]e]

[=][=]a]l=]o]e]

[=][=]]

[=]

I

[=[ol[x]

Iy

Csagen Toxicits #1
Physiology #1

Buddyy Breathing #1
Buddhy Check #1
Cardiopulmonary Fesuscitation #1
Off Sassing #1

o Cassing #1
Fecompression #1

Safety Stop #1

Staged Decompression #1
alification #1

AL #1

Al #1

Al #1

Cl#1
Fedundancy #1
Fespiration #1
Fule of Thirds #1
SCUBA #1

SEEDS #1

Second Stage #1
octopus #1
Technical Diving #1
Tirning Device #1
LE| Computer #1
LC| Wratch #1

et Suit #1

C| Full et Suit #1
[

[

[

Long John #1
Shortie #1
et SUit Jacket #1

[«]

Done

16
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A Concept Hierarchy

Excerpt from a process engineering ontology

IDEAL-LIQUID-PHASE

_——~{REACTOR4

(o)

___________————’@"—&—_EE:—H_,&’L_ —(COLOMTISECTION)
,--—@“:—_—_—_________ " A_____“‘-———lmum PLE-PHASE-GYSTEM)

___——__———{ZOMFOSITECOMNECTDFT‘ — {CETRCETR-POLYMER-REACTION-SECTIOHN,

I

_—{prAsEROUNDARY)

e o e

_____———{ELLIX-ODMI-JECTIOF!t FIP
__—APLUS-FLOW-POLYMERIZATION REACTOH

~ _{CONTHUOUS-STIRRED-POLYMERIZATION-REACTCR)

— |Hw5
= —————/{REACTING -LIQUID-FHASE)
—
U
resden 7
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Reasoning Tasks — Satisfiability

resden

C is satisfiable w.r.t. 7 iff ‘7 has a model with C* # 0

Intuition: If unsatisfiable, the concept contains a contradiction.

Example: Woman = Person M Female

Man = Person M —=Woman

Then sibling.Man M Vsibling.Woman is unsatisfiable w.r.t. 7~

Subsumption can be reduced to (un)satisfiability and vice versa:

@ C C+ Diff C =D is not satisfiable w.r.t. 7
@ (' is satisfiable w.r.t. 7 ifnot C C L.

Many reasoners decide satisfiability rather than subsumption.

18
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Definitorial TBoxes

A primitive interpretation for TBox 7 interpretes
@ the primitive concept names in 7T~

@ all role names

A TBox is called definitorial if every primitive interpretation for 7~

can be uniquely extended to a model of 7.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

. ?
Person = dparent.Person Person! parent

b Non-definitorial TBoxes describe constraints, e.g. from background knowledge

resden 20
16



Acyclic TBoxes

TBox 7T is acyclic if there are no definitorial cycles:

/
~course

erson M dtea

as-title. Title ht-by.Lecturer

Expansion of acyclic TBox 7

exhaustively replace defined concept names with their definition

(terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, thenset AZ :=CZforal A=C €T

resden 21
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Acyclic TBoxes Il

For reasoning, acyclic TBox can be eliminated:
@ to decide C' L+ D with 7 acyclic,

— expand T
— replace defined concept names in C', D with their definition

—decide C L D

@ analogously for satisfiability

May yield an exponential blow-up:

.fl()ﬁf: \77°“/11 1 \fé?hfll
./11 = \77°L/12 1 \fé?hfiz

) A,_; =Vr.A,MVs.A,

resden

22

18



General Concept Inclusions

View of TBox as set of constraints

General TBox: finite set of general concept implications (GCls)
CLD
with both C' and D allowed to be complex

e.g. Course M Vattended-by.Sleeping L Boring

Interpretation Z is model of general TBox 7T if

CICD*fralCCDeT.

C = D is abbreviation for C C D, D C C

e.g. Student M Jhas-favourite.SoccerTeam = Student M Jhas-favourite.Beer

b Note: C C D equivalentto T =C — D

resden 23
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ABoxes

resden

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C (a@ individual name, C' concept)

(a,b) : R (a,b individual names, R role name)

E.g. {peter : Student, (dl-course, uli) : tought-by}

Interpretations Z map each individual name a to an element of AZ.

Z satisfies an assertion
a:C iff af € C*
(a,b) : R iff (a®,b?) € R*

Z is a model for an ABox A if Z satisfies all assertions in A.

24
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ABoxes Il

Note:
@ interpretations describe the state if the world in a complete way

@ ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : tought-by uli : Female
does not imply

dl-course : Vtought-by.Female

An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox

resden 25
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Reasoning with ABoxes

ABox consistency

Given an ABox A and a TBox 7, do they have a common model?

Instance checking

Given an ABox A, a TBox 7, an individual name a, and a concept C

does aZ € CZ hold in all models of A and 7?
(written A, T = a : C)

The two tasks are interreducible:

o A consistent wrt. Tiff A, 7T EFa: L
@ AT Ea:Ciff AU{a:—-C} is not consistent

resden 26
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Example for ABox Reasoning

ABox

TBox

resden

dumbo : Mammal t14 : Trunk

M (dumbo, t14) : bodypart

(dumbo, g23) : color

dumbo : Vcolor.Lightgrey

Elephant = Mammal M1 3bodypart. Trunk M1 Vcolor.Grey
Grey = Lightgrey LI Darkgrey
1 = Lightgrey M1 Darkgrey
1. ABox is inconsistent w.r.t. TBox.

2. dumbo is an instance of Elephant

27
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2. Tableau algorithms for ALC and extensions

We see a tableau algorithm for ALC and extend it with

[1 general TBoxes and

[] inverse roles

Goal: Design sound and complete desicion procedures for
satisfiability (and subsumption) of DLs which are
well-suited for implementation purposes

University of
Manchester
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A tableau algorithm for the satisfiability of ALC concepts

Goal: design an algorithm which takes an ALC concept Cy and
1. returns “satisfiable” iff Cl is satisfiable and
2. terminates, on every input,

i.e., which decides satisfiability of ALC concepts.

Recall: such an algorithm cannot exist for FOL since
satisfiability of FOL is undecidable.

Idea: our algorithm
e is tableau-based and
e tries to construct a model of C|
e by breaking C, down syntactically, thus

e inferring new constraints on such a model.




Preliminaries: Negation Normal Form

To make our life easier, we transform each concept Cj into an equivalent C; in NNF

Equivalent: C() E Cl and Cl E C()
NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

—|(C [ D) -C U -D
—|(C LI D) -C M =D
—-C C
-VR.C dR.—~C
—dR.C VR.-C

¢

¢ ¢ e

From now on: concepts are in NNF and
sub(C') denotes the set of all sub-concepts of C

niversity of
anchester
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More intuition

Find out whether AMJdR.BTMNVYR.—B is satisfiable...
AM3dR.BMVYR.(-BU3S.E)

Our tableau algorithm works on a completion tree which

e represents a model Z: nodes represent elements of AZ
~~ each node x is labelled with concepts £(x) C sub(C))
C € L(x) is read as “x should be an instance of C”

edges represent role successorship
~~ each edge (x,y) is labelled with a role-name from Cj
R € L({x,y)) is read as “(x, y) should be in RZ"
e is initialised with a single root node xy with £(xy) = {Cy}

e is expanded using completion rules

niversity of
anchester
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Completion rules for ALC

M-rule: if C;11Cy € L(x)
then set L(x) = L(x) U {C1, C5}

L-rule: if C;UCy € L(x)
then set L(x) = L(x) U {C} for some C € {C,C>}

F-rule: if 3IS.C € L(x)
then create a new node y with £L({x,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x) and there is an S-successor y of x
then set L(y) = L(y) U {C}

niversity of
anchester
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Properties of the completion rules for ALC

We only apply rules if their application does “something new”

M-rule: if Cl [ Cz & L(ZB) and {Cl, Cz} Z L(w)
then set L(x) = L(x) U {C, Cs}

Li-rule: if Cl L Cz & L(az) and {Cl, CQ} M L(ac) = @
then set L(x) = L(x) U {C} for some C € {C1, C>}

J-rule: if 3IS.C € L(x) and x has no S-successor y with C' € L(y),
then create a new node y with £({x,y)) = {S} and L(y) = {C'}

V-rule: if VS.C € L(x) and there is an S-successor y of x with C' & L(y)
then set L(y) = L(y) U {C'}

niversity of
anchester
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Properties of the completion rules for ALC

The LI-rule is non-deterministic:
M-rule: if C1MCy € L(x) and {C1,C2} L L(x)
then set L(x) = L(x) U {C1, C5}

Li-rule: if Cl L Cz & L(CE) and {Cl, Cz} M L(a:) — @
then set L(x) = L(x) U {C} for some C € {Cy,C>}

F-rule: if 3S.C € L(x) and x has no S-successor y with C' € L(y),
then create a new node y with £L({x,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x) and there is an S-successor y of  with C' & L(y)
then set L(y) = L(y) U {C}

University of
nchester
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Last details on tableau algorithm for ALC

Clash: a c-tree contains a clash if it has a node = with L € L(x) or
{A, A} C L(x) — otherwise, it is clash-free
Complete: a c-tree is complete if none of the completion rules can be
applied to it

Answer behaviour: when started for C (in NNF!), the tableau algorithm
e is initialised with a single root node = with L(xo) = {Cy}

e repeatedly applies the completion rules (in whatever order it
likes)

e answer “Cy is satisfiable” iff the completion rules can be ap-
plied in such a way that it results in a complete and clash-free
c-tree (careful: this is non-deterministic)

...go back to examples

University of 3
Manchester
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Properties of our tableau algorithm

Lemma: Let Cy an ALC-concept in NNF. Then
1. the algorithm terminates when applied to C| and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff Cj, is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.
2. Satisfiability (and subsumption) in ,ALC is decidable in PSpace.

3. ALC has the finite model property
i.e., every satisfiable concept has a finite model.

4. ALC has the tree model property
i.e., every satisfiable concept has a tree model.

5. ALC has the finite tree model property
i.e., every satisfiable concept has a finite tree model.
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Extend tableau algorithm to ALC with general TBoxes

Recall: e Concept inclusion: of the form C' C D for C, D (complex) concepts
e (General) TBox: a finite set of concept inclusions
e 7 satisfies C C D iff CZ C DZ
e 7 is a model of TBox 7 iff Z satisfies each concept equation in 7
o C) is satisfiable w.r.t. 7 iff there is a model Z of T with CZ # 0

Goal — Lemma: Let Cy an ALC-concept and 7 be a an ALC-TBox. Then
1. the algorithm terminates when applied to 7 and C, and

2. the rules can be applied such that they generate a clash-free
and complete completion tree iff Cj is satisfiable w.r.t. 7.




Extend tableau algorithm to ALC with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:
e remember that nodes represent elements of AZ and

oif C E D € T, then for each element x in a model Z of 7
if £ € C%, then x € D?*
hence z € (—C)% or x € D*
x € (-C U D)I
x € (NNF(=C u D))*

for NNF(E) the negation normal form of E

niversity of
anchester
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Completion rules for ALC with TBoxes

M-rule: if CyMCs € L(x) and {C1,C>} € L(x)
then set L(x) = L(x) U {C, C>}

Li-rule: if Cl LI CQ - L(CE) and {Cl, CQ} M L(LB) — @
then set L(x) = L(x) U {C} for some C € {C;, Cs}

F-rule: if 3IS.C € L(x) and x has no S-successor y with C' € L(y),
then create a new node y with £({x,y)) = {S} and L(y) = {C'}

V-rule: if VS.C € L(x) and there is an S-successor y of x with C' & L(y)
then set L(y) = L(y) U {C}

T-rule: if C; C C, €T and NNF(—=C; U C») € L(x)
then set L(x) = L(x) U {NNF(-C; U C5)}




A tableau algorithm for ALC with general TBoxes

Example: Consider satisfiability of C w.r.t. {C C 3R.C}
Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and
we keep repeating ourselves

Regain termination with a “cycle-detection” technique called blocking

Intuitively, whenever we find a situation where y has to satisfy
stronger constraints than x, we freeze x, i.e., block rules from

£(z) C L(y)
being applied to x .

University of
Manchester
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A tableau algorithm for ALC with general TBoxes: Blocking

e x is directly blocked if it has an ancestor y with £(x) C L(y)
e in this case and if y is the “closest” such node to x, we say that x is blocked by y
e a node is blocked if it is directly blocked or one of its ancestors is blocked

P restrict the application of all rules to nodes which are not blocked

~> completion rules for ALC w.r.t. TBoxes

niversity of 19
anchester
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A tableau algorithm for ALC with general TBoxes

M-rule: if CyMNCs € L(x), {C,C2} € L(x), and x is not blocked
then set L(x) = L(x) U {C, C>}

U-rule: if CiUCs € L(x), {C1,C2} N L(x) = 0, and = is not blocked
then set L(x) = L(x) U {C} for some C € {C, C>}

J-rule: if IS.C € L(x), = has no S-successor y with C' € L(y),
and x is not blocked
then create a new node y with £({x,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x), there is an S-successor y of x with C' ¢ L(y)
and x is not blocked
then set L(y) = L(y) U {C'}

T-rule: if C,C Cy €7, NNF(-C,UC,) € L(x)
and x is not blocked
then set L(x) = L(x) U {NNF(-C; U C5)}

niversity of
anchester




Tableaux Rules for ALC

ZC‘{01|_|02,...} —nM x‘{clﬂCQ,Cl,CQ,...}
ZE‘{CluOQ,...} — x-{Cll_ICg,C,...}

for C' ¢ {01,02}
re (AR.C,..} | s (3R.C,...)
e IVR.C,..} | —y (YR.C,...}
R

Reasoning with Expressive Description Logics — p. 5/27
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Tableaux Rule for Transitive Roles

re {VR.C,...} —v, | ze{VR.C,...}
R R

yed{. .. ye {VR.C,...}

Where R is a transitive role (i.e., (R1)* = R?)

[ No longer naturally terminating (e.g., if C' = 4dR.T)
[J Need blocking
e Simple blocking suffices for ALC plus transitive roles

e l.e., do not expand node label if ancestor has superset label

e More expressive logics (e.g., with inverse roles) need more
sophisticated blocking strategies

Reasoning with Expressive Description Logics — p. 6/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C NVS.(=C LU -D) M 3IR.C MVYR.(3R.C)}

)

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C MVS.(=C U ~D)M3IR.CNVYR.(3R.C)}

)

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

)

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,¥S.(-C LU -D),3R.C,YR.(3R.C)}

)

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,¥S.(-C LU -D),3R.C,YR.(3R.C)}

S

L(z) = {C} @

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,¥R.(3R.C)}

S

L(z) = {C} @

Reasoning with Expressive Description Logics — p. 7/27
47



Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}

S

L(x)={C,-CU-D} @

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S

L(z)={C,-CU-D} @

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}
S

L(x) = {C, (~C'LU =D),~C} (7

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}
S

L(z) = {C,(~CU-D),~C} (zf dlash

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S

L(z)={C,-CU-D} @

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(-C U -D),3R.C,YR.(3R.C)}
S

L(z) = {C, (~C U=D),~D} (7}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S

L(z) = {C,(=CU=D),~D} (7}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(x)

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}

S R

{C.(~=C U~D),~D} (3 @) L) ={C)

Reasoning with Expressive Description Logics — p. 7/27

55



Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(x)

L(w) = {35.C,VS.(~C U—-D),3R.C,YR.(3R.C)}

S R

{C.(~=C U~D),~D} (3 @) L) ={C)

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U—-D),3R.C,YR.(3R.C)}
S R

L(x) = {C,(~C U=D),~D} (7 (V) £(y) = {C,3R.C.VR.(3R.0)}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(x) = {C, (~C U=D),~D} (7 (¥) £(y) = {C,3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(x)

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

{C,(=C u-D),~D} (7 (¥) £ (y) = {C,3R.C.VR.(3R.C)}

R
(L) = {0}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(x)

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

{C,(=Cu-D),~D} (7 (¥) £ (y) = {C.3R.C,YR.(3R.O)}

R
(L) = {0}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(x)

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

{C,(=Cu-D),~D} (7 (¥) £ (y) = {C.3R.C,YR.(3R.O)}

R

é L(z) = {C,3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(z) = {C,(~C U=D),~D} (7 L(y) = {C,3R.C,YR.(3R.C)}
R

blocked (2 £(2) = {C,3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,YR.(3R.C)}
S R

L(z) = {C,(~C U=D),~D} (7 () L) = {C.3R.C,VR.(GR.0)}

R

blocked @é L(z) = {C,3R.C,YR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics — p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-CU—-D)N3R.CNMVR.(IR.C')} where R is
a transitive role

L(w) = {35.C,VS.(~C U -D),3R.C,¥R.(3R.C)}

S R

L(z) = {C,(=C U =D),~D} (7} - @ L(y) = {C,3R.C,VR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics — p. 7/27
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Properties of our tableau algorithm for ALC with TBoxes

Lemma: Let 7 be a general ALC-Tbox and C, an ALC-concept. Then
1. the algorithm terminates when applied to 7 and C, and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff C|, is satisfiable w.r.t. 7.

Corollary: 1. Satisfiability of .ALC-concept w.r.t. TBoxes is decidable
2. ALC with TBoxes has the finite model property
3. ALC with TBoxes has the tree model property
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A tableau algorithm for ALC with general TBoxes: Summary

The tableau algorithm presented here

[1 decides satisfiability of . ALC-concepts w.r.t. TBoxes, and thus also
[J decides subsumption of ALC-concepts w.r.t. TBoxes

[1 uses blocking to ensure termination, and

[1 is non-deterministic due to the — | -rule

[] in the worst case, it builds a tree of depth exponential in the size of the input,
and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,

[1 can be implemented in various ways,

— order/priorities of rules
— data structure
— etc.

[] is amenable to optimisations — more on this next week

University of
Manchester
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Challenges

[1 Increased expressive power
e EXisting DL systems implement (at most) SHZ QO
e OWL extends SHZQ with datatypes and nominals

[1 Scalability

e \ery large KBs
e Reasoning with (very large numbers of) individuals

[1 Other reasoning tasks

e Querying
e Matching
e |Least common subsumer

[1 Tools and Infrastructure
e Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics — p. 16/27
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Summary

[1 Description Logics are family of logical KR formalisms

[1 Applications of DLs include DataBases and Semantic Web
e Ontologies will provide vocabulary for semantic markup
e OWL web ontology language based on SHZQ DL
e Setto become W3C standard (OWL) & already widely adopted
e Use of DL provides formal foundations and reasoning support

[1 DL Reasoning based on tableau algorithms
[1 Highly Optimised implementations used in DL systems

[1 Challenges remain
e Reasoning with full OWL language
e (Convincing) demonstration(s) of scalability
e New reasoning tasks
e Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics — p. 23/27
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Resources

Slides from this talk
http://ww. cs. man. ac. uk/ ~horrocks/ Sli des/ I nnsbruck-tutorial/
FaCT system (open source)
http://ww. cs. man. ac. uk/ FaCT/
OIlEd (open source)
http://oiled. man. ac. uk/
OIL
http://ww. ont oknow edge. org/oil/
W3C Web-Ontology (WebOnt) working group (OWL)
http://ww. w3. org/ 2001/ sw WebOnt /
DL Handbook, Cambridge University Press
htt p:// books. canbri dge. org/ 0521781760. ht m

Reasoning with Expressive Description Logics — p. 25/27
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