## UNIKASSEL

endowed chair of the hertie foundation **Knowledge and Data Engineering** electrical engineering & computer science, university of kassel



Vorlesung Künstliche Intelligenz Wintersemester 2007/08

# Teil III: Wissensrepräsentation und Inferenz

# Kap.10: Beschreibungslogiken

Mit Material von

Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24 Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/ A family of logic based Knowledge Representation formalisms

- Descendants of semantic networks and KL-ONE
- Describe domain in terms of concepts (classes), roles (relationships) and individuals

Distinguished by:

- Formal semantics (typically model theoretic)
  - Decidable fragments of FOL
  - Closely related to Propositional Modal & Dynamic Logics
- Provision of inference services
  - Sound and complete decision procedures for key problems
  - Implemented systems (highly optimised)
- Einfache Sprache zum Start: *ALC* (Attributive Language with Complement)
- Im Semantic Web wird *SHOIN*(D<sub>n</sub>) eingesetzt. Hierauf basiert die Semantik von OWL DL.



- Ihre Entwicklung wurde inspiriert durch semantische Netze und Frames.
- Frühere Namen:
  - KL-ONE like languages
  - terminological logics
- Ziel war eine Wissensrepräsentation mit formaler Semantik.
- Das erste Beschreibungslogik-basierte System war KL-ONE (1985).
- Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991), CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).

#### Literatur



- D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.): Description Logic Handbook, Cambridge University Press, 2002, 5-44.
- F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook, 47-100.
- Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language.
  - http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoP H03a.pdf



Ontology/KR languages aim to model (part of) world

Terms in language correspond to entities in world

Meaning given by, e.g.:

- Mapping to another formalism, such as FOL, with own well defined semantics
- or a Model Theory (MT)
- MT defines relationship between syntax and interpretations
  - There can be many interpretations (models) of one piece of syntax
  - Models supposed to be analogue of (part of) world
    - E.g., elements of model correspond to objects in world
  - Formal relationship between syntax and models
    - Structure of models reflect relationships specified in syntax
  - Inference (e.g., subsumption) defined in terms of MT
    - E.g.,  $\mathcal{T} \vDash A \sqsubseteq B$  iff in every model of  $\mathcal{T}$ ,  $ext(A) \subseteq ext(B)$

Many logics (including standard First Order Logic) use a model theory based on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often referred as  $\Delta$ )

Objects in the world are interpreted as elements of  $\boldsymbol{\Delta}$ 

- Classes/concepts (unary predicates) are subsets of ∆
- Properties/roles (binary predicates) are subsets of  $\Delta \times \Delta$  (i.e.,  $\Delta^2$ )
- Ternary predicates are subsets of  $\Delta^3$  etc.

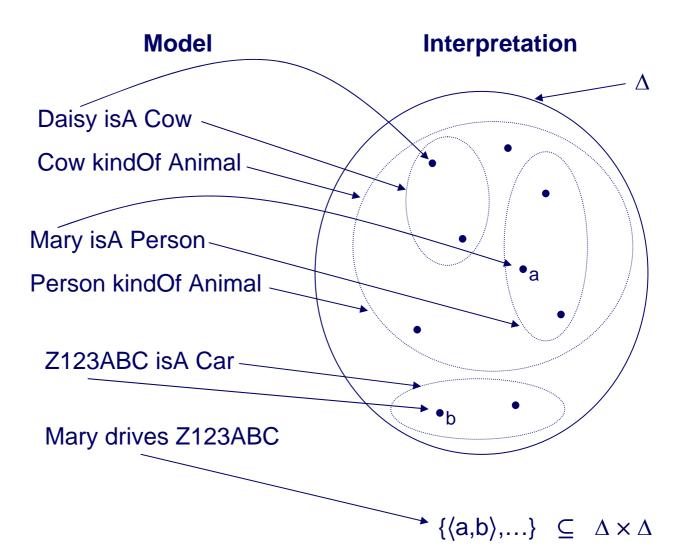
The sub-class relationship between classes can be interpreted as set inclusion.













Formally, the vocabulary is the set of names we use in our model of (part of) the world

■ {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...} An interpretation  $\mathcal{I}$  is a tuple  $\langle \Delta, \cdot^{\mathcal{I}} \rangle$ 

- $\Delta$  is the domain (a set)
- $\blacksquare$   $\mathcal{I}$  is a mapping that maps
  - Names of objects to elements of  $\Delta$
  - Names of unary predicates (classes/concepts) to subsets of  $\boldsymbol{\Delta}$
  - Names of binary predicates (properties/roles) to subsets of  $\Delta \times \Delta$
  - And so on for higher arity predicates (if any)



## Knowledge Base

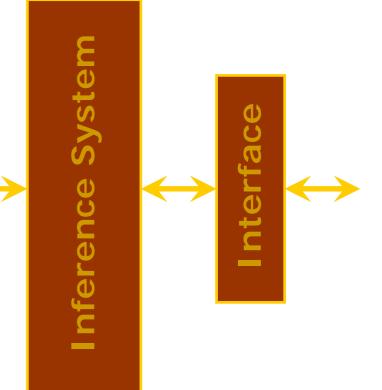
### Tbox (schema)

 $\mathsf{Man} \equiv \mathsf{Human} \sqcap \mathsf{Male}$ 

Happy-Father  $\equiv$  Man  $\sqcap \exists$  has-child Female  $\sqcap \dots$ 

## Abox (data)

John : Happy-Father (John, Mary) : has-child





DL Knowledge Base (KB) normally separated into 2 parts:

- TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
  - HappyFather = Man  $\land \exists$ hasChild.Female  $\land ...$
  - Elephant = Animal \land Large \land Grey
  - transitive(ancestor)
- ABox is a set of axioms describing a concrete situation (data), e.g.:
  - John:HappyFather
  - <John,Mary>:hasChild

Separation has no logical significance

But may be conceptually and implementationally convenient



Interpretation function  $\cdot^{\mathcal{I}}$  extends to concept expressions in the obvious way, i.e.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$
$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$
$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$
$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

A DL Knowledge Base is of the form  $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ 

- $\mathcal{T}$  (Tbox) is a set of axioms of the form:
  - $C \sqsubseteq D$  (concept inclusion)
  - $C \equiv D$  (concept equivalence)
  - $R \sqsubseteq S$  (role inclusion)
  - $R \equiv S$  (role equivalence)
  - $R^+ \sqsubseteq R$  (role transitivity)
- $\mathcal{A}$  (Abox) is a set of axioms of the form
  - $x \in D$  (concept instantiation)
  - $\langle x, y \rangle \in R$  (role instantiation)

#### Two sorts of Tbox axioms often distinguished

- "Definitions"
  - $C \sqsubseteq D$  or  $C \equiv D$  where C is a concept name
- General Concept Inclusion axioms (GCIs)
  - $C \sqsubseteq D$  where C is an arbitrary concept

#### An interpretation $\mathcal{I}$ satisfies (models) an axiom A ( $\mathcal{I} \vDash A$ ):

- $\blacksquare \quad \mathcal{I} \vDash C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\blacksquare \ \mathcal{I} \vDash C \equiv D \text{ iff } C^{\mathcal{I}} = D^{\mathcal{I}}$
- $\blacksquare \quad \mathcal{I} \vDash R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\blacksquare \ \mathcal{I} \vDash R \equiv S \text{ iff } R^{\mathcal{I}} = S^{\mathcal{I}}$
- $\blacksquare \quad \mathcal{I} \vDash \mathbf{R}^+ \sqsubseteq \mathbf{R} \text{ iff } (\mathbf{R}^{\mathcal{I}})^+ \subseteq \mathbf{R}^{\mathcal{I}}$
- $\blacksquare \ \mathcal{I} \vDash x \in D \text{ iff } x^{\mathcal{I}} \in D^{\mathcal{I}}$
- $\blacksquare \ \mathcal{I} \vDash \langle x, y \rangle \in R \text{ iff } (x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$

 $\mathcal{I}$  satisfies a Tbox  $\mathcal{T}$  ( $\mathcal{I} \vDash \mathcal{T}$ ) iff  $\mathcal{I}$  satisfies every axiom A in  $\mathcal{T}$ 

 $\mathcal{I} \text{ satisfies an Abox } \mathcal{A} \ (\mathcal{I} \vDash \mathcal{A}) \text{ iff } \mathcal{I} \text{ satisfies every axiom A in } \mathcal{A}$ 

 $\mathcal{I} \text{ satisfies an KB } \mathcal{K} \ (\mathcal{I} \vDash \mathcal{K}) \text{ iff } \mathcal{I} \text{ satisfies both } \mathcal{T} \text{ and } \mathcal{A}$ 



Knowledge is correct (captures intuitions)

• C subsumes D w.r.t.  $\mathcal{K}$  iff for *every* model  $\mathcal{I}$  of  $\mathcal{K}$ ,  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ 

Knowledge is minimally redundant (no unintended synonyms)

• C is equivalent to D w.r.t.  $\mathcal{K}$  iff for *every* model  $\mathcal{I}$  of  $\mathcal{K}$ ,  $C^{\mathcal{I}} = D^{\mathcal{I}}$ 

Knowledge is meaningful (classes can have instances)

■ C is satisfiable w.r.t.  $\mathcal{K}$  iff there exists *some* model  $\mathcal{I}$  of  $\mathcal{K}$  s.t.  $C^{\mathcal{I}} \neq \emptyset$ 

#### Querying knowledge

- x is an instance of C w.r.t.  $\mathcal{K}$  iff for *every* model  $\mathcal{I}$  of  $\mathcal{K}$ ,  $x^{\mathcal{I}} \in C^{\mathcal{I}}$

#### Knowledge base consistency

• A KB  $\mathcal{K}$  is consistent iff there exists *some* model  $\mathcal{I}$  of  $\mathcal{K}$ 

## Syntax für DLs (ohne concrete domains)

Hitzler & Sure, 2005

|     | Concepts |                                    |  |
|-----|----------|------------------------------------|--|
| ALC | Atomic   | A, B                               |  |
|     | Not      | ¬C                                 |  |
|     | And      | СПD                                |  |
|     | Or       | СШD                                |  |
|     | Exists   | ∃r.c                               |  |
|     | For all  | ∀R.C                               |  |
|     | At least | ≥n R.C (≥n R)                      |  |
|     | At most  | ≤n R.C (≤n R)                      |  |
| 0   | Nominal  | {i <sub>1</sub> ,,i <sub>n</sub> } |  |

| Roles   |    |
|---------|----|
| Atomic  | R  |
| Inverse | R- |

S = ALC + Transitivity

| Ontology (=Knowledge Base) |                           |                 |  |  |
|----------------------------|---------------------------|-----------------|--|--|
|                            | Concept Axioms (TBox)     |                 |  |  |
|                            | Subclass                  | C 🗆 D           |  |  |
|                            | Equivalent                | $C \equiv D$    |  |  |
|                            |                           |                 |  |  |
|                            | Role Axioms (RBox)        |                 |  |  |
| Т                          | Subrole                   | R⊑S             |  |  |
| S                          | Transitivity              | Trans(S)        |  |  |
|                            | Assertional Axioms (ABox) |                 |  |  |
|                            | Instance                  | C(a)            |  |  |
|                            | Role                      | R(a <b>,</b> b) |  |  |
|                            | Same                      | a = b           |  |  |
|                            | Different                 | a≠b             |  |  |
|                            |                           |                 |  |  |

**OWL DL = SHOIN(D)** (D: concrete domain)

Folie 22

### The Description Logic $\mathcal{ALC}$ : Syntax

| Atomic types:  | concept names $A, B, \ldots$                   | (unary predicates)        |
|----------------|------------------------------------------------|---------------------------|
|                | role names $oldsymbol{R}, oldsymbol{S}, \dots$ | (binary predicates)       |
|                | ~                                              |                           |
| Constructors:  | $\neg \neg C$                                  | (negation)                |
|                | - $C \sqcap D$                                 | (conjunction)             |
|                | - $C \sqcup D$                                 | (disjunction)             |
|                | - $\exists R.C$                                | (existential restriction) |
|                | - $orall oldsymbol{R}.oldsymbol{C}$           | (value restriction)       |
|                |                                                |                           |
| Abbreviations: | $-C 	o D = \neg C \sqcup D$                    | (implication)             |
|                | $-C \leftrightarrow D = C \rightarrow D$       | (bi-implication)          |
|                | $\sqcap D \to C$                               |                           |
|                | $- \top = (A \sqcup \neg A)$                   | (top concept)             |
|                | $-\perp = A \sqcap \neg A$                     | (bottom concept)          |
|                |                                                |                           |



#### Examples

- Person □ Female
- Person □ ∃attends.Course
- Person  $\sqcap \forall attends.(Course \rightarrow \neg Easy)$
- Person  $\sqcap \exists$ teaches.(Course  $\sqcap \forall$ attended-by.(Bored  $\sqcup$  Sleeping))



Semantics based on interpretations  $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ , where

–  $\Delta^{\mathcal{I}}$  is a non-empty set (the domain)

 $- \cdot^{\mathcal{I}}$  is the interpretation function mapping

each concept name A to a subset  $A^{\mathcal{I}}$  of  $\Delta^{\mathcal{I}}$  and

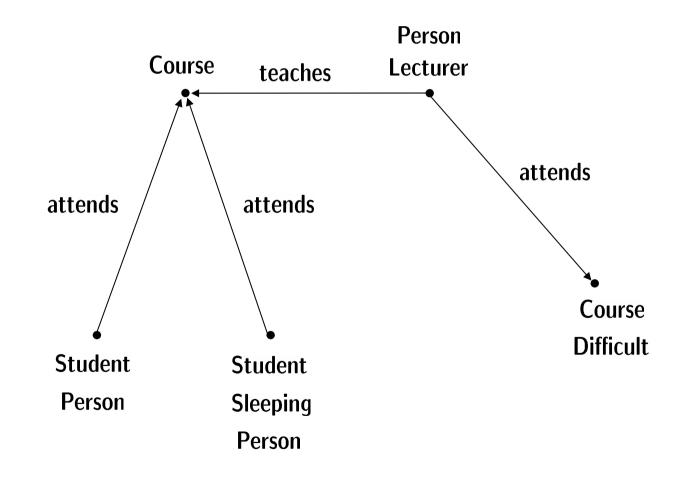
each role name R to a binary relation  $R^{\mathcal{I}}$  over  $\Delta^{\mathcal{I}}$ .

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure with only unary and binary predicates



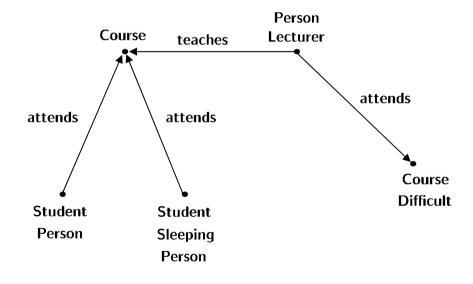
#### Example





**Semantics of Complex Concepts** 

 $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$  $(\exists R.C)^{\mathcal{I}} = \{d \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d, e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \}$  $(\forall R.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}}, (d, e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \}$ 



Person □ ∃attends.Course

Person  $\sqcap \forall$  attends.( $\neg$ Course  $\sqcup$  Difficult)



#### **TBoxes**

Capture an application's terminology means defining concepts

**TBoxes** are used to store concept definitions:

Syntax:

finite set of concept equations  $A \doteq C$ with A concept name and C concept left-hand sides must be unique!

Semantics:

interpretation  $\mathcal I$  satisfies  $A \doteq C$  iff  $A^{\mathcal I} = C^{\mathcal I}$ 

 ${\mathcal I}$  is model of  ${\mathcal T}$  if it satisfies all definitions in  ${\mathcal T}$ 

**E.g.**: Lecturer  $\doteq$  Person  $\sqcap \exists$  teaches.Course



Yields two kinds of concept names: defined and primitive

#### **TBox: Example**

**TBoxes** are used as ontologies:

Woman  $\doteq$  Person  $\sqcap$  Female

 $Man \doteq Person \sqcap \neg Woman$ 

Lecturer  $\doteq$  Person  $\sqcap \exists$ teaches.Course

Student  $\doteq$  Person  $\sqcap \exists$  attends.Course

**BadLecturer**  $\doteq$  **Person**  $\sqcap$   $\forall$ **teaches.**(**Course**  $\rightarrow$  **Boring**)

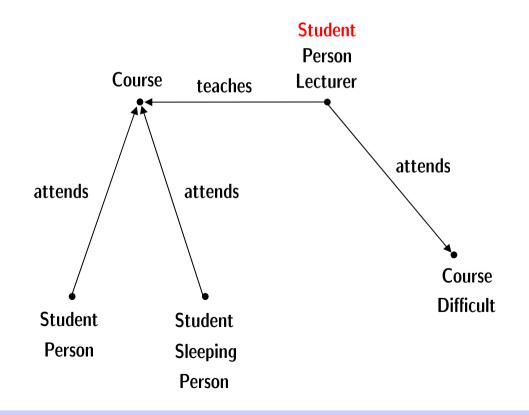


#### **TBox: Example II**

A TBox restricts the set of admissible interpretations.

Lecturer  $\doteq$  Person  $\sqcap \exists$ teaches.Course

Student  $\doteq$  Person  $\sqcap \exists$  attends.Course





**Reasoning Tasks — Subsumption** 

C subsumed by D w.r.t.  $\mathcal{T}$  (written  $C \sqsubseteq_{\mathcal{T}} D$ )

iff

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  holds for all models  $\mathcal{I}$  of  $\mathcal{T}$ 

Intuition: If  $C \sqsubseteq_{\mathcal{T}} D$ , then D is more general than C

**Example:** 

Lecturer  $\doteq$  Person  $\sqcap \exists$ teaches.Course Student  $\doteq$  Person  $\sqcap \exists$ attends.Course

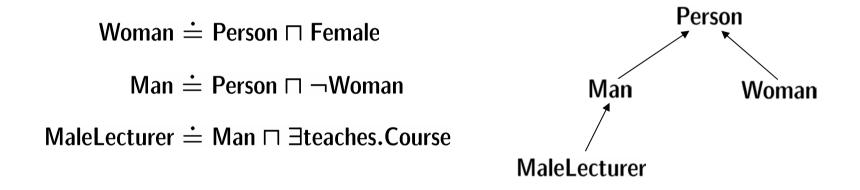
Then

Lecturer  $\Box \exists$  attends.Course  $\sqsubseteq_{\mathcal{T}}$  Student



Classification: arrange all defined concepts from a TBox in a

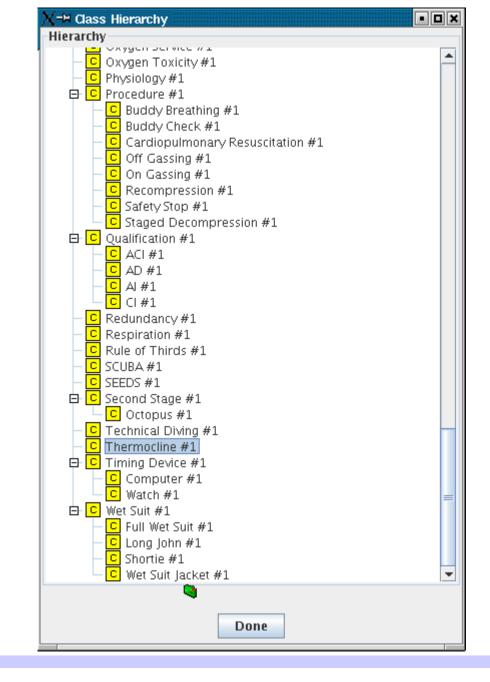
hierarchy w.r.t. generality



Can be computed using multiple subsumption tests

Provides a principled view on ontology for browsing, maintaining, etc.

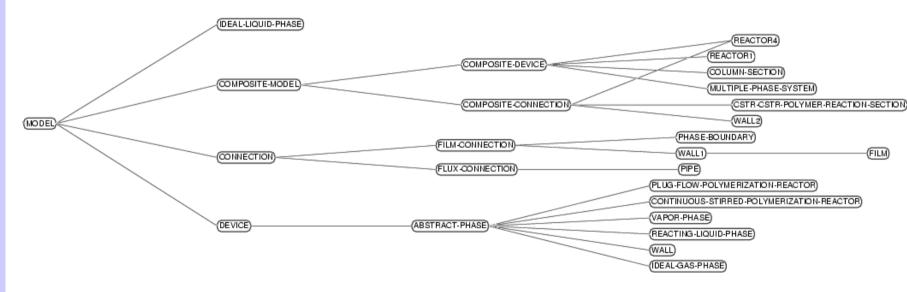






#### A Concept Hierarchy

#### Excerpt from a process engineering ontology





*C* is satisfiable w.r.t.  $\mathcal{T}$  iff  $\mathcal{T}$  has a model with  $C^{\mathcal{I}} \neq \emptyset$ 

Intuition: If unsatisfiable, the concept contains a contradiction.

**Example:** Woman  $\doteq$  Person  $\sqcap$  Female

 $Man \doteq Person \sqcap \neg Woman$ 

Then  $\exists$  sibling.Man  $\sqcap \forall$  sibling.Woman is unsatisfiable w.r.t.  $\mathcal{T}$ 

Subsumption can be reduced to (un)satisfiability and vice versa:

- $C \sqsubseteq_{\mathcal{T}} D$  iff  $C \sqcap \neg D$  is not satisfiable w.r.t.  $\mathcal{T}$
- *C* is satisfiable w.r.t.  $\mathcal{T}$  if not  $C \sqsubseteq_{\mathcal{T}} \bot$ .



Many reasoners decide satisfiability rather than subsumption.

A primitive interpretation for TBox  $\mathcal{T}$  interpretes

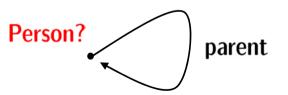
- the primitive concept names in  ${\mathcal T}$
- all role names

A TBox is called definitorial if every primitive interpretation for  $\mathcal{T}$ can be uniquely extended to a model of  $\mathcal{T}$ .

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

Person  $\doteq \exists parent.Person$ 





Non-definitorial TBoxes describe constraints, e.g. from background knowledge

TBox  $\mathcal{T}$  is acyclic if there are no definitorial cycles:

**Expansion** of acyclic TBox T:

exhaustively replace defined concept names with their definition (terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, then set  $A^{\mathcal{I}} := C^{\mathcal{I}}$  for all  $A \doteq C \in \mathcal{T}$ 

21 17



For reasoning, acyclic TBox can be eliminated:

- to decide  $C \sqsubseteq_{\mathcal{T}} D$  with  $\mathcal{T}$  acyclic,
  - expand  ${\boldsymbol{\mathcal{T}}}$
  - replace defined concept names in  ${m C}, {m D}$  with their definition
  - decide  $C \sqsubseteq D$
- analogously for satisfiability

May yield an exponential blow-up:

$$egin{aligned} A_0 \doteq orall r.A_1 \sqcap orall s.A_1 \ A_1 \doteq orall r.A_2 \sqcap orall s.A_2 \ & \cdots \ & A_{n-1} \doteq orall r.A_n \sqcap orall s.A_n \end{aligned}$$



View of TBox as set of constraints

General TBox: finite set of general concept implications (GCIs)

 $C \sqsubseteq D$ 

with both C and D allowed to be complex

e.g. Course  $\sqcap \forall$  attended-by.Sleeping  $\sqsubseteq$  Boring

Interpretation  $\mathcal{I}$  is model of general TBox  $\mathcal{T}$  if  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  for all  $C \sqsubseteq D \in \mathcal{T}$ .

 $C \doteq D$  is abbreviation for  $C \sqsubseteq D$ ,  $D \sqsubseteq C$ 

e.g. Student □ ∃has-favourite.SoccerTeam  $\doteq$  Student □ ∃has-favourite.Beer

Note: 
$$C \sqsubseteq D$$
 equivalent to  $\top \doteq C \rightarrow D$ 

resden

#### **ABoxes**

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C(a individual name, C concept)(a,b):R(a,b individual names, R role name)

E.g. {peter : Student, (dl-course, uli) : tought-by}

Interpretations  $\mathcal{I}$  map each individual name a to an element of  $\Delta^{\mathcal{I}}$ .

 $\boldsymbol{\mathcal{I}}$  satisfies an assertion

| a:C     | iff | $a^\mathcal{I} \in C^\mathcal{I}$                      |
|---------|-----|--------------------------------------------------------|
| (a,b):R | iff | $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$ |



 $\mathcal{I}$  is a model for an ABox  $\mathcal{A}$  if  $\mathcal{I}$  satisfies all assertions in  $\mathcal{A}$ .

#### **ABoxes II**

Note:

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : tought-by uli : Female

does not imply

dl-course : ∀tought-by.Female

An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox



#### **ABox consistency**

Given an ABox  $\mathcal{A}$  and a TBox  $\mathcal{T}$ , do they have a common model?

#### Instance checking

resden

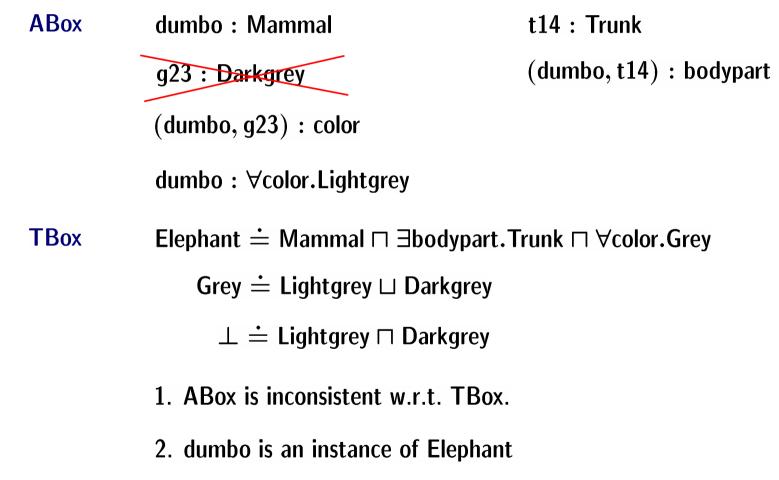
Given an ABox  $\mathcal{A}$ , a TBox  $\mathcal{T}$ , an individual name a, and a concept Cdoes  $a^{\mathcal{I}} \in C^{\mathcal{I}}$  hold in all models of  $\mathcal{A}$  and  $\mathcal{T}$ ? (written  $\mathcal{A}, \mathcal{T} \models a : C$ )

The two tasks are interreducible:

- $\mathcal{A}$  consistent w.r.t.  $\mathcal{T}$  iff  $\mathcal{A}, \mathcal{T} \not\models a : \bot$
- $\mathcal{A}, \mathcal{T} \models a : C \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is not consistent}$

**26** 22

Example for ABox Reasoning





2. Tableau algorithms for  $\mathcal{ALC}$  and extensions

We see a tableau algorithm for *ALC* and extend it with ① general TBoxes and ② inverse roles

**Goal:** Design sound and complete desicion procedures for satisfiability (and subsumption) of DLs which are well-suited for implementation purposes Goal: design an algorithm which takes an ALC concept C<sub>0</sub> and
1. returns *"satisfiable"* iff C<sub>0</sub> is satisfiable and
2. terminates, on every input,
i.e., which decides satisfiability of ALC concepts.

Recall: such an algorithm cannot exist for FOL since satisfiability of FOL is undecidable.

Idea: our algorithm

- is tableau-based and
- tries to construct a model of  $C_0$
- ullet by breaking  $C_0$  down syntactically, thus
- inferring new constraints on such a model.

To make our life easier, we transform each concept  $C_0$  into an equivalent  $C_1$  in NNF

**Equivalent:**  $C_0 \sqsubseteq C_1$  and  $C_1 \sqsubseteq C_0$ **NNF:** negation occurs only in front of concept names **How?** By pushing negation inwards (de Morgan et. al):

$$egin{aligned} 
egin{aligned} 
egin{aligned} 
egin{aligned} 
egin{aligned} 
egin{aligned} 
egin{aligned} 
extcolor & d \\ 
extcolor & d \\ 
egin{aligned} 
extcolor & d \\ 
extcolor$$

From now on: concepts are in NNF and sub(C) denotes the set of all sub-concepts of C

Find out whether $A \sqcap \exists R.B \sqcap \forall R. \neg B$ is satisfiable... $A \sqcap \exists R.B \sqcap \forall R. (\neg B \sqcup \exists S.E)$ 

Our tableau algorithm works on a completion tree which

• represents a model  $\mathcal{I}$ : nodes represent elements of  $\Delta^{\mathcal{I}}$   $\rightsquigarrow$  each node x is labelled with concepts  $\mathcal{L}(x) \subseteq \operatorname{sub}(C_0)$   $C \in \mathcal{L}(x)$  is read as "x should be an instance of C" edges represent role successorship  $\rightsquigarrow$  each edge  $\langle x, y \rangle$  is labelled with a role-name from  $C_0$ 

 $R\in {\mathcal L}(\langle x,y
angle)$  is read as "(x,y) should be in  $R^{\mathcal I}$ "

ullet is initialised with a single root node  $x_0$  with  $\mathcal{L}(x_0) = \{C_0\}$ 

• is expanded using completion rules

27

- $\sqcap\text{-rule: if} \quad C_1 \sqcap C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \not\subseteq \mathcal{L}(x)$  then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$
- $\sqcup$ -rule: if  $C_1 \sqcup C_2 \in \mathcal{L}(x)$  and  $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$ then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$  for some  $C \in \{C_1, C_2\}$
- $\exists \text{-rule: if} \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y),$ then create a new node y with  $\mathcal{L}(\langle x, y \rangle) = \{S\}$  and  $\mathcal{L}(y) = \{C\}$

orall-rule: if  $\forall S.C \in \mathcal{L}(x)$  and there is an S-successor y of x with  $C \notin \mathcal{L}(y)$ then set  $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$ 

We only apply rules if their application does "something new"

- $\sqcap\text{-rule: if}\quad C_1\sqcap C_2\in \mathcal{L}(x) \text{ and } \{C_1,C_2\} \not\subseteq \mathcal{L}(x)$  then set  $\mathcal{L}(x)=\mathcal{L}(x)\cup\{C_1,C_2\}$
- $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule: if} & C_1 \sqcup C_2 \in \mathcal{L}(x) \text{ and } \{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset \\ \\ \text{ then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C\} \text{ for some } C \in \{C_1,C_2\} \end{array}$
- $\exists \text{-rule: if} \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y),$ then create a new node y with  $\mathcal{L}(\langle x, y \rangle) = \{S\}$  and  $\mathcal{L}(y) = \{C\}$

orall-rule: if  $\forall S.C \in \mathcal{L}(x)$  and there is an S-successor y of x with  $C \notin \mathcal{L}(y)$ then set  $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$ 

The  $\Box$ -rule is non-deterministic:

 $\sqcap\text{-rule: if} \quad C_1 \sqcap C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \not\subseteq \mathcal{L}(x)$  then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$ 

- $\label{eq:constraint} \begin{array}{ll} \mbox{$\sqcup$-rule: if $$ $C_1 \sqcup C_2 \in \mathcal{L}(x)$ and $\{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset$} \\ \\ \mbox{then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1,C_2\}$} \end{array}$
- $\exists \text{-rule: if} \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y),$ then create a new node y with  $\mathcal{L}(\langle x, y \rangle) = \{S\}$  and  $\mathcal{L}(y) = \{C\}$

orall-rule: if  $\forall S.C \in \mathcal{L}(x)$  and there is an S-successor y of x with  $C \notin \mathcal{L}(y)$ then set  $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$ 

Clash: a c-tree contains a clash if it has a node x with  $\bot \in \mathcal{L}(x)$  or  $\{A, \neg A\} \subseteq \mathcal{L}(x)$  — otherwise, it is clash-free Complete: a c-tree is complete if none of the completion rules can be applied to it

Answer behaviour: when started for  $C_0$  (in NNF!), the tableau algorithm

- ullet is initialised with a single root node  $x_0$  with  $\mathcal{L}(x_0) = \{C_0\}$
- repeatedly applies the completion rules (in whatever order it likes)
- answer " $C_0$  is satisfiable" iff the completion rules can be applied in such a way that it results in a complete and clash-free c-tree (careful: this is non-deterministic)

#### ...go back to examples



- 1. the algorithm terminates when applied to  $C_0$  and
- 2. the rules can be applied such that they generate a clash-free and complete completion tree iff  $C_0$  is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.

- 2. Satisfiability (and subsumption) in ALC is decidable in PSpace.
- 3. *ALC* has the finite model property i.e., every satisfiable concept has a finite model.
- 4. *ALC* has the tree model property
  - i.e., every satisfiable concept has a tree model.
- 5. *ALC* has the finite tree model property i.e., every satisfiable concept has a finite tree model.

32

**Recall:** • Concept inclusion: of the form  $C \stackrel{.}{\sqsubseteq} D$  for C, D (complex) concepts

• (General) TBox: a finite set of concept inclusions

- $\bullet \, \mathcal{I} \text{ satisfies } C \stackrel{.}{\sqsubseteq} D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I}$  is a model of TBox  $\mathcal{T}$  iff  $\mathcal{I}$  satisfies each concept equation in  $\mathcal{T}$
- $C_0$  is satisfiable w.r.t.  $\mathcal{T}$  iff there is a model  $\mathcal{I}$  of  $\mathcal{T}$  with  $C_0^{\mathcal{I}} \neq \emptyset$

#### Goal – Lemma: Let $C_0$ an $\mathcal{ALC}$ -concept and $\mathcal{T}$ be a an $\mathcal{ALC}$ -TBox. Then 1. the algorithm terminates when applied to $\mathcal{T}$ and $C_0$ and 2. the rules can be applied such that they generate a clash-free and complete completion tree iff $C_0$ is satisfiable w.r.t. $\mathcal{T}$ .

#### Extend tableau algorithm to $\mathcal{ALC}$ with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:

ullet remember that nodes represent elements of  $\Delta^{\mathcal{I}}$  and

• if  $C \sqsubseteq D \in \mathcal{T}$ , then for each element x in a model  $\mathcal{I}$  of  $\mathcal{T}$ if  $x \in C^{\mathcal{I}}$ , then  $x \in D^{\mathcal{I}}$ hence  $x \in (\neg C)^{\mathcal{I}}$  or  $x \in D^{\mathcal{I}}$  $x \in (\neg C \sqcup D)^{\mathcal{I}}$  $x \in (\mathsf{NNF}(\neg C \sqcup D))^{\mathcal{I}}$ 

for NNF(E) the negation normal form of E

 $\sqcap\text{-rule: if} \quad C_1 \sqcap C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \not\subseteq \mathcal{L}(x)$ then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$ 

 $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule:} & \text{if} & C_1 \sqcup C_2 \in \mathcal{L}(x) \text{ and } \{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset \\ & \text{then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C\} \text{ for some } C \in \{C_1,C_2\} \end{array}$ 

 $\exists \text{-rule: if } \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y),$ then create a new node y with  $\mathcal{L}(\langle x, y \rangle) = \{S\}$  and  $\mathcal{L}(y) = \{C\}$ 

 $\forall$ -rule: if  $\forall S.C \in \mathcal{L}(x)$  and there is an *S*-successor *y* of *x* with  $C \notin \mathcal{L}(y)$ then set  $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$ 

 $\mathcal{T}$ -rule: if  $C_1 \stackrel{\cdot}{\sqsubseteq} C_2 \in \mathcal{T}$  and  $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$ 

**Example:** Consider satisfiability of *C* w.r.t.  $\{C \sqsubseteq \exists R.C\}$ 

Tableau algorithm no longer terminates!

**Reason:** size of concepts no longer decreases along paths in a completion tree

**Observation:** most nodes on this path look the same and we keep repeating ourselves

Regain termination with a "cycle-detection" technique called blocking

Intuitively, whenever we find a situation where y has to satisfy *stronger* constraints than x, we *freeze* x, i.e., block rules from being applied to x

36

 $b \boldsymbol{y}$ 

 $\mathfrak{L}(x)\subseteq\mathfrak{L}(y)$ 

- x is directly blocked if it has an ancestor y with  $\mathcal{L}(x) \subseteq \mathcal{L}(y)$
- in this case and if y is the "closest" such node to x, we say that x is blocked by y
- a node is **blocked** if it is directly blocked or one of its ancestors is blocked
- $\oplus$  restrict the application of all rules to nodes which are not blocked

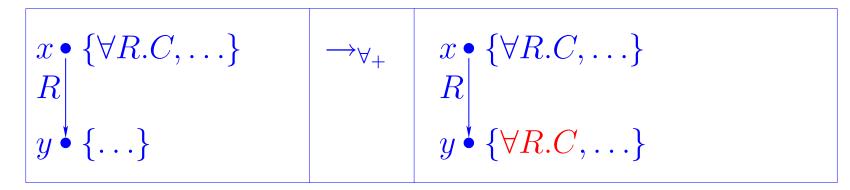
 $\rightsquigarrow$  completion rules for  $\mathcal{ALC}$  w.r.t. TBoxes

- $\label{eq:constraint} \begin{array}{ll} \mbox{$\sqcup$-rule: if $$ $C_1 \sqcup C_2 \in \mathcal{L}(x)$, $\{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset$, and $x$ is not blocked} \\ \mbox{then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1,C_2\}$} \end{array}$
- $\exists \text{-rule:} \quad \text{if} \quad \exists S.C \in \mathcal{L}(x), \ x \text{ has no } S \text{-successor } y \text{ with } C \in \mathcal{L}(y), \\ \text{ and } x \text{ is not blocked} \\ \text{ then create a new node } y \text{ with } \mathcal{L}(\langle x, y \rangle) = \{S\} \text{ and } \mathcal{L}(y) = \{C\}$
- $\begin{array}{ll} \forall \text{-rule:} & \text{if} & \forall S.C \in \mathcal{L}(x) \text{, there is an } S \text{-successor } y \text{ of } x \text{ with } C \notin \mathcal{L}(y) \\ & \text{and } x \text{ is not blocked} \\ & \text{then set } \mathcal{L}(y) = \mathcal{L}(y) \cup \{C\} \end{array}$

 $\mathcal{T}$ -rule: if  $C_1 \stackrel{.}{\sqsubseteq} C_2 \in \mathcal{T}$ ,  $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ and x is not blocked then set  $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$ 

#### Tableaux Rules for $\mathcal{ALC}$

# **Tableaux Rule for Transitive Roles**



Where R is a transitive role (i.e.,  $(R^{\mathcal{I}})^+ = R^{\mathcal{I}}$ )

- Solution No longer naturally terminating (e.g., if  $C = \exists R. \top$ )
- Need blocking
  - Simple blocking suffices for  $\mathcal{ALC}$  plus transitive roles
  - I.e., do not expand node label if ancestor has superset label
  - More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies

$$\mathcal{L}(w) = \{ \exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C \sqcap \forall S. (\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R. (\exists R.C) \}$$

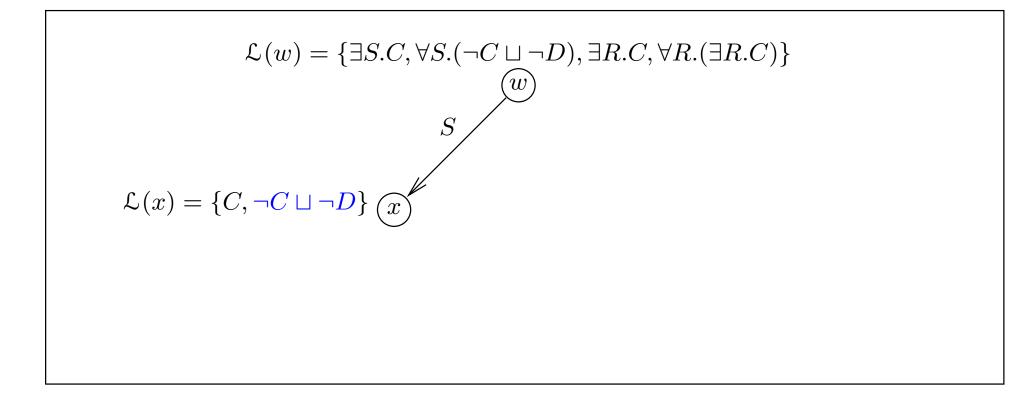
$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

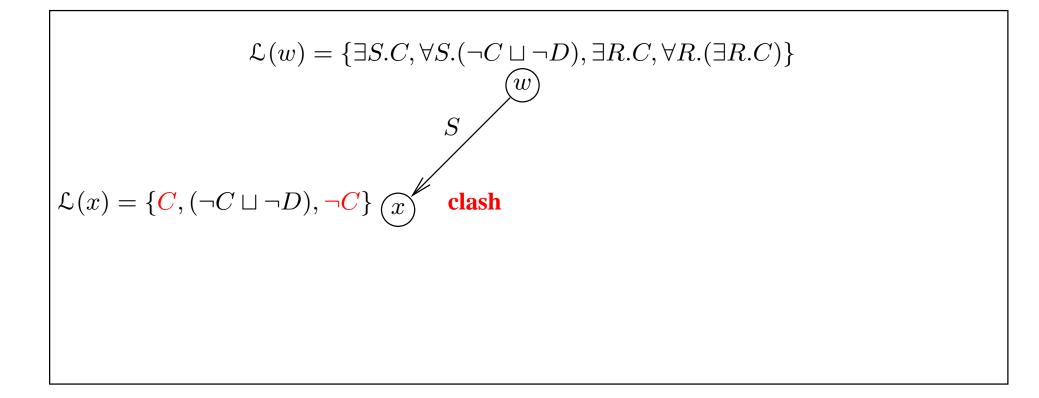
$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

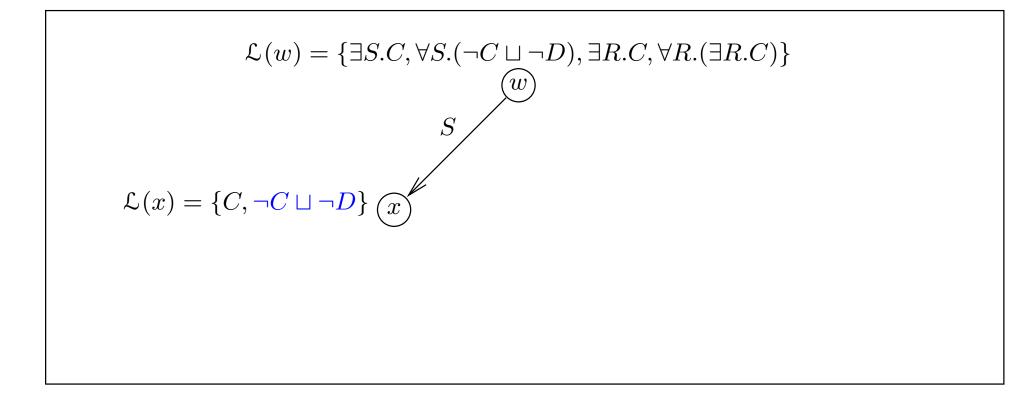
$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$

$$\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$$



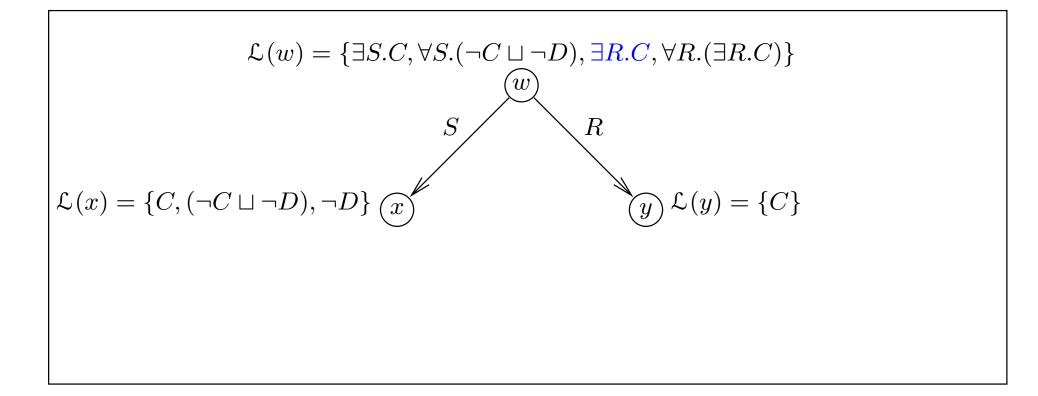
$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

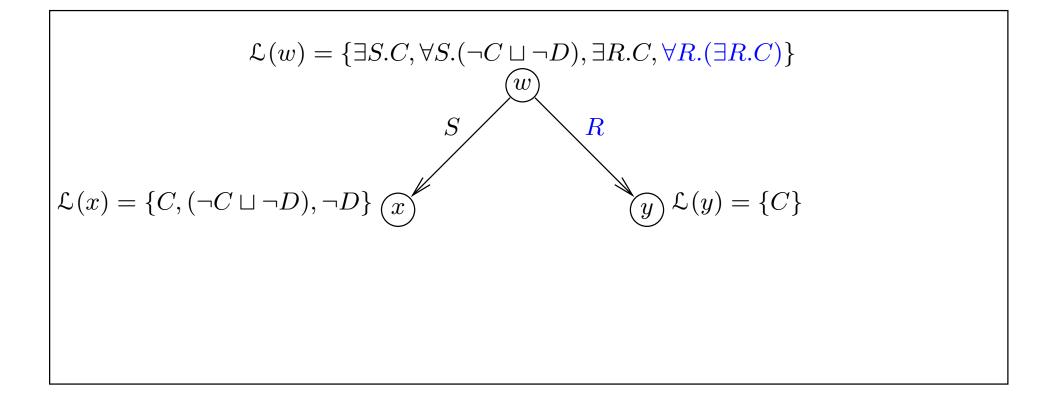


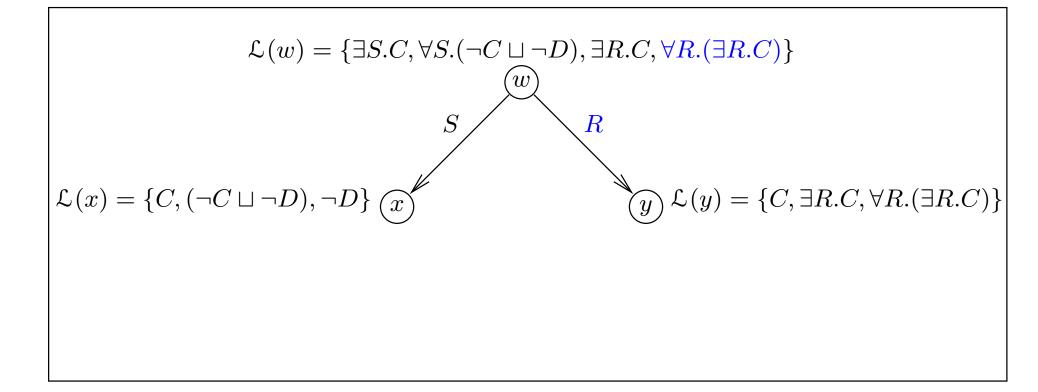


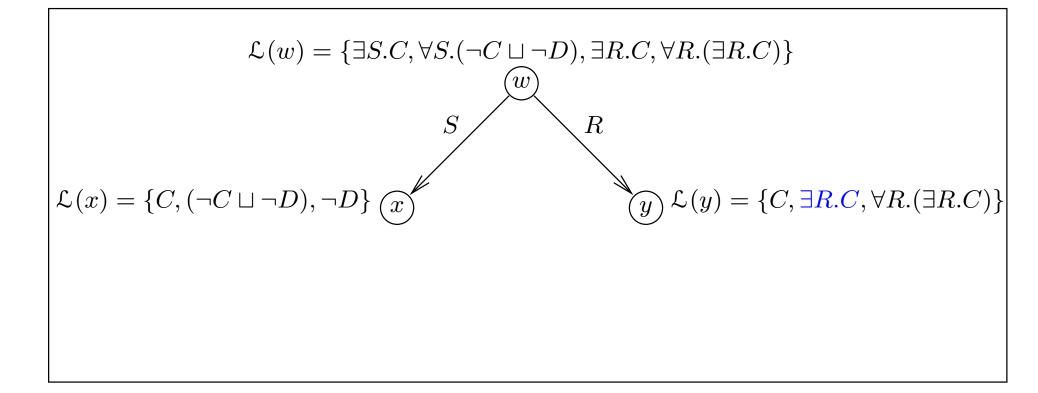
$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

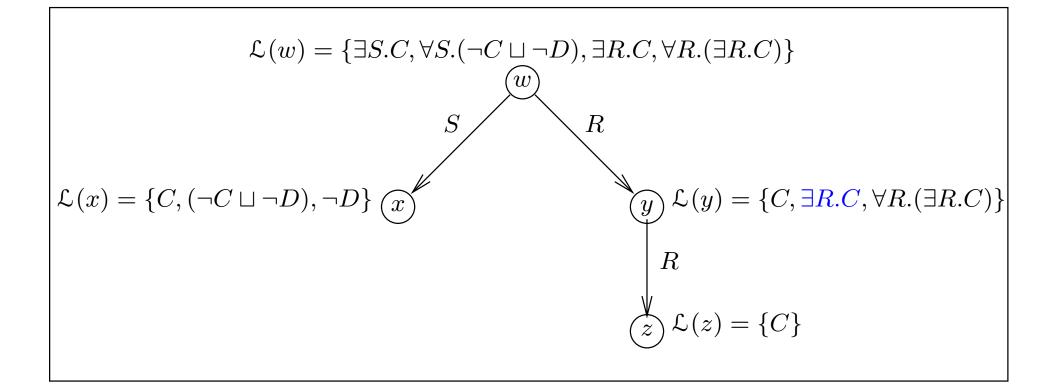
$$\mathcal{L}(w) = \{ \exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C) \}$$

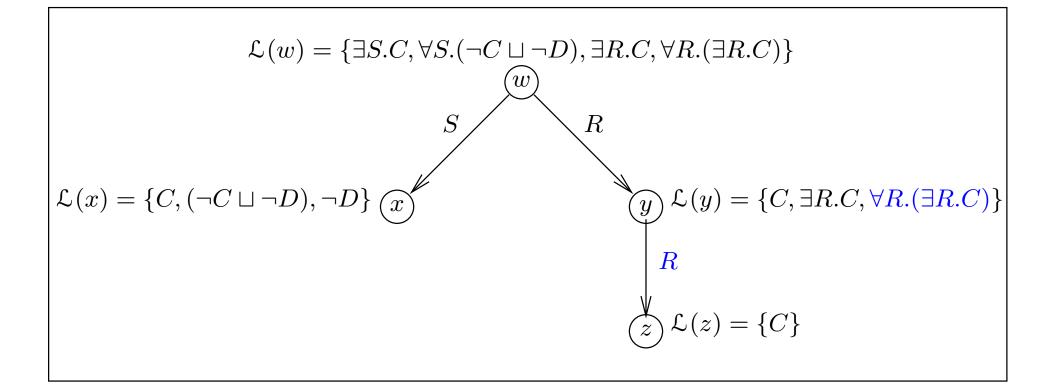


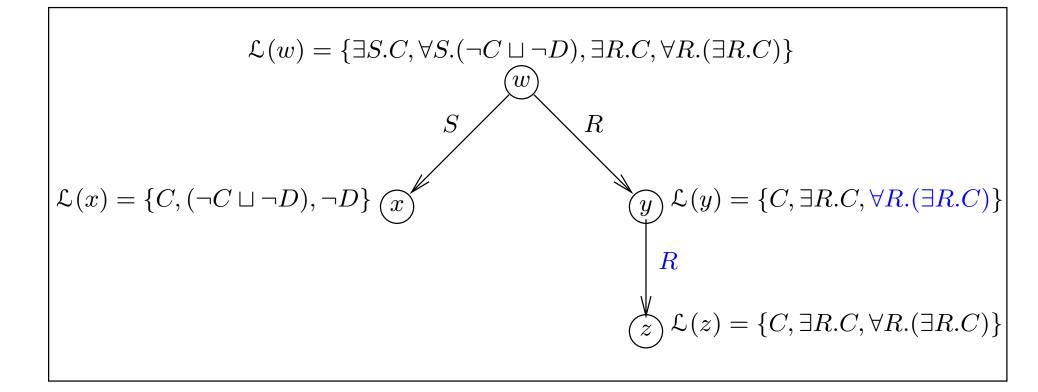


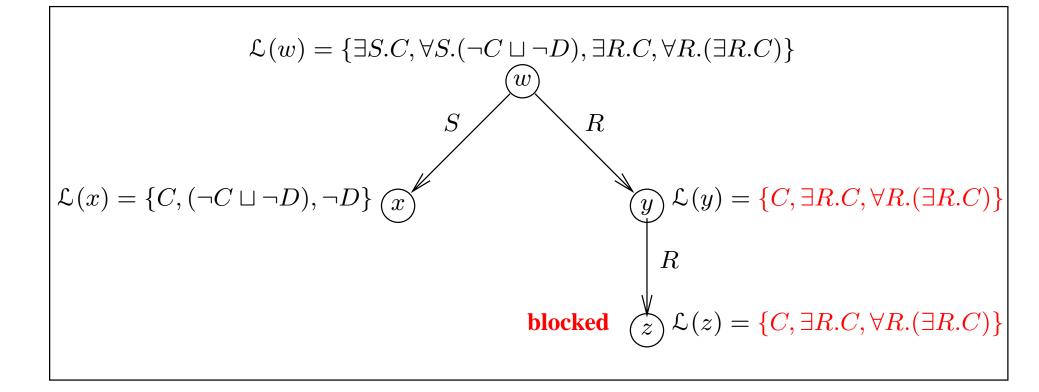




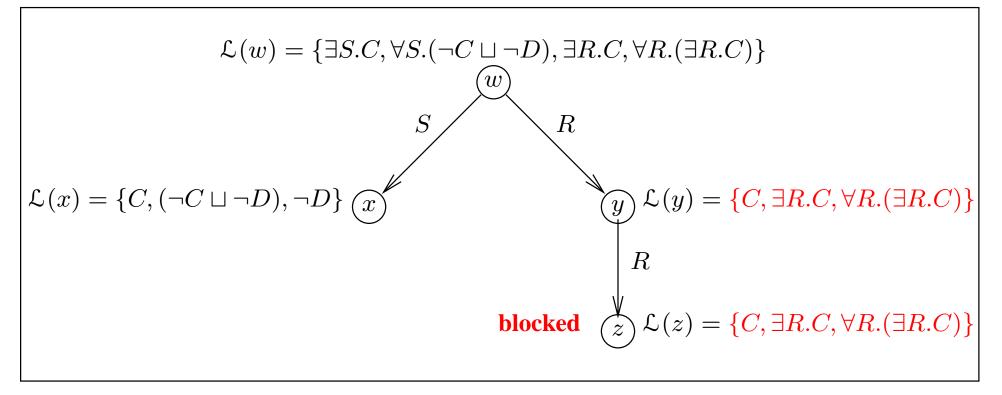






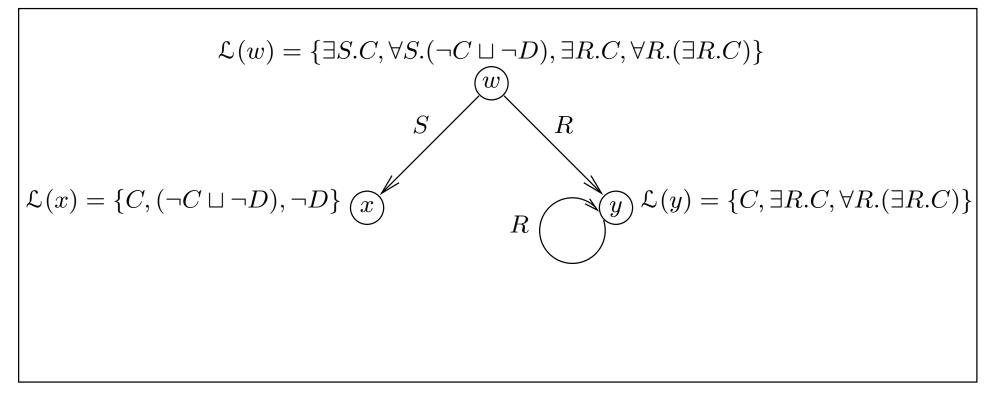


Test satisfiability of  $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$  where *R* is a **transitive** role



Concept is satisfiable: T corresponds to model

Test satisfiability of  $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$  where *R* is a **transitive** role



Concept is satisfiable: T corresponds to model

#### Properties of our tableau algorithm for $\mathcal{ALC}$ with TBoxes

Lemma: Let T be a general ALC-Tbox and C<sub>0</sub> an ALC-concept. Then
1. the algorithm terminates when applied to T and C<sub>0</sub> and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C<sub>0</sub> is satisfiable w.r.t. T.

Corollary: 1. Satisfiability of ALC-concept w.r.t. TBoxes is decidable
2. ALC with TBoxes has the finite model property
3. ALC with TBoxes has the tree model property

#### The tableau algorithm presented here

- $\rightarrow$  decides satisfiability of *ALC*-concepts w.r.t. TBoxes, and thus also
- → decides subsumption of *ALC*-concepts w.r.t. TBoxes
- → uses **blocking** to ensure termination, and
- → is non-deterministic due to the  $\rightarrow_{\sqcup}$ -rule
- → in the worst case, it builds a tree of depth exponential in the size of the input, and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,
- → can be implemented in various ways,
  - order/priorities of rules
  - data structure
  - etc.

→ is amenable to optimisations – more on this next week

# Challenges

#### Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals
- Scalability
  - Very large KBs
  - Reasoning with (very large numbers of) individuals

#### Other reasoning tasks

- Querying
- Matching
- Least common subsumer
- ...

#### Tools and Infrastructure

• Support for large scale ontological engineering and deployment

# Summary

- Description Logics are family of logical KR formalisms
- Applications of DLs include DataBases and Semantic Web
  - Ontologies will provide vocabulary for semantic markup
  - OWL web ontology language based on SHIQ DL
  - Set to become W3C standard (OWL) & already widely adopted
  - Use of DL provides formal foundations and reasoning support
- DL Reasoning based on tableau algorithms
- Highly Optimised implementations used in DL systems
- Challenges remain
  - Reasoning with full OWL language
  - (Convincing) demonstration(s) of scalability
  - New reasoning tasks
  - Development of (high quality) tools and infrastructure

#### Resources

Slides from this talk

```
http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/
```

```
FaCT system (open source)
```

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

```
http://oiled.man.ac.uk/
```

OIL

```
http://www.ontoknowledge.org/oil/
```

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm