AIR OF THE

ENDOWE F THE HEATIE FOUND
Knowledge and Data En

Vorlesung Kiinstliche Intelligenz Wintersemester 2006/07

Kap.11: Beschreibungslogiken

Mit Material von

« Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-
2005/ lectures/lutz/index.php?id=24

« lan Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Beschreibungslogiken (Description Logics)

A family of logic based Knowledge Representation formalisms
B Descendants of semantic networks and KL-ONE

B Describe domain in terms of concepts (classes), roles (relationships) and
individuals

Distinguished by:
B Formal semantics (typically model theoretic)
= Decidable fragments of FOL
= Closely related to Propositional Modal & Dynamic Logics
W Provision of inference services
= Sound and complete decision procedures for key problems
= |Implemented systems (highly optimised)

X

B Einfache Sprache zum Start: 4L (Attributive Language with Complement)

B Im Semantic Web wird SHOIMD,) eingesetzt. Hierauf basiert die Semantik

von OWL DL.

Geschichte

B lhre Entwicklung wurde inspiriert durch semantische Netze und
Frames.

B Frihere Namen:
= KL-ONE like languages
= terminological logics

B Ziel war eine Wissensreprasentation mit formaler Semantik.

B Das erste Beschreibungslogik-basierte System war KL-ONE (1985).

B Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991),
CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).

Literatur

W D. Nardi, R. J. Brachman. An Introduction to Description
Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
P.F. Patel-Schneider (eds.): Description Logic Handbook,
Cambridge University Press, 2002, 5-44.

W F. Baader, W. Nutt: Basic Description Logics. In: Description
Logic Handbook, 47-100.

B |lan Horrocks, Peter F. Patel-Schneider and Frank van
Harmelen. From SHIQ and RDF to OWL: The making of a web

ontology language.
http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoP
HO3a.pdf

X

X

Recall: Logics and Model Theory X

Ontology/KR languages aim to model (part of) world
Terms in language correspond to entities in world

Meaning given by, e.g.:

B Mapping to another formalism, such as FOL, with own well defined
semantics

B or a Model Theory (MT)

MT defines relationship between syntax and interpretations
B There can be many interpretations (models) of one piece of syntax
B Models supposed to be analogue of (part of) world
= E.g., elements of model correspond to objects in world
B Formal relationship between syntax and models
= Structure of models reflect relationships specified in syntax
Inference (e.g., subsumption) defined in terms of MT
= E.g., TE A C B iff in every model of 7, ext(A) C ext(B)

Recall: Logics and Model Theory X
ed

Many logics (including standard First Order Logic) use a model theory bas
on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as A)

Objects in the world are interpreted as elements of A
B Classes/concepts (unary predicates) are subsets of A
W Properties/roles (binary predicates) are subsets of A x A (i.e., A?)
B Ternary predicates are subsets of A3 etc.

The sub-class relationship between classes can be interpreted as set
inclusion.

Recall: Logics and Model Theory X

Model Interpretation

Daisy isA Cow
Cow kindOf Animal

éﬁ/]\; Q Mary isA Person
% £ Person kindOf Animal

a2\ Z123ABC isA Car

Mary drives Z123ABC

Recall: Logics and Model Theory X

Formally, the vocabulary is the set of names we use in our
model of (part of) the world

W {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
An interpretation Z is a tuple (A,)
B Ais the domain (a set)
® I is a mapping that maps
= Names of objects to elements of A

» Names of unary predicates (classes/concepts) to subsets
of A

» Names of binary predicates (properties/roles) to
subsets of A x A

» And so on for higher arity predicates (if any)

DL Architecture X

Man = Human 1 Male

Happy-Father = Man 1 3 has-child
Female n ...

John : Happy-Father
(John, Mary) : has-child

DL Knowledge Base X

DL Knowledge Base (KB) normally separated into 2 parts:

B TBox is a set of axioms describing structure of domain (i.e., a conceptual
schema), e.g.:

= HappyFather = Man A FhasChild.Female A ...
= Elephant = Animal A Large A Grey
= transitive(ancestor)

B ABox is a set of axioms describing a concrete situation (data), e.g.:
= John:HappyFather
= <John,Mary>:hasChild

Separation has no logical significance
B But may be conceptually and implementationally convenient

DL Semantics X

Interpretation function Z extends to concept expressions in
the obvious way, i.e.:

(cnbDYX =cInpDt

(cuD)YX =ctupt

(-0)F = At\c*

{z}t = {«1}

(3R.C)L = {z | Jy.(x,y) € RT Ay € CT}
(VR.C) = {z | Vy.(z,y) € RT = y € CT}
(<nR)t = {z | #{y | (z,y) € R’} <n}
(cnR): ={z | #{y | (z,y) € R} > n}

DL Knowledge Bases (Ontologies) X
A DL Knowledge Base is of the form K = (T, A)

B 7 (Tbox) is a set of axioms of the form:
= C C D (concept inclusion)
= C = D (concept equivalence)
= R C S (role inclusion)
= R =S (role equivalence)
= R+ C R (role transitivity)

B A (Abox) is a set of axioms of the form
= x € D (concept instantiation)
* (x,y) € R (role instantiation)

Two sorts of Tbox axioms often distinguished
B “Definitions”
= CC Dor C=D where Cis a concept name
B General Concept Inclusion axioms (GCls)
= C C D where C is an arbitrary concept

Knowledge Base Semantics
Syntax fiir DLs (ohne concrete domains) s |
/®
An interpretation Z satisfies (models) an axiom A (Z E A): — — Ontology (=Knowledge Base) E
m ZECCDiff CTC D? = 'C
B 7EC=Diff (T=D? ° -
Subclass cCLCD
B TERCSIffREC ST Q|And cnp :
B ITER=SiffRZ=5% <| or cupD Equivalent C=0D
B 7k R*CRiff (RY)* CRZ Exists JRr.C
B TFxeDiffxLe D For all VR.C
. C
B Tk (x,y) € Riff (x%,yf) € R = Atleast S I Subrole RC s
0| Transitivity Trans (S)
| At most <n R.C (<n R)
7 satisfies a Tbox T (Z E T) iff Z satisfies every axiom A in T - ; ;
O| Nominal {1, 1y}
Instance C(a)
7 satisfies an Abox A (Z E A) iff Z satisfies every axiom A in A Role R 2.5)
. . . . Atomi Same a=>b
7 satisfies an KB K (Z E K) iff Z satisfies both 7 and A _[Atomie a -
Inverse R” Different a#b
S = ALC + Transitivity OWL DL = SHOIN(D) (D: concrete domain)
Folie 22
13
Inference Tasks X The Description Logic ,ALC: Syntax
Atomic types: concept names A, B, ... (unary predicates)
Knowledge is correct (captures intuitions) . <
B C subsumes D w.r.t. K iff for every model T of k, CZ C DT role names R, S, ... (blnary predlcates)
Knowledge is minimally redundant (no unintended synonyms) Constructors: - ~C (negation)
m C is equivalent to D w.r.t. K iff for every model Z of K, CT = DZ -CnbD (conjunction)
. . . -cCub disjunction
Knowledge is meaningful (classes can have instances) c (disj)
m C is satisfiable w.r.t. K iff there exists some model Z of K s.t. CT# () -3dR.C (existential restriction)
-VR.C (value restriction)

Querying knowledge

B x is an instance of C w.r.t. K iff for every model Z of K, xT € C* Abbreviations: - C — D = —~C LI D (implication)

B (x,y) is an instance of R w.r.t. K iff for, every model Z of K, (x%,y%) € RF
-CeD=C—=D (bi-implication)

Knowledge base consistency nbD—cC

B A KB K is consistent iff there exists some model Z of K i (A U —:A) (tOp concept)

b -1Ll=AnN-4A4 (bottom concept)

resden

Examples

©

Person M Female

@ Person M Jattends.Course

©

Person M Vattends. (Course — —Easy)

©

Person M Jteaches. (Course M Vattended-by. (Bored LI Sleeping))

D)

U
resden

Interpretations

Semantics based on interpretations (A%, -T), where
- AT is a non-empty set (the domain)
— T is the interpretation function mapping

each concept name A to a subset AZ of A and

each role name R to a binary relation R over AZ.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure

with only unary and binary predicates

resden

Example

Person
Course teaches Lecturer

attends
attends attends
]
Course
Difficult
Student Student et
Person Sleeping
Person
6]
resden
Semantics of Complex Concepts
(—-C)I=AT\c* (CcnD)¥!=c*nD?* (CuDbD)*=CTuD?*
(3R.C)T = {d | thereis an e € AT with (d,e) € RT and e € CT}
(VR.C)T = {d | forall e € AT, (d,e) € R* implies e € CT}
Person
Courfe teaches Lecturer
attends
attends attends
Course
Student Student Difficult
Person Sleeping
Person
Person M Jattends.Course
b Person M Vattends. (—Course LI Difficult)
U

resden

TBoxes

D)

U
resden

Capture an application’s terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:
finite set of concept equations A = C'
with A concept name and C concept
left-hand sides must be unique!
Semantics:

interpretation T satisfies A = C iff AT = C*

T is model of T if it satisfies all definitions in 7~

E.g.: Lecturer = Person M Jteaches.Course

Yields two kinds of concept names: defined and primitive

TBox: Example

resden

TBoxes are used as ontologies:

Woman = Person M Female

Man = Person M ~Woman
Lecturer = Person M Jteaches.Course
Student = Person M Jattends.Course

BadLecturer = Person M Vteaches.(Course — Boring)

TBox: Example Il

A TBox restricts the set of admissible interpretations.

D

U
resden

Lecturer = Person M Jteaches.Course
Student = Person M Jattends.Course
Student

Person
Course teaches Lecturer

attends
attends attends
Course
Student Student Difficult
Person Sleeping
Person

Reasoning Tasks — Subsumption

Intuition:

Example:

resden

C subsumed by D w.r.t. T (written C C+ D)
iff

CT C D7 holds for all models Z of T

If C C+ D, then D is more general than C

Lecturer = Person M Jteaches.Course

Student = Person M Jattends.Course

Then

Lecturer M Jattends.Course 7 Student

Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a

hierarchy w.r.t. generality

. Person
Woman = Person " Female /e S?\
Man = Person M —Woman Man Woman
MaleLecturer = Man 1 Jteaches.Course /
MaleLecturer

Can be computed using multiple subsumption tests

Provides a principled view on ontology for browsing, maintaining, etc.

D)

U
resden 15

Hierarchy

Lo s e e —
Owygen Toxicity #1 =
Physiolomy #1

= Procedure #1

Budlchy Breathing #1
Buddy Check #1
Cardiopulmonary Eesuscitation #1
Off Gassing #1
0n Gassing #1
Recompression #1
Safaty Stop #1
Staged Decompression #1
o [E] qualification #1
ACI#1
AD #1
Al #1
cl#l
Redundancy #1
Respiration #1
Rule of Thirds #1
SCUBA #1
SEEDS #1
o [E] second Stage #1
Octopus #1
Technical Diving #1 M
& [E] Timing Device #1
Computer #1
Watch #1
B [E] wiet Suit #1
Full et Suit #1
Long Johin #1
Shortie #1
et Suit Jacket #1

D

resden 16

[«]

A Concept Hierarchy

Excerpt from a process engineering ontology

o)
— (e
{CSTRCSTR-POLYMER-REACT ON-SECTION

————{WALL:

——{PHASEBOUNDARY)

T —
__{OOWPOSITEMODED ="

o ———{COMPOSITECONNECTION ,—/

——[FILM-CONNECTIO M) e
- (WAL)
T (FLUX OOWNECTION (FFE)

,A{CDNTINUOUS-ST\F!RED-F‘OLVMER\ZATDN-REACTOFiJ
—_— EAPGF!—PHASE

RACT-FHASE)-

—
U
resden 17 14
Reasoning Tasks — Satisfiability
C is satisfiable w.r.t. 7 iff 7 has a model with CT # 0
Intuition: If unsatisfiable, the concept contains a contradiction.
Example: Woman = Person M1 Female
Man = Person M —=Woman
Then sibling.Man M Vsibling.Woman is unsatisfiable w.r.t. T~
Subsumption can be reduced to (un)satisfiability and vice versa:
o C L+ Diff C N —D is not satisfiable w.r.t. 7~
@ (' is satisfiable w.rt. T ifnot C C+ L.
b Many reasoners decide satisfiability rather than subsumption.
U
resden 18

Definitorial TBoxes

D)

U
resden

A primitive interpretation for TBox T~ interpretes
@ the primitive concept names in T~

@ all role names

A TBox is called definitorial if every primitive interpretation for ‘7~

can be uniquely extended to a model of 7.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

. ?
Person = Jparent.Person Person.@ parent

Non-definitorial TBoxes describe constraints, e.g. from background knowledge

20

Acyclic TBoxes

resden

TBox T is acyclic if there are no definitorial cycles:

Lec urse

as-title. Title ht-by.Lecturer
Expansion of acyclic TBox 7

exhaustively replace defined concept names with their definition

(terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, thenset AZ :=CZforal A=C € T

21

Acyclic TBoxes Il

D

U

resden

For reasoning, acyclic TBox can be eliminated:
o to decide C' T+ D with 7T acyclic,

- expand T~
— replace defined concept names in C, D with their definition

- decide C C D

@ analogously for satisfiability

May yield an exponential blow-up:

Ao = V’I’.Al M VS.Al
A1 = V’I".Az M VS.AQ

A, 1 =Vr.A,MNMVs.A,)

22

General Concept Inclusions

resden

View of TBox as set of constraints

General TBox: finite set of general concept implications (GCls)
cCCD
with both C and D allowed to be complex

e.g. Course 11 Vattended-by.Sleeping = Boring

Interpretation Z is model of general TBox 7T if
CTCD*foral CCD€T.

C = D is abbreviationfor CC D, DC C
e.g. Student M Jhas-favourite.SoccerTeam = Student M Jhas-favourite.Beer
Note: C C D equivalentto T = C — D

23

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C (a individual name, C concept)

(a,b) : R (a,b individual names, R role name)
E.g. {peter : Student, (dl-course, uli) : tought-by}
Interpretations Z map each individual name a to an element of AZ.

T satisfies an assertion
a:C iff
(a,b) : R iff

(a?,b7) € RY

T is a model for an ABox A if T satisfies all assertions in .A.

D)

U
resden 24

ABoxes Il

Note:
o interpretations describe the state if the world in a complete way

@ ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : tought-by uli : Female

does not imply

dl-course : Vtought-by.Female

An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox

resden 25

Reasoning with ABoxes

ABox consistency

Given an ABox A and a TBox 7, do they have a common model?

Instance checking
Given an ABox A, a TBox 7, an individual name a, and a concept C
does a” € C7 hold in all models of .A and 77?
(written A, T |=a : C)

The two tasks are interreducible:

o A consistent wrt. Tiff A, 7T fEa: L
@ AT Ea:Ciff AU {a: —=C} is not consistent

D

U
resden 26

Example for ABox Reasoning

t14 : Trunk
(dumbo, t14) : bodypart

ABox dumbo : Mammal

(dumbo, g23) : color
dumbo : Vcolor.Lightgrey

TBox Elephant = Mammal M Ibodypart. Trunk M Vcolor.Grey
Grey = Lightgrey LI Darkgrey
L = Lightgrey M Darkgrey
1. ABox is inconsistent w.r.t. TBox.

2. dumbo is an instance of Elephant

resden 27

Preliminaries: Negation Normal Form

2. Tableau algorithms for ALC and extensions To make our life easier, we transform each concept Cj, into an equivalent C; in NNF

Equivalent: Cy C C; and C; C Cj

We see a tableau algorithm for ALC and extend it with NNF: negation occurs only in front of concept names
@ general TBoxes and How? By pushing negation inwards (de Morgan et. al):
@ inverse roles -(CnD) ~ =-Cu-D
—|(CL1D) ~ =C' M =D
———C ~ C
. .. —-VR.C ~ IdR.-C
Goal: Design sound and complete desicion procedures for CARC s YR.AC

satisfiability (and subsumption) of DLs which are

well-suited for implementation purposes
P purp From now on: concepts are in NNF and

sub(C) denotes the set of all sub-concepts of C

University of University of

A tableau algorithm for the satisfiability of ALC concepts More intuition
Goal: design an algorithm which takes an ALC concept C and Find out whether AM3IR.BMVR.-B is satisfiable...
1. returns “satisfiable” iff Cy is satisfiable and AM3R.BNVR.(-BU3S.E)
2. terminates, on every input,
i.e., which decides satisfiability of ALC concepts. Our tableau algorithm works on a completion tree which

o represents a model Z: nodes represent elements of A%
Recall: such an algorithm cannot exist for FOL since

P . . ~+ each node z is labelled with concepts L(x) C sub(C))
satisfiability of FOL is undecidable.

C € L(x) is read as “x should be an instance of C”

Idea: our algorithm edges represent role successorship

e is tableau-based and ~ each edge (x, y) is labelled with a role-name from C

o tries to construct a model of Cj R € L({xz,y)) is read as “(x,y) should be in R*"
e by breaking C,, down syntactically, thus e is initialised with a single root node o with £(xz¢) = {Co}
e inferring new constraints on such a model. e is expanded using completion rules

University of 2 University of
Manchester Manchester

Completion rules for ALC

niversity of
Manchester

M-rule: if C1MCy € L(x)
then set L(z) = L(x) U {C, C2}

U-rule: if CyUCy € L(x)
then set L(z) = L(x) U {C} for some C € {C4, C>}

F-rule: if 3S.C € L(x)
then create a new node y with L({x,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x) and there is an S-successor y of x
then set L(y) = L(y) U {C}

f

Properties of the completion rules for ALC

We only apply rules if their application does “something new”

niversity of
Manche:

M-rule: if C1MC2 € L(x) and {C4,Cy} € L(x)
then set L(x) = L(x) U {C4, C2}

U-rule: if C1UCy € L(x) and {C1,Co} N L(x) =0
then set L(x) = L(x) U {C} for some C € {C;,C>}

F-rule: if 3S.C € L(x) and x has no S-successor y with C' € L(y),
then create a new node y with £({z,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x) and there is an S-successor y of x with C ¢ L(y)
then set L(y) = L(y) U {C}

f

Properties of the completion rules for ALC

The U-rule is non-deterministic:

iversity o
nchester

M-rule: if C1MCy € L(x) and {C1, Ca} € L(x)
then set L(z) = L(x) U {C4, C2}

U-rule: if Cl LJ 02 € L(QI) and {Cl, Cg} N L(:I?) = 0
then set L(xz) = L(x) U {C} for some C € {C4, C>}

J-rule: if 3S.C € L(x) and x has no S-successor y with C € L(y),
then create a new node y with L({x,y)) = {S} and L(y) = {C}

V-rule: if VS.C € L(x) and there is an S-successor y of x with C ¢ L(y)
then set L(y) = L(y) U {C}

f

Last details on tableau algorithm for ALC

Clash: a c-tree contains a clash if it has a node with L € L(x) or
{A, A} C L(x) — otherwise, it is clash-free
Complete: a c-tree is complete if none of the completion rules can be
applied to it

Answer behaviour: when started for Cy (in NNF!), the tableau algorithm
e is initialised with a single root node x(with £(x) = {Cy}

o repeatedly applies the completion rules (in whatever order it
likes)

e answer “Cy is satisfiable” iff the completion rules can be ap-
plied in such a way that it results in a complete and clash-free
c-tree (careful: this is non-deterministic)

...go back to examples

8

Properties of our tableau algorithm

niversity of
Manchester

f

Lemma: Let Cy an ALC-concept in NNF. Then
1. the algorithm terminates when applied to C and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff Cj is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.
2. Satisfiability (and subsumption) in ALC is decidable in PSpace.

3. ALC has the finite model property
i.e., every satisfiable concept has a finite model.

4. ALC has the tree model property
i.e., every satisfiable concept has a tree model.

5. ALC has the finite tree model property
i.e., every satisfiable concept has a finite tree model.

Extend tableau algorithm to .ALC with general TBoxes |

niversity of
Manchester

f

Recall: e Concept inclusion: of the form C L D for C, D (complex) concepts
e (General) TBox: a finite set of concept inclusions
o T satisfies C L D iff CT C DY
e 7 is a model of TBox 7 iff Z satisfies each concept equation in 7~

e C, is satisfiable w.r.t. 7 iff there is a model Z of 7 with CT # 0

Goal — Lemma: Let Cy an ALC-concept and 7 be a an ALC-TBox. Then
1. the algorithm terminates when applied to 7~ and Cy and

2. the rules can be applied such that they generate a clash-free
and complete completion tree iff Cj is satisfiable w.r.t. 7.

Extend tableau algorithm to ALC with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:
o remember that nodes represent elements of AZ and

eif C C D € T, then for each element x in a model Z of 7~
if x € C%, then £ € D*
hence z € (—C)% or x € D*
x € (—-C u D)?
x € (NNF(-C u D))*
for NNF(E) the negation normal form of E

iversity of
nchester

Completion rules for ALC with TBoxes

T-rule: if C; C Cy, € T and NNF(=Cy LI Cy) & L(x)
then set L(x) = L(z) U {NNF(-C; U C2)}

A tableau algorithm for ALC with general TBoxes

Intuitively, whenever we find a situation where y has to satisfy
stronger constraints than x, we freeze x, i.e., block rules from
being applied to x

University of
Manchester

Example: Consider satisfiability of C w.rt. {C C 3R.C}

Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and

we keep repeating ourselves

Regain termination with a “cycle-detection” technique called blocking

L@ € L)

A tableau algorithm for ,ALC with general TBoxes: Blocking

o x is directly blocked if it has an ancestor y with £(x) C L(y)

e in this case and if y is the “closest” such node to x, we say that = is blocked by y

e a node is blocked if it is directly blocked or one of its ancestors is blocked

@ restrict the application of all rules to nodes which are not blocked

University of
Manchester

~» completion rules for ALC w.r.t. TBoxes

A tableau algorithm for ALC with general TBoxes

niversity o
Manchester

M-rule:

LI-rule:

F-rule:

V-rule:

T -rule:

f

if CiMCy e L(x), {C1,C2} € L(x), and x is not blocked
then set L(z) = L(x) U {C, C2}

if CiUCy € L(x), {C1,Ca} N L(x) =0, and x is not blocked
then set L(z) = L(x) U {C} for some C € {C4, C>}

if 3S.C € L(x), x has no S-successor y with C € L(y),
and x is not blocked
then create a new node y with £({(x,y)) = {S} and L(y) = {C}

if VS.C € L(x), there is an S-successor y of x with C ¢ L(y)
and z is not blocked
then set L(y) = L(y) U {C}

if C,CCy,eT, NNF(-C,UCGC,) ¢ L(x)
and x is not blocked
then set £L(z) = L(x) U {NNF(-C; U C>)}

Tableaux Rules for ALC

.Z"{Cl|_|02,...} dn w‘{clﬂCQ,Cl,Cg,...}
I‘{CluCQ,...} — I‘{CluCQ,C,...}
for C ¢ {01,02}

re{3R.C,...} —3 re{3R.C,...}

R

y{C}
re {VR.C,...} —vy re {VR.C,...}
RJ R
A yAC,.)

Reasoning with Expressive Description Logics—p. 5/27

39

Tableaux Rule for Transitive Roles

re{VR.C,...} —v, | ve{VR.C,...}
R R

ye{...} ys{VR.C,...}

Where R is a transitive role (i.e., (R%)* = RT)

< No longer naturally terminating (e.g., if C = 3R.T)
< Need blocking
e Simple blocking suffices for ALC plus transitive roles
e |.e., do not expand node label if ancestor has superset label

e More expressive logics (e.g., with inverse roles) need more
sophisticated blocking strategies

Reasoning with Expressive Description Logics — p. 6/27
40

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

Reasoning with Expressive Description Logics — p. 7/27
41

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C MVS.(~C U-D)N3R.C NVYR.(AR.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {3S.C NVS.(~C' U~D)N3IR.CNYR.(R.C)}

Reasoning with Expressive Description Logics—p. 7/27

42

43

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27
44

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L (w) = {35.0,YS.(~C'U~D),IR.C,YR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27
45

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(~C' U -D),3IR.C,VR.(3R.C)}
s

L(z) ={C}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C' U -D),3R.C,¥R.(3R.C)}
s

L) = {C} @3

Reasoning with Expressive Description Logics—p. 7/27

46

47

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(-C U ~D),3R.C,VR.(AR.C)}
S

L(z) = {C,~C LU ~D}

Reasoning with Expressive Description Logics — p. 7/27
48

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(3R.C)}
s

L(x) = {C,~C U~D} (=

Reasoning with Expressive Description Logics — p. 7/27
49

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(AR.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -D),3R.C,¥R.(3R.C)}
s

L(2) = {C,(~CU-D),~C} (zf dlash

Reasoning with Expressive Description Logics—p. 7/27

50

51

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}
S

L(z) = {C,~C LU ~D}

Reasoning with Expressive Description Logics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(3R.C)}
s

L(x) = {C, (-C'U=-D), —\D} @

Reasoning with Expressive Description Logics — p. 7/27

52

53

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(AR.C)}
s R

L(2) = {C.(~C U=D), =D} 7 @ LW =1{C)

Reasoning with Expressive Description Logics—p. 7/27

54

55

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,VS.(-C U~D),3R.C,VR.(3R.C)}

S R

@ L) =1{C)

Reasoning with Expressive Description Logics — p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U —~D),3R.C,¥R.(3R.C))}
S R

L(z) ={C,(-CU-D),-D} ©) W L(y) = {C,3R.C,YR.(3R.C)}

Reasoning with Expressive Description Logics — p. 7/27

56

57

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(~C U ~D),3R.C,¥R.(3R.C)}
S R

@) L) = {C,3R.C.YR.(IR.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(~C U-D),3R.C,YR.(3R.C)}

S R

L(z) ={C, (=€ U-D),~D} (z) L(y) ={C,3R.C,YR.(3R.C)}
R

L(z) ={C}

Reasoning with Expressive Description Logics—p. 7/27

58

59

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

S R
L(z) = {C,(~C U-D),~D} L(y) = {C,3R.C,YR.(3R.C)}
R
L(z) ={C}

Reasoning with Expressive Description Logics — p. 7/27
60

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U—-D)N3R.CMVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U ~D),3R.C,YR.(3R.C)}
s R

L(z) ={C,(~=CU-D),~D} (z) L(y) = {C,3R.C,YR.(3R.C)}
R

£(z) = {C,3R.C,YR.(AR.C)}

Reasoning with Expressive Description Logics — p. 7/27
61

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)N3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(AR.C)}
5 R

L(z) = {C,(~C U =D),~D} L(y) = {C,3R.C,¥YR.(3R.C)}
R

blocked L(z) = {C,3R.C,VR.(3R.C)}

Reasoning with Expressive Description Logics—p. 7/27

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)M3R.CMNVR.(IR.C)} where R is
a transitive role

L(w) = {35.0,¥S.(~C U -D),3R.C,¥R.(3R.C)}
5 R

L(z) ={C,(=CU~D),~D} (z) L(y) = {C,3R.C,YR.(3R.C)}
R

blocked () L(z) = {C,3R.C,¥R.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics—p. 7/27

62

63

Tableaux Algorithm — Example

Test satisfiability of 35.C MVS.(-C U-D)MN3R.CNVR.(IR.C)} where R is

a transitive role

L(w) = {35.C,¥S.(-C U~D),3R.C,VR.(3R.C)}

S R

. @ L(y) = {C,3R.C,VR.(3R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics — p. 7/27

Properties of our tableau algorithm for ALC with TBoxes

niversity of
Manchester

f

Lemma:

Corollary:

Let 7 be a general ALC-Tbox and Cj an ALC-concept. Then
1. the algorithm terminates when applied to 7~ and Cj and

2. the rules can be applied such that they generate a
clash-free and complete completion tree iff Cj is satisfiable w.r.t. 7.

1. Satisfiability of ,ALC-concept w.r.t. TBoxes is decidable
2. ALC with TBoxes has the finite model property
3. ALC with TBoxes has the tree model property

21

64

A tableau algorithm for ALC with general TBoxes: Summary

The tableau algorithm presented here

-+ decides satisfiability of ,ALC-concepts w.r.t. TBoxes, and thus also
-+ decides subsumption of .ALC-concepts w.r.t. TBoxes

- uses blocking to ensure termination, and

- is non-deterministic due to the —-rule

- in the worst case, it builds a tree of depth exponential in the size of the input,
and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,

- can be implemented in various ways,

— order/priorities of rules
— data structure
— etc.

- is amenable to optimisations — more on this next week

niversity of
Manchester

Challenges

< |ncreased expressive power

e Existing DL systems implement (at most) SHZQ

e OWL extends SHZQ with datatypes and nominals
< Scalability

e Very large KBs

e Reasoning with (very large numbers of) individuals
< Other reasoning tasks

e Querying

e Matching

e Least common subsumer

= Tools and Infrastructure

e Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics—p. 16/27

67

Summary

< Description Logics are family of logical KR formalisms

< Applications of DLs include DataBases and Semantic Web
e Ontologies will provide vocabulary for semantic markup
e OWL web ontology language based on SHZQ DL
e Set to become W3C standard (OWL) & already widely adopted
e Use of DL provides formal foundations and reasoning support
< DL Reasoning based on tableau algorithms
< Highly Optimised implementations used in DL systems
< Challenges remain
e Reasoning with full OWL language
(Convincing) demonstration(s) of scalability
New reasoning tasks
Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics— p. 23/27
68

Resources

Slides from this talk
http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)
http://www.cs.man.ac.uk/FaCT/

OIlEd (open source)
http://oiled.man.ac.uk/

OIL
http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)
http://www.w3.0rg/2001/sw/WebOnt/

DL Handbook, Cambridge University Press
http://books.cambridge.org/0521781760.htm

Reasoning with Expressive Description Logics— p. 25/27
69

