Vorlesung Künstliche Intelligenz Wintersemester 2006/07

Teil III:
Wissensrepräsentation und Inferenz

Kap. 11: Beschreibungslogiken

Mit Material von
• Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24
• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Beschreibungslogiken (Description Logics)

A family of logic based Knowledge Representation formalisms

- Descendants of semantic networks and KL-ONE
- Describe domain in terms of concepts (classes), roles (relationships) and individuals

Distinguished by:
- Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
- Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

- Einfache Sprache zum Start: \(ALC \) (Attributive Language with Complement)
- Im Semantic Web wird \(SHOIN(D_0) \) eingesetzt. Hierauf basiert die Semantik von OWL DL.

Geschichte

- Ihre Entwicklung wurde inspiriert durch semantische Netze und Frames.
- Frühere Namen:
 - KL-ONE like languages
 - terminological logics
- Ziel war eine Wissensrepräsentation mit formaler Semantik.

Literatur

Ontology/KR languages aim to model (part of) world

Terms in language correspond to entities in world

Meaning given by, e.g.:
- Mapping to another formalism, such as FOL, with own well defined semantics
- or a Model Theory (MT)

MT defines relationship between syntax and interpretations
- There can be many interpretations (models) of one piece of syntax
- Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
- Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
- Inference (e.g., subsumption) defined in terms of MT
 - E.g., \(T \vdash A \subseteq B \) iff in every model of \(T \), \(\text{ext}(A) \subseteq \text{ext}(B) \)

Many logics (including standard First Order Logic) use a model theory based on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often refered as \(\Delta \))

Objects in the world are interpreted as elements of \(\Delta \)
- Classes/concepts (unary predicates) are subsets of \(\Delta \)
- Properties/roles (binary predicates) are subsets of \(\Delta \times \Delta \) (i.e., \(\Delta^2 \))
- Ternary predicates are subsets of \(\Delta^3 \) etc.

The sub-class relationship between classes can be interpreted as set inclusion.

Formally, the vocabulary is the set of names we use in our model of (part of) the world
- \{Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...\}

An interpretation \(\mathcal{I} \) is a tuple \(\langle \Delta, \mathcal{I} \rangle \)
- \(\Delta \) is the domain (a set)
- \(\mathcal{I} \) is a mapping that maps
 - Names of objects to elements of \(\Delta \)
 - Names of unary predicates (classes/concepts) to subsets of \(\Delta \)
 - Names of binary predicates (properties/roles) to subsets of \(\Delta \times \Delta \)
 - And so on for higher arity predicates (if any)
DL Knowledge Base

A DL Knowledge Base (KB) normally separated into 2 parts:

- **TBox** is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man $\land \exists$ has-child Female \land ...
 - Elephant = Animal \land Large \land Grey
 - transitive(ancestor)

- **ABox** is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - <John, Mary>: has-child

Separation has no logical significance
- But may be conceptually and implementationally convenient

DL Semantics

Interpretation function I extends to concept expressions in the obvious way, i.e.:

$$(C \cap D)^I = C^I \cap D^I$$
$$(C \cup D)^I = C^I \cup D^I$$
$$(\neg C)^I = \Delta^I \setminus C^I$$
$$(x)^I = \{x^I\}$$
$$(\exists R.C)^I = \{x \mid \exists y. \langle x, y \rangle \in R^I \land y \in C^I\}$$
$$(\forall R.C)^I = \{x \mid \forall y. \langle x, y \rangle \in R^I \Rightarrow y \in C^I\}$$
$$(\leq n R)^I = \{x \mid \# \{y \mid \langle x, y \rangle \in R^I\} \leq n\}$$
$$(\geq n R)^I = \{x \mid \# \{y \mid \langle x, y \rangle \in R^I\} \geq n\}$$

Two sorts of Tbox axioms often distinguished
- "Definitions"
 - $C \subseteq D$ or $C \equiv D$ where C is a concept name
- General Concept Inclusion axioms (GCIs)
 - $C \subseteq D$ where C is an arbitrary concept
Knowledge Base Semantics

An interpretation I satisfies (models) an axiom A ($I \models A$):
- $I \models C \subseteq D$ iff $C^I \subseteq D^I$
- $I \models C \equiv D$ iff $C^I = D^I$
- $I \models R \subseteq S$ iff $R^I \subseteq S^I$
- $I \models R \equiv S$ iff $R^I = S^I$
- $I \models \exists R.C$ iff $(x,R)^I \in R^I$
- $I \models \forall R.C$ iff $(x,R)^I \in R^I$

I satisfies a Tbox T ($I \models T$) iff I satisfies every axiom A in T

I satisfies an Abox A ($I \models A$) iff I satisfies every axiom A in A

I satisfies an KB K ($I \models K$) iff I satisfies both T and A

Inference Tasks

Knowledge is correct (captures intuitions)
- C subsumes D w.r.t. K iff for every model I of K, $C^I \subseteq D^I$

Knowledge is minimally redundant (no unintended synonyms)
- C is equivalent to D w.r.t. K iff for every model I of K, $C^I = D^I$

Knowledge is meaningful (classes can have instances)
- C is satisfiable w.r.t. K iff there exists some model I of K s.t. $C^I \neq \emptyset$

Querying knowledge
- x is an instance of C w.r.t. K iff for every model I of K, $x^I \in C^I$
- (x,y) is an instance of R w.r.t. K iff for every model I of K, $(x,R,y)^I \in R^I$

Knowledge base consistency
- A KB K is consistent iff there exists some model I of K.

Syntax für DLs (ohne concrete domains)

<table>
<thead>
<tr>
<th>Concepts</th>
<th>ALC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic</td>
<td>A, B</td>
</tr>
<tr>
<td>Not</td>
<td>$\neg C$</td>
</tr>
<tr>
<td>And</td>
<td>$C \land D$</td>
</tr>
<tr>
<td>Or</td>
<td>$C \lor D$</td>
</tr>
<tr>
<td>Exists</td>
<td>$\exists R.C$</td>
</tr>
<tr>
<td>For all</td>
<td>$\forall R.C$</td>
</tr>
<tr>
<td>At least</td>
<td>$\geq 2n R.C$</td>
</tr>
<tr>
<td>At most</td>
<td>$\leq 5n R.C$</td>
</tr>
<tr>
<td>Nominal</td>
<td>${1, \ldots, n}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic</td>
<td>R</td>
</tr>
<tr>
<td>Inverse</td>
<td>R^-</td>
</tr>
</tbody>
</table>

S = ALC + Transitivity

OWL DL = SHOIN(D) (D: concrete domain)

The Description Logic \mathcal{ALC}: Syntax

Atomic types: concept names A, B, \ldots (unary predicates)
role names R, S, \ldots (binary predicates)

Constructors:
- $\neg C$ (negation)
- $C \land D$ (conjunction)
- $C \lor D$ (disjunction)
- $\exists R.C$ (existential restriction)
- $\forall R.C$ (value restriction)

Implications:
- $C \rightarrow D = \neg C \lor D$ (implication)
- $C \leftrightarrow D = C \rightarrow D \land D \rightarrow C$ (bi-implication)

Abbreviations:
- $\top = A \lor \neg A$ (top concept)
- $\bot = A \land \neg A$ (bottom concept)
Examples

- Person ∩ Female
- Person ∩ ∃attends.Course
- Person ∩ ∀attends.(Course → ¬Easy)
- Person ∩ ∃teaches.(Course ∩ ∀attended-by.(Bored ∪ Sleeping))

Interpretations

Semantics based on interpretations $(Δ^I, ⦃⋅⦄^I)$, where
- $Δ^I$ is a non-empty set (the domain)
- ⦃⋅⦄^I is the interpretation function mapping
 each concept name A to a subset A^I of $Δ^I$ and
 each role name R to a binary relation R^I over $Δ^I$.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure
 with only unary and binary predicates

Semantics of Complex Concepts

$(¬C)^I = Δ^I \setminus C^I$
$(C ∩ D)^I = C^I \cap D^I$
$(C ∪ D)^I = C^I \cup D^I$

$(∃R.C)^I = \{d |$ there is an $e ∈ Δ^I$ with $(d, e) ∈ R^I$ and $e ∈ C^I\}$

$(∀R.C)^I = \{d |$ for all $e ∈ Δ^I$, $(d, e) ∈ R^I$ implies $e ∈ C^I\}$
TBoxes

Capture an application’s terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:
- finite set of concept equations $A \triangleq C$
- with A concept name and C concept
- left-hand sides must be unique!

Semantics:
- interpretation \mathcal{I} satisfies $A \triangleq C$ if $A^\mathcal{I} = C^\mathcal{I}$
- \mathcal{I} is model of \mathcal{T} if it satisfies all definitions in \mathcal{T}

E.g.: Lecturer \triangleq Person $\sqcap \exists$teaches.Course

Yields two kinds of concept names: defined and primitive

TBox: Example

TBoxes are used as ontologies:

Woman \triangleq Person \sqcap Female

Man \triangleq Person $\sqcap \neg$Woman

Lecturer \triangleq Person $\sqcap \exists$teaches.Course

Student \triangleq Person $\sqcap \exists$attends.Course

BadLecturer \triangleq Person $\sqcap \forall$teaches.(Course \rightarrow Boring)

TBox: Example II

A TBox restricts the set of admissible interpretations.

Lecturer \triangleq Person $\sqcap \exists$teaches.Course

Student \triangleq Person $\sqcap \exists$attends.Course

Reasoning Tasks — Subsumption

C subsumed by D w.r.t. \mathcal{T} (written $C \sqsubseteq^\mathcal{T} D$)

iff

$C^\mathcal{I} \subseteq D^\mathcal{I}$ holds for all models \mathcal{I} of \mathcal{T}

Intuition: If $C \sqsubseteq^\mathcal{T} D$, then D is more general than C

Example:

Lecturer \triangleq Person $\sqcap \exists$teaches.Course

Student \triangleq Person $\sqcap \exists$attends.Course

Then

Lecturer $\sqcap \exists$attends.Course $\sqsubseteq^\mathcal{T}$ Student
Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a hierarchy w.r.t. generality.

\[
\begin{align*}
\text{Woman} & \equiv \text{Person} \sqcap \neg \text{Female} \\
\text{Man} & \equiv \text{Person} \sqcap \neg \text{Woman} \\
\text{MaleLecturer} & \equiv \text{Man} \sqcap \exists \text{teachesCourse}
\end{align*}
\]

Can be computed using multiple subsumption tests.

Provides a principled view on ontology for browsing, maintaining, etc.

Reasoning Tasks — Satisfiability

Intuition: If unsatisfiable, the concept contains a contradiction.

Example: \[\text{Woman} \equiv \text{Person} \sqcap \neg \text{Female} \]

\[\text{Man} \equiv \text{Person} \sqcap \neg \text{Woman} \]

Then \[\exists \text{Sibling.}\text{Man} \sqcap \neg \text{Sibling.}\text{Woman} \] is unsatisfiable w.r.t. \(\mathcal{T} \).

Subsumption can be reduced to (un)satisfiability and vice versa:

- \(C \sqsubseteq_T D \) iff \(C \sqcap \neg D \) is not satisfiable w.r.t. \(\mathcal{T} \)

- \(C \) is satisfiable w.r.t. \(\mathcal{T} \) if not \(C \sqsubseteq_T \bot \).

Many reasoners decide satisfiability rather than subsumption.

A Concept Hierarchy

Excerpt from a process engineering ontology.

Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a hierarchy w.r.t. generality.

\[
\begin{align*}
\text{Woman} & \equiv \text{Person} \sqcap \neg \text{Female} \\
\text{Man} & \equiv \text{Person} \sqcap \neg \text{Woman} \\
\text{MaleLecturer} & \equiv \text{Man} \sqcap \exists \text{teachesCourse}
\end{align*}
\]

Can be computed using multiple subsumption tests.

Provides a principled view on ontology for browsing, maintaining, etc.

Reasoning Tasks — Satisfiability

Intuition: If unsatisfiable, the concept contains a contradiction.

Example: \[\text{Woman} \equiv \text{Person} \sqcap \neg \text{Female} \]

\[\text{Man} \equiv \text{Person} \sqcap \neg \text{Woman} \]

Then \[\exists \text{Sibling.}\text{Man} \sqcap \neg \text{Sibling.}\text{Woman} \] is unsatisfiable w.r.t. \(\mathcal{T} \).

Subsumption can be reduced to (un)satisfiability and vice versa:

- \(C \sqsubseteq_T D \) iff \(C \sqcap \neg D \) is not satisfiable w.r.t. \(\mathcal{T} \)

- \(C \) is satisfiable w.r.t. \(\mathcal{T} \) if not \(C \sqsubseteq_T \bot \).

Many reasoners decide satisfiability rather than subsumption.
Definitorial TBoxes

A **primitive interpretation** for TBox \mathcal{T} interpretes
- the **primitive** concept names in \mathcal{T}
- all role names

A TBox is called **definitorial** if every primitive interpretation for \mathcal{T} can be **uniquely** extended to a model of \mathcal{T}.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

$$\text{Person} \triangleq \exists \text{parent}. \text{Person}$$

Non-definitorial TBoxes describe **constraints**, e.g. from **background knowledge**

Acyclic TBoxes

TBox \mathcal{T} is **acyclic** if there are no definitorial cycles:

$$\text{Lecturer} \triangleq \text{Person} \sqcap \exists \text{teaches}. \text{Course}$$

$$\text{Course} \triangleq \exists \text{has-title}. \text{Title} \sqcap \exists \text{taught-by}. \text{Lecturer}$$

Expansion of acyclic TBox \mathcal{T}:

exhaustively replace defined concept names with their definition
(terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, then set $A^\mathcal{T} \triangleq C^\mathcal{T}$ for all $A \triangleq C \in \mathcal{T}$

Acyclic TBoxes II

For reasoning, acyclic TBox can be eliminated
- to decide $C \sqsubseteq_D D$ with \mathcal{T} acyclic,
 - expand \mathcal{T}
 - replace defined concept names in C, D with their definition
 - decide $C \sqsubseteq D$
- analogously for satisfiability

May yield an **exponential blow-up**:

$$A_0 \triangleq \forall r. A_1 \sqcap \forall s. A_1$$

$$A_1 \triangleq \forall r. A_2 \sqcap \forall s. A_2$$

$$\ldots$$

$$A_{n-1} \triangleq \forall r. A_n \sqcap \forall s. A_n$$

General Concept Inclusions

View of TBox as **set of constraints**

General TBox: finite set of general concept implications (GCIs)

$C \sqsubseteq D$

with both C and D allowed to be complex

e.g. Course $\sqcap \forall \text{attended-by}. \text{Sleeping} \sqsubseteq \text{Boring}$

Interpretation \mathcal{I} is **model** of general TBox \mathcal{T} if $C^\mathcal{I} \subseteq D^\mathcal{I}$ for all $C \sqsubseteq D \in \mathcal{T}$.

$C \triangleq D$ is abbreviation for $C \sqsubseteq D, D \sqsubseteq C$

e.g. Student $\sqcap \exists \text{has-favourite}. \text{SoccerTeam} \triangleq \text{Student} \sqcap \exists \text{has-favourite}. \text{Beer}$

Note: $C \sqsubseteq D$ equivalent to $\top \triangleq C \rightarrow D$
ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

\[\alpha : C \quad [\text{\(\alpha\) individual name, \(C\) concept}] \]
\[(\alpha, \beta) : R \quad [\text{\(\alpha, \beta\) individual names, \(R\) role name}] \]

E.g. \{peter : Student, (dl-course, uli) : taught-by\}

Interpretations \(I\) map each individual name \(\alpha\) to an element of \(\Delta^I\).

\(I\) satisfies an assertion

\[\alpha : C \quad \text{iff} \quad \alpha^I \in C^I \]
\[(\alpha, \beta) : R \quad \text{iff} \quad (\alpha^I, \beta^I) \in R^I \]

\(I\) is a model for an ABox \(\mathcal{A}\) if \(I\) satisfies all assertions in \(\mathcal{A}\).

ABox consistency

Given an ABox \(\mathcal{A}\) and a TBox \(\mathcal{T}\), do they have a common model?

Instance checking

Given an ABox \(\mathcal{A}\), a TBox \(\mathcal{T}\), an individual name \(\alpha\), and a concept \(C\)

\[\alpha^I \in C^I \quad \text{hold in all models of} \quad \mathcal{A} \quad \text{and} \quad \mathcal{T} \quad \text{?} \quad \text{(written} \mathcal{A}, \mathcal{T} \models \alpha : C) \]

The two tasks are interreducible:

\[\mathcal{A} \text{ consistent w.r.t.} \mathcal{T} \text{ iff } \mathcal{A}, \mathcal{T} \not\models \alpha : \bot \]
\[\mathcal{A}, \mathcal{T} \models \alpha : C \text{ iff } \mathcal{A} \cup \{ \alpha : \neg C \} \text{ is not consistent} \]

Example for ABox Reasoning

ABox

\[\text{dumbo} : \text{Mammal} \quad \text{t14} : \text{Trunk} \]
\[\text{g23} : \text{Darkgrey} \quad (\text{dumbo}, \text{t14}) : \text{bodypart} \]
\[(\text{dumbo}, \text{g23}) : \text{color} \]
\[\text{dumbo} : \forall \text{color.Lightgrey} \]

TBox

\[\text{Elephant} \models \text{Mammal} \land \exists \text{bodypart}.\text{Trunk} \land \forall \text{color.Grey} \]
\[\text{Grey} \models \text{Lightgrey} \lor \text{Darkgrey} \]
\[\bot \models \text{Lightgrey} \land \text{Darkgrey} \]

1. ABox is inconsistent w.r.t. TBox.
2. dumbo is an instance of Elephant

Note:

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way

(uli, dl-course) : taught-by uli : Female

does not imply

dl-course : \foralltought-by.Female

An ABox has many models!

An ABox constraints the set of admissible models similar to a TBox
2. Tableau algorithms for \mathcal{ALC} and extensions

We see a tableau algorithm for \mathcal{ALC} and extend it with

1. general TBoxes and
2. inverse roles

Goal: Design sound and complete decision procedures for satisfiability (and subsumption) of DLs which are well-suited for implementation purposes

A tableau algorithm for the satisfiability of \mathcal{ALC} concepts

Goal: design an algorithm which takes an \mathcal{ALC} concept C_0 and

1. returns “satisfiable” iff C_0 is satisfiable and
2. terminates, on every input,

i.e., which decides satisfiability of \mathcal{ALC} concepts.

Recall: such an algorithm cannot exist for FOL since
satisfiability of FOL is undecidable.

Idea: our algorithm

• is tableau-based and
• tries to construct a model of C_0
• by breaking C_0 down syntactically, thus
• inferring new constraints on such a model.

Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C_0 into an equivalent C_1 in NNF

Equivalent: $C_0 \sqsubseteq C_1$ and $C_1 \sqsubseteq C_0$

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

\[\neg(C \sqcup D) \Rightarrow \neg C \sqcup \neg D \]
\[\neg(C \sqcap D) \Rightarrow \neg C \sqcap \neg D \]
\[\neg \neg C \Rightarrow C \]
\[\neg \forall R.C \Rightarrow \exists R.\neg C \]
\[\neg \exists R.C \Rightarrow \forall R.\neg C \]

From now on: concepts are in NNF and

$\text{sub}(C)$ denotes the set of all sub-concepts of C

More intuition

Find out whether $A \sqcap \exists R.B \sqcap \forall R.\neg B$ is satisfiable...

$A \sqcap \exists R.B \sqcap \forall R.\neg B \sqcup \exists S.E$

Our tableau algorithm works on a completion tree which

• represents a model I: nodes represent elements of Δ^I

 \Rightarrow each node x is labelled with concepts $L(x) \subseteq \text{sub}(C_0)$

 $C \in L(x)$ is read as “x should be an instance of C”

 edges represent role successorship

 \Rightarrow each edge (x, y) is labelled with a role-name from C_0

 $R \in L((x, y))$ is read as “(x, y) should be in R^I”

• is initialised with a single root node x_0 with $L(x_0) = \{C_0\}$

• is expanded using completion rules
Completion rules for \mathcal{ALC}

- \Box-rule: if $C_1 \cap C_2 \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$
 then set $L(x) = L(x) \cup \{C_1, C_2\}$

- \top-rule: if $C_1 \cup C_2 \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$
 then set $L(x) = L(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

\exists-rule: if $\exists S.C \in L(x)$ and x has no S-successor y with $C \in L(y)$,
then create a new node y with $L((x, y)) = \{S\}$ and $L(y) = \{C\}$

\forall-rule: if $\forall S.C \in L(x)$ and there is an S-successor y of x with $C \not\in L(y)$
then set $L(y) = L(y) \cup \{C\}$

Properties of the completion rules for \mathcal{ALC}

We only apply rules if their application does "something new"

- \Box-rule: if $C_1 \cap C_2 \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$
 then set $L(x) = L(x) \cup \{C_1, C_2\}$

- \top-rule: if $C_1 \cup C_2 \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$
 then set $L(x) = L(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

\exists-rule: if $\exists S.C \in L(x)$ and x has no S-successor y with $C \in L(y)$,
then create a new node y with $L((x, y)) = \{S\}$ and $L(y) = \{C\}$

\forall-rule: if $\forall S.C \in L(x)$ and there is an S-successor y of x with $C \not\in L(y)$
then set $L(y) = L(y) \cup \{C\}$

Properties of the completion rules for \mathcal{ALC}

The \top-rule is non-deterministic:

- \Box-rule: if $C_1 \cap C_2 \in L(x)$ and $\{C_1, C_2\} \not\subseteq L(x)$
 then set $L(x) = L(x) \cup \{C_1, C_2\}$

- \top-rule: if $C_1 \cup C_2 \in L(x)$ and $\{C_1, C_2\} \cap L(x) = \emptyset$
 then set $L(x) = L(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

\exists-rule: if $\exists S.C \in L(x)$ and x has no S-successor y with $C \in L(y)$,
then create a new node y with $L((x, y)) = \{S\}$ and $L(y) = \{C\}$

\forall-rule: if $\forall S.C \in L(x)$ and there is an S-successor y of x with $C \not\in L(y)$
then set $L(y) = L(y) \cup \{C\}$

Last details on tableau algorithm for \mathcal{ALC}

Clash: a c-tree contains a clash if it has a node x with $\bot \in L(x)$ or
$\{A, \neg A\} \subseteq L(x)$ — otherwise, it is clash-free

Complete: a c-tree is complete if none of the completion rules can be applied to it

Answer behaviour: when started for C_0 (in NNF!), the tableau algorithm

- is initialised with a single root node x_0 with $L(x_0) = \{C_0\}$
- repeatedly applies the completion rules (in whatever order it likes)
- answer "C_0 is satisfiable" iff the completion rules can be applied in such a way that it results in a complete and clash-free c-tree (careful: this is non-deterministic)

...go back to examples
Properties of our tableau algorithm

Lemma: Let C_0 an \mathcal{ALC}-concept in NNF. Then
1. the algorithm terminates when applied to C_0 and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable.

Corollary:
1. Our tableau algorithm decides satisfiability and subsumption of \mathcal{ALC}.
2. Satisfiability (and subsumption) in \mathcal{ALC} is decidable in PSpace.
3. \mathcal{ALC} has the finite model property
 i.e., every satisfiable concept has a finite model.
4. \mathcal{ALC} has the tree model property
 i.e., every satisfiable concept has a tree model.
5. \mathcal{ALC} has the finite tree model property
 i.e., every satisfiable concept has a finite tree model.

Extend tableau algorithm to \mathcal{ALC} with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:
- remember that nodes represent elements of Δ^T and
- if $C \sqsubseteq D \in T$, then for each element x in a model \mathcal{I} of T
 if $x \in C^\mathcal{I}$, then $x \in D^\mathcal{I}$
 hence $x \in (\neg C)^\mathcal{I}$ or $x \in D^\mathcal{I}$
 $x \in (\neg C \sqcup D)^\mathcal{I}$
 $x \in (\text{NNF}(\neg C \sqcup D))^\mathcal{I}$
 for $\text{NNF}(E)$ the negation normal form of E

Extend tableau algorithm to \mathcal{ALC} with general TBoxes

Recall:
- Concept inclusion: of the form $C \sqsubseteq D$ for C, D (complex) concepts
- (General) TBox: a finite set of concept inclusions
- \mathcal{I} satisfies $C \sqsubseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$
- \mathcal{I} is a model of TBox T iff \mathcal{I} satisfies each concept equation in T
- C_0 is satisfiable w.r.t. T iff there is a model \mathcal{I} of T with $C_0^\mathcal{I} \neq \emptyset$

Goal – Lemma: Let C_0 an \mathcal{ALC}-concept and T be a an \mathcal{ALC}-TBox. Then
1. the algorithm terminates when applied to T and C_0 and
2. the rules can be applied such that they generate a clash-free and complete completion tree if C_0 is satisfiable w.r.t. T.

Completion rules for \mathcal{ALC} with TBoxes

\begin{align*}
\sqcap\text{-rule: } & \quad C_1 \cap C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \not\subseteq \mathcal{L}(x) \quad \text{then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\} \\
\sqcup\text{-rule: } & \quad C_1 \sqcup C_2 \in \mathcal{L}(x) \text{ and } \{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset \quad \text{then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{C\} \text{ for some } C \in \{C_1, C_2\} \\
\exists\text{-rule: } & \quad \exists S.C \in \mathcal{L}(x) \text{ and } x \text{ has no } S\text{-successor } y \text{ with } C \in \mathcal{L}(y), \quad \text{then create a new node } y \text{ with } \mathcal{L}((x, y)) = \{S\} \text{ and } \mathcal{L}(y) = \{C\} \\
\forall\text{-rule: } & \quad \forall S.C \in \mathcal{L}(x) \text{ and there is an } S\text{-successor } y \text{ of } x \text{ with } C \notin \mathcal{L}(y), \quad \text{then set } \mathcal{L}(y) = \mathcal{L}(y) \cup \{C\} \\
T\text{-rule: } & \quad C_1 \sqsubseteq C_2 \in T \text{ and } \text{NNF}(\neg C_1 \sqcup C_2) \notin \mathcal{L}(x) \quad \text{then set } \mathcal{L}(x) = \mathcal{L}(x) \cup \{\text{NNF}(\neg C_1 \sqcup C_2)\}
\end{align*}
A tableau algorithm for \mathcal{ALC} with general TBoxes

Example: Consider satisfiability of C w.r.t. $\{C \sqsubseteq \exists R.C\}$

Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and we keep repeating ourselves

Regain termination with a “cycle-detection” technique called blocking

Intuitively, whenever we find a situation where y has to satisfy stronger constraints than x, we freeze x, i.e., block rules from being applied to x.

A tableau algorithm for \mathcal{ALC} with general TBoxes: Blocking

- x is directly blocked if it has an ancestor y with $L(x) \subseteq L(y)$
- in this case and if y is the “closest” such node to x, we say that x is blocked by y
- a node is blocked if it is directly blocked or one of its ancestors is blocked

\oplus restrict the application of all rules to nodes which are not blocked

\rightarrow completion rules for \mathcal{ALC} w.r.t. TBoxes

Tableaux Rules for \mathcal{ALC}

<table>
<thead>
<tr>
<th>Rule</th>
<th>LHS</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqcap-rule:</td>
<td>$x \cdot {C_1 \sqcap C_2, \ldots}$</td>
<td>$\rightarrow \neg$</td>
</tr>
<tr>
<td></td>
<td>$x \cdot {C_1 \sqcup C_2, \ldots}$</td>
<td>$\rightarrow \sqcup$</td>
</tr>
<tr>
<td>\exists-rule:</td>
<td>$x \cdot {\exists R.C, \ldots}$</td>
<td>$\rightarrow \exists$</td>
</tr>
<tr>
<td></td>
<td>$y \cdot {\ldots}$</td>
<td>$\rightarrow \forall$</td>
</tr>
<tr>
<td>\forall-rule:</td>
<td>$x \cdot {\forall R.C, \ldots}$</td>
<td>$\rightarrow \forall$</td>
</tr>
</tbody>
</table>
Tableaux Rule for Transitive Roles

\[
\begin{array}{c|c}
\{ \forall R.C, \ldots \} & \rightarrow_{\forall R.} \\
R & \{ \forall R.C, \ldots \}
\end{array}
\]

Where \(R \) is a transitive role (i.e., \((R^+) = R^T \))

☞ No longer naturally terminating (e.g., if \(C = \exists R. \top \))

☞ Need blocking

- Simple blocking suffices for \(ALC \) plus transitive roles
- I.e., do not expand node label if ancestor has superset label
- More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies

Tableaux Algorithm — Example

Test satisfiability of \(\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \) where \(R \) is a transitive role

\[\mathcal{L}(w) = \{ \exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \} \]
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(\neg C \sqcup \neg D) \land \exists R.C \land \forall R.(\exists R.C)$ where R is a transitive role

$\mathcal{L}(w) = \{\exists S.C, \forall S.(-C \sqcup -D), \exists R.C, \forall R.(\exists R.C)\}$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(\neg C \sqcup \neg D) \land \exists R.C \land \forall R.(\exists R.C)$ where R is a transitive role

$\mathcal{L}(w) = \{\exists S.C, \forall S.(-C \sqcup -D), \exists R.C, \forall R.(\exists R.C)\}$

$\mathcal{L}(x) = \{C\}$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(\neg C \sqcup \neg D) \land \exists R.C \land \forall R.(\exists R.C)$ where R is a transitive role

$\mathcal{L}(w) = \{\exists S.C, \forall S.(-C \sqcup -D), \exists R.C, \forall R.(\exists R.C)\}$

$\mathcal{L}(x) = \{C\}$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.(\neg C \sqcup \neg D) \land \exists R.C \land \forall R.(\exists R.C)$ where R is a transitive role

$\mathcal{L}(w) = \{\exists S.C, \forall S.(-C \sqcup -D), \exists R.C, \forall R.(\exists R.C)\}$

$\mathcal{L}(x) = \{C\}$
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S. \neg (C \sqcup \neg D) \land \exists R.C \land \forall R. (\exists R.C)$ where R is a transitive role.

$L(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$

$L(x) = \{ C, \neg C \sqcup \neg D \}$

$L(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \}$

$L(x) = \{ C, (\neg C \sqcup \neg D), \neg C \}$

Reasoning with Expressive Description Logics – p. 7/27
Test satisfiability of $\exists S.C \land \forall S. (\neg C \sqcup \neg D) \land \exists R.C \land \forall R. (\exists R.C)$} where R is a transitive role

\[\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \} \]

\[\mathcal{L}(x) = \{ C, \neg C \sqcup \neg D \} \]

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S. (\neg C \sqcup \neg D) \land \exists R.C \land \forall R. (\exists R.C)$} where R is a transitive role

\[\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \} \]

\[\mathcal{L}(x) = \{ C, \neg C \sqcup \neg D \}, \neg D \} \]

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S. (\neg C \sqcup \neg D) \land \exists R.C \land \forall R. (\exists R.C)$} where R is a transitive role

\[\mathcal{L}(w) = \{ \exists S.C, \forall S. (\neg C \sqcup \neg D), \exists R.C, \forall R. (\exists R.C) \} \]

\[\mathcal{L}(x) = \{ C, \neg C \sqcup \neg D \}, R.C \}

\[\mathcal{L}(y) = \{ C \} \]
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S.\neg(C \sqcup D) \land \exists R.C \land \forall R.(\exists R.C)$ where R is a transitive role.

$L(w) = \{\exists S.C, \forall S.\neg(C \sqcup D), \exists R.C, \forall R.(\exists R.C)\}$

$L(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$

$L(y) = \{C\}$
Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

$L(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C)\}$

$L(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$

$L(y) = \{C, \exists R. C, \forall R. (\exists R. C)\}$

$L(z) = \{C\}$

Tableaux Algorithm — Example

Test satisfiability of $\exists S. C \land \forall S. (\neg C \sqcup \neg D) \land \exists R. C \land \forall R. (\exists R. C)$ where R is a transitive role

$L(w) = \{\exists S. C, \forall S. (\neg C \sqcup \neg D), \exists R. C, \forall R. (\exists R. C)\}$

$L(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$

$L(y) = \{C, \exists R. C, \forall R. (\exists R. C)\}$

$L(z) = \{C\}$

Concept is satisfiable: T corresponds to model
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \land \forall S. (\neg C \sqcup \neg D) \land \exists R.C \land \forall R.(\exists R.C)$} where R is a transitive role

Concept is **satisfiable**: T corresponds to model

Properties of our tableau algorithm for \mathcal{ALC} with TBoxes

Lemma: Let T be a general \mathcal{ALC}-Tbox and C_0 an \mathcal{ALC}-concept. Then

1. the algorithm terminates when applied to T and C_0 and
2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable w.r.t. T.

Corollary: 1. Satisfiability of \mathcal{ALC}-concept w.r.t. TBoxes is decidable
2. \mathcal{ALC} with TBoxes has the finite model property
3. \mathcal{ALC} with TBoxes has the tree model property

Challenges

☞ **Increased expressive power**
 - Existing DL systems implement (at most) $SHIQ$
 - OWL extends $SHIQ$ with datatypes and nominals

☞ **Scalability**
 - Very large KBs
 - Reasoning with (very large numbers of) individuals

☞ **Other reasoning tasks**
 - Querying
 - Matching
 - Least common subsumer
 - ...

☞ **Tools and Infrastructure**
 - Support for large scale ontological engineering and deployment
Summary

☞ **Description Logics** are family of logical KR formalisms

☞ **Applications** of DLs include DataBases and **Semantic Web**
 - Ontologies will provide vocabulary for semantic markup
 - OWL web ontology language based on $SHIQ$ DL
 - Set to become W3C standard (OWL) & already widely adopted
 - Use of DL provides formal foundations and reasoning support

☞ **DL Reasoning** based on tableau algorithms

☞ **Highly Optimised** implementations used in DL systems

☞ **Challenges** remain
 - Reasoning with full OWL language
 - (Convincing) demonstration(s) of scalability
 - New reasoning tasks
 - Development of (high quality) tools and infrastructure

Resources

Slides from this talk

FaCT system (open source)
 - http://www.cs.man.ac.uk/FaCT/

OIlEd (open source)
 - http://oiled.man.ac.uk/

OIL
 - http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)
 - http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press
 - http://books.cambridge.org/0521781760.htm