
Vorlesung Künstliche Intelligenz Wintersemester 2007/08

Teil III:
Wissensrepräsentation und Inferenz

Kap.10: Beschreibungslogiken

Mit Material von
Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

2

Beschreibungslogiken (Description Logics)

A family of logic based Knowledge Representation formalisms
Descendants of semantic networks and KL-ONE
Describe domain in terms of concepts (classes), roles (relationships) and
individuals

Distinguished by:
Formal semantics (typically model theoretic)

Decidable fragments of FOL
Closely related to Propositional Modal & Dynamic Logics

Provision of inference services
Sound and complete decision procedures for key problems
Implemented systems (highly optimised)

Einfache Sprache zum Start: ALC (Attributive Language with Complement)

Im Semantic Web wird SHOIN(Dn) eingesetzt. Hierauf basiert die Semantik
von OWL DL.

3

Geschichte

Ihre Entwicklung wurde inspiriert durch semantische Netze und
Frames.
Frühere Namen:

KL-ONE like languages
terminological logics

Ziel war eine Wissensrepräsentation mit formaler Semantik.

Das erste Beschreibungslogik-basierte System war KL-ONE (1985).
Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991),
CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).

4

Literatur

D. Nardi, R. J. Brachman. An Introduction to Description
Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
P.F. Patel-Schneider (eds.): Description Logic Handbook,
Cambridge University Press, 2002, 5-44.
F. Baader, W. Nutt: Basic Description Logics. In: Description
Logic Handbook, 47-100.
Ian Horrocks, Peter F. Patel-Schneider and Frank van
Harmelen. From SHIQ and RDF to OWL: The making of a web
ontology language.
http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoP
H03a.pdf

5

Recall: Logics and Model Theory

Ontology/KR languages aim to model (part of) world

Terms in language correspond to entities in world

Meaning given by, e.g.:
Mapping to another formalism, such as FOL, with own well defined
semantics
or a Model Theory (MT)

MT defines relationship between syntax and interpretations
There can be many interpretations (models) of one piece of syntax
Models supposed to be analogue of (part of) world

E.g., elements of model correspond to objects in world
Formal relationship between syntax and models

Structure of models reflect relationships specified in syntax
Inference (e.g., subsumption) defined in terms of MT

E.g., T ² A v B iff in every model of T, ext(A) ⊆ ext(B)

6

Recall: Logics and Model Theory

Many logics (including standard First Order Logic) use a model theory based
on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as Δ)

Objects in the world are interpreted as elements of Δ
Classes/concepts (unary predicates) are subsets of Δ
Properties/roles (binary predicates) are subsets of Δ × Δ (i.e., Δ2)

Ternary predicates are subsets of Δ3 etc.

The sub-class relationship between classes can be interpreted as set
inclusion.

7

Recall: Logics and Model Theory

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ

{ha,bi,…} ⊆ Δ × Δ

a

b

Model

Mary drives Z123ABC

8

Recall: Logics and Model Theory

Formally, the vocabulary is the set of names we use in our
model of (part of) the world

{Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, …}

An interpretation I is a tuple h Δ, ·I i

Δ is the domain (a set)
·I is a mapping that maps

Names of objects to elements of Δ
Names of unary predicates (classes/concepts) to subsets
of Δ
Names of binary predicates (properties/roles) to
subsets of Δ × Δ

And so on for higher arity predicates (if any)

9

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ≡ Human u Male

Happy-Father ≡ Man u ∃ has-child
Female u …

John : Happy-Father

hJohn, Maryi : has-child In
fe

re
n

ce
 S

y
st

e
m

In
te

rf
a
ce

10

DL Knowledge Base

DL Knowledge Base (KB) normally separated into 2 parts:
TBox is a set of axioms describing structure of domain (i.e., a conceptual
schema), e.g.:

HappyFather ≡ Man ∧ ∃hasChild.Female ∧ …
Elephant ≡ Animal ∧ Large ∧ Grey
transitive(ancestor)

ABox is a set of axioms describing a concrete situation (data), e.g.:

John:HappyFather
<John,Mary>:hasChild

Separation has no logical significance
But may be conceptually and implementationally convenient

11

DL Semantics

Interpretation function ·I extends to concept expressions in
the obvious way, i.e.:

12

DL Knowledge Bases (Ontologies)

A DL Knowledge Base is of the form K = hT , Ai

T (Tbox) is a set of axioms of the form:

C v D (concept inclusion)
C ≡ D (concept equivalence)
R v S (role inclusion)
R ≡ S (role equivalence)
R+ v R (role transitivity)

A (Abox) is a set of axioms of the form

x ∈ D (concept instantiation)
hx,yi ∈ R (role instantiation)

Two sorts of Tbox axioms often distinguished
“Definitions”

C v D or C ≡ D where C is a concept name
General Concept Inclusion axioms (GCIs)

C v D where C is an arbitrary concept

13

Knowledge Base Semantics

An interpretation I satisfies (models) an axiom A (I ² A):
I ² C v D iff CI ⊆ DI

I ² C ≡ D iff CI = DI

I ² R v S iff RI ⊆ SI

I ² R ≡ S iff RI = SI

I ² R+ v R iff (RI)+ ⊆ RI

I ² x ∈ D iff xI ∈ DI

I ² hx,yi ∈ R iff (xI,yI) ∈ RI

I satisfies a Tbox T (I ² T) iff I satisfies every axiom A in T

I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A

I satisfies an KB K (I ² K) iff I satisfies both T and A

14

Inference Tasks

Knowledge is correct (captures intuitions)
C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

Knowledge is minimally redundant (no unintended synonyms)
C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

Knowledge is meaningful (classes can have instances)
C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

Querying knowledge
x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) ∈ RI

Knowledge base consistency
A KB K is consistent iff there exists some model I of K

Hitzler & Sure, 2005

Folie 22

A
IF
B

Ontology (=Knowledge Base)

Syntax für DLs (ohne concrete domains)

{i1,…,in}Nominal

C u DAnd

n R.C (n R)At most

n R.C (n R)At least

R.CFor all

R.CExists

C t DOr

¬CNot

A, BAtomic

Concepts

Roles

R-Inverse

RAtomic

A
LC

Q
 (N

)
I

Concept Axioms (TBox)

C DEquivalent

C v DSubclass

Role Axioms (RBox)

Assertional Axioms (ABox)

a bDifferent

a = bSame

R(a,b)Role

C(a)Instance
H

O

S Trans(S)Transitivity

R v SSubrole

S = ALC + Transitivity OWL DL = SHOIN(D) (D: concrete domain)

 2

6
 3

7
 4

8
 5

9
 6

10
 7

11
 8

12
 9

13
 10

14
 11

15
 12

16
 13

17
 14

18
 15

20
 16

21
 17

22
 18

23
 19

24
 20

25
 21

26
 22

27
 23

2. Tableau algorithms for ALC and extensions

We see a tableau algorithm for ALC and extend it with

① general TBoxes and

② inverse roles

Goal: Design sound and complete desicion procedures for

satisfiability (and subsumption) of DLs which are

well-suited for implementation purposes

University of
Manchester

1

 24

A tableau algorithm for the satisfiability of ALC concepts

Goal: design an algorithm which takes an ALC concept C0 and

1. returns “satisfiable” iff C0 is satisfiable and

2. terminates, on every input,

i.e., which decides satisfiability of ALC concepts.

Recall: such an algorithm cannot exist for FOL since

satisfiability of FOL is undecidable.

Idea: our algorithm

• is tableau-based and

• tries to construct a model of C0

• by breaking C0 down syntactically, thus

• inferring new constraints on such a model.

University of
Manchester

2

 25

Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C0 into an equivalent C1 in NNF

Equivalent: C0 v C1 and C1 v C0

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

¬(C u D) Ã ¬C t ¬D

¬(C t D) Ã ¬C u ¬D

¬¬C Ã C

¬∀R.C Ã ∃R.¬C

¬∃R.C Ã ∀R.¬C

From now on: concepts are in NNF and

sub(C) denotes the set of all sub-concepts of C

University of
Manchester

3

 26

More intuition

Find out whether A u ∃R.B u ∀R.¬B

A u ∃R.B u ∀R.(¬B t ∃S.E)

is satisfiable...

Our tableau algorithm works on a completion tree which

• represents a model I : nodes represent elements of ∆I

Ã each node x is labelled with concepts L(x) ⊆ sub(C0)

C ∈ L(x) is read as “x should be an instance of C”

edges represent role successorship

Ã each edge 〈x, y〉 is labelled with a role-name from C0

R ∈ L(〈x, y〉) is read as “(x, y) should be in RI”

• is initialised with a single root node x0 with L(x0) = {C0}

• is expanded using completion rules

University of
Manchester

4

 27

Completion rules for ALC

u-rule: if C1 u C2 ∈ L(x) and {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

University of
Manchester

5

 28

Properties of the completion rules for ALC

We only apply rules if their application does “something new”

u-rule: if C1 u C2 ∈ L(x) and {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

University of
Manchester

6

 29

Properties of the completion rules for ALC

The t-rule is non-deterministic:

u-rule: if C1 u C2 ∈ L(x) and {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

University of
Manchester

7

 30

Last details on tableau algorithm for ALC

Clash: a c-tree contains a clash if it has a node x with ⊥ ∈ L(x) or

{A, ¬A} ⊆ L(x) — otherwise, it is clash-free

Complete: a c-tree is complete if none of the completion rules can be

applied to it

Answer behaviour: when started for C0 (in NNF!), the tableau algorithm

• is initialised with a single root node x0 with L(x0) = {C0}

• repeatedly applies the completion rules (in whatever order it

likes)

• answer “C0 is satisfiable” iff the completion rules can be ap-

plied in such a way that it results in a complete and clash-free

c-tree (careful: this is non-deterministic)

...go back to examples

University of
Manchester

8

 31

Properties of our tableau algorithm

Lemma: Let C0 an ALC-concept in NNF. Then

1. the algorithm terminates when applied to C0 and

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C0 is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.

2. Satisfiability (and subsumption) in ALC is decidable in PSpace.

3. ALC has the finite model property

i.e., every satisfiable concept has a finite model.

4. ALC has the tree model property

i.e., every satisfiable concept has a tree model.

5. ALC has the finite tree model property

i.e., every satisfiable concept has a finite tree model.

University of
Manchester

9

 32

Extend tableau algorithm to ALC with general TBoxes

Recall: • Concept inclusion: of the form C v̇ D for C, D (complex) concepts

• (General) TBox: a finite set of concept inclusions

• I satisfies C v̇ D iff CI ⊆ DI

• I is a model of TBox T iff I satisfies each concept equation in T

• C0 is satisfiable w.r.t. T iff there is a model I of T with CI
0 6= ∅

Goal – Lemma: Let C0 an ALC-concept and T be a an ALC-TBox. Then

1. the algorithm terminates when applied to T and C0 and

2. the rules can be applied such that they generate a clash-free

and complete completion tree iff C0 is satisfiable w.r.t. T .

University of
Manchester

15

 33

Extend tableau algorithm to ALC with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:

• remember that nodes represent elements of ∆I and

• if C v̇ D ∈ T , then for each element x in a model I of T
if x ∈ CI , then x ∈ DI

hence x ∈ (¬C)I or x ∈ DI

x ∈ (¬C t D)I

x ∈ (NNF(¬C t D))I

for NNF(E) the negation normal form of E

University of
Manchester

16

 34

Completion rules for ALC with TBoxes

u-rule: if C1 u C2 ∈ L(x) and {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

T -rule: if C1 v̇ C2 ∈ T and NNF(¬C1 t C2) 6∈ L(x)

then set L(x) = L(x) ∪ {NNF(¬C1 t C2)}

University of
Manchester

17

 35

A tableau algorithm for ALC with general TBoxes

Example: Consider satisfiability of C w.r.t. {C v̇ ∃R.C}

Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and

we keep repeating ourselves

Regain termination with a “cycle-detection” technique called blocking

Intuitively, whenever we find a situation where y has to satisfy

stronger constraints than x, we freeze x, i.e., block rules from

being applied to x
L(x) ⊆ L(y)

y

x

University of
Manchester

18

 36

A tableau algorithm for ALC with general TBoxes: Blocking

• x is directly blocked if it has an ancestor y with L(x) ⊆ L(y)

• in this case and if y is the “closest” such node to x, we say that x is blocked by y

• a node is blocked if it is directly blocked or one of its ancestors is blocked

⊕ restrict the application of all rules to nodes which are not blocked

Ã completion rules for ALC w.r.t. TBoxes

University of
Manchester

19

 37

A tableau algorithm for ALC with general TBoxes

u-rule: if C1 u C2 ∈ L(x), {C1, C2} 6⊆ L(x), and x is not blocked

then set L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), {C1, C2} ∩ L(x) = ∅, and x is not blocked

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x has no S-successor y with C ∈ L(y),

and x is not blocked

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x), there is an S-successor y of x with C /∈ L(y)

and x is not blocked

then set L(y) = L(y) ∪ {C}

T -rule: if C1 v̇ C2 ∈ T , NNF(¬C1 t C2) 6∈ L(x)

and x is not blocked

then set L(x) = L(x) ∪ {NNF(¬C1 t C2)}

University of
Manchester

20

 38

Tableaux Rules for ALC

� �� � � �� �
� �� �

� �� �
� �

� �
	 	

� �

� �

� �� �
� �� �

� �� �
� �� �

� �� �

� �� �

� ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� �

→u

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x

R

y {C, . . .}y

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→t

for C ∈ {C1, C2}

x {C1 t C2, C, . . .}

x {C1 u C2, C1, C2, . . .}

x {C1 t C2, . . .}

x {C1 u C2, . . .}

Reasoning with Expressive Description Logics – p. 5/27
 39

Tableaux Rule for Transitive Roles

9 9: :
; ;< <= => >

? ?@ @

A A

B
B

B
B

B
B

B
B

B
B

B
B

C CD DE
E

E
E

E
E

E
E

E
E

E
E

F
F

F
F

Fx

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27
 40

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 41

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 42

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 43

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 44

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 45

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 46

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C, ∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 47

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C, ∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 48

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 49

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 50

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

clashL(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 51

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 52

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬D}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 53

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

xL(x) = {C, (¬C t ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 54

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 55

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 56

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 57

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 58

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 59

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 60

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 61

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 62

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 63

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D),∃R.C,∀R.(∃R.C)}

R

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27
 64

Properties of our tableau algorithm for ALC with TBoxes

Lemma: Let T be a general ALC-Tbox and C0 an ALC-concept. Then

1. the algorithm terminates when applied to T and C0 and

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C0 is satisfiable w.r.t. T .

Corollary: 1. Satisfiability of ALC-concept w.r.t. TBoxes is decidable

2. ALC with TBoxes has the finite model property

3. ALC with TBoxes has the tree model property

University of
Manchester

21

 65

A tableau algorithm for ALC with general TBoxes: Summary

The tableau algorithm presented here

➔ decides satisfiability of ALC-concepts w.r.t. TBoxes, and thus also

➔ decides subsumption of ALC-concepts w.r.t. TBoxes

➔ uses blocking to ensure termination, and

➔ is non-deterministic due to the →t-rule

➔ in the worst case, it builds a tree of depth exponential in the size of the input,

and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,

➔ can be implemented in various ways,

– order/priorities of rules

– data structure

– etc.

➔ is amenable to optimisations – more on this next week

University of
Manchester

26

 66

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27
 67

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27
 68

Resources

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm

Reasoning with Expressive Description Logics – p. 25/27
 69

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/
http://www.cs.man.ac.uk/FaCT/
http://oiled.man.ac.uk/
http://www.ontoknowledge.org/oil/
http://www.w3.org/2001/sw/WebOnt/
http://books.cambridge.org/0521781760.htm

	Vorlesung Künstliche Intelligenz Wintersemester 2007/08�
	Beschreibungslogiken (Description Logics)
	Geschichte
	Literatur
	DL Architecture
	DL Knowledge Base
	DL Semantics
	DL Knowledge Bases (Ontologies)
	Knowledge Base Semantics
	Inference Tasks
	10_Teil2_Beschreibungslogiken.pdf
	ALC-SHOIN-Uebersicht.pdf
	F_Teil2_LutzSattler_Vorlage.pdf
	day1.pdf
	day2.pdf
	day3.pdf

	F_Teil2_DescriptionLogics.pdf
	Description Logic Reasoning
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems

	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics

	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details

	Tableaux Rules for alc
	Tableaux Rules for alc

	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles

	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example

	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques

	Implementing DL Systems
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations

	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm

	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation

	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking

	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping

	Research Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges

	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes

	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals

	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions

	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability

	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)

	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks

	Summary
	Summary
	Summary
	Summary
	Summary
	Summary

	Acknowledgements
	Acknowledgements
	Acknowledgements
	Acknowledgements

	Resources
	Select Bibliography
	Select Bibliography

	tmptmp.pdf
	F. Description Logics – Part 2

