
Slide 1

E. Description Logics

This section is based on material from

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Slide 2

Description Logics

• OWL DL ist äquivalent zur Beschreibungslogik SHOIN(Dn). Auf letzterer basiert
also die Semantik von OWL DL.

• Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von
Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.

• SHOIN(Dn) ist eine relativ komplexe Beschreibungslogik.
• Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten,

werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte
Fassungen.

Literatur:
• D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader,

D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.):
Description Logic Handbook, Cambridge University Press, 2002, 5-44.

• F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook,
47-100.

• Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language.
http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoPH03a.pdf

Slide 3

Aside: Semantics and Model Theories

• Ontology/KR languages aim to model (part of) world

• Terms in language correspond to entities in world

• Meaning given by, e.g.:
– Mapping to another formalism, such as FOL, with own well defined

semantics
– or a bespoke Model Theory (MT)

• MT defines relationship between syntax and interpretations
– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., T ² A v B iff in every model of T, ext(A) ⊆ ext(B)

Slide 4

Aside: Set Based Model Theory

• Many logics (including standard First Order Logic) use a model theory
based on Zermelo-Frankel set theory

• The domain of discourse (i.e., the part of the world being modelled) is
represented as a set (often refered as Δ)

• Objects in the world are interpreted as elements of Δ
– Classes/concepts (unary predicates) are subsets of Δ
– Properties/roles (binary predicates) are subsets of Δ × Δ (i.e., Δ2)
– Ternary predicates are subsets of Δ3 etc.

• The sub-class relationship between classes can be interpreted as set
inclusion

• Doesn’t work for RDF, because in RDF a class (set) can be a member
(element) of another class (set)
– In Z-F set theory, elements of classes are atomic (no structure)

Slide 5

Aside: Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ

{ha,bi,…} ⊆ Δ × Δ

a

b

Model

Mary drives Z123ABC

Slide 6

Aside: Set Based Model Theory Example

• Formally, the vocabulary is the set of names we use in
our model of (part of) the world
– {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car,

drives, …}
• An interpretation I is a tuple h Δ, ·I i

– Δ is the domain (a set)
– ·I is a mapping that maps

• Names of objects to elements of Δ
• Names of unary predicates (classes/concepts) to subsets

of Δ
• Names of binary predicates (properties/roles) to subsets of
Δ × Δ

• And so on for higher arity predicates (if any)

Slide 7

What Are Description Logics?

• A family of logic based Knowledge
Representation formalisms
– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts

(classes), roles (relationships) and individuals
• Distinguished by:

– Formal semantics (typically model theoretic)
• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key

problems
• Implemented systems (highly optimised)

Slide 8

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ≡ Human u Male

Happy-Father ≡ Man u ∃ has-child
Female u …

John : Happy-Father

hJohn, Maryi : has-child In
fe

re
n

ce
 S

y
st

e
m

In
te

rf
a
ce

Slide 9

Short History of Description Logics

Phase 1:
– Incomplete systems (Back, Classic, Loom, . . .)
– Based on structural algorithms

Phase 2:
– Development of tableau algorithms and complexity results
– Tableau-based systems for Pspace logics (e.g., Kris, Crack)
– Investigation of optimisation techniques

Phase 3:
– Tableau algorithms for very expressive DLs
– Highly optimised tableau systems for ExpTime logics (e.g.,

FaCT, DLP, Racer)
– Relationship to modal logic and decidable fragments of FOL

Slide 10

Latest Developments

Phase 4:
– Mature implementations
– Mainstream applications and Tools

• Databases
– Consistency of conceptual schemata (EER, UML etc.)
– Schema integration
– Query subsumption (w.r.t. a conceptual schema)

• Ontologies and Semantic Web (and Grid)
– Ontology engineering (design, maintenance,

integration)
– Reasoning with ontology-based markup (meta-data)
– Service description and discovery

– Commercial implementations
• Cerebra system from Network Inference Ltd

Slide 11

From RDF to OWL

• Two languages developed to satisfy the requirements
– OIL: developed by group of (largely) European researchers

(several from EU OntoKnowledge project)
– DAML-ONT: developed by group of (largely) US researchers

(in DARPA DAML programme)
• Efforts merged to produce DAML+OIL

– Development was carried out by “Joint EU/US Committee on
Agent Markup Languages”

– Extends (“DL subset” of) RDF
• DAML+OIL submitted to W3C as basis for standardisation

– Web-Ontology (WebOnt) Working Group formed
– WebOnt group developed OWL language based on

DAML+OIL
– OWL language now a W3C Recommendation (i.e., a

standard like HTML and XML)

Slide 12

Description Logic Family

• DLs are a family of logic based KR formalisms

• Particular languages mainly characterised by:
– Set of constructors for building complex concepts

and roles from simpler ones
– Set of axioms for asserting facts about concepts,

roles and individuals

• ALC is the smallest DL that is propositionally closed
– Constructors include booleans (and, or, not), and
– Restrictions on role successors
– E.g., concept describing “happy fathers” could be

written:
Man ∧ ∃hasChild.Female ∧ ∃hasChild.Male

∧ ∀hasChild.(Rich ∨ Happy)

Slide 13

DL Concept and Role Constructors

• Range of other constructors found in DLs, including:
– Number restrictions (cardinality constraints) on

roles, e.g., ≥3 hasChild, ·1 hasMother
– Qualified number restrictions, e.g., ≥2

hasChild.Female, ·1 hasParent.Male
– Nominals (singleton concepts), e.g., {Italy}
– Concrete domains (datatypes), e.g.,

hasAge.(· 21)

– Inverse roles, e.g., hasChild- (hasParent)
– Transitive roles, e.g., hasChild* (descendant)
– Role composition, e.g., hasParent ◦ hasBrother

(uncle)

Slide 14

DL Knowledge Base

• DL Knowledge Base (KB) normally separated into 2 parts:
– TBox is a set of axioms describing structure of domain (i.e., a

conceptual schema), e.g.:
• HappyFather ≡ Man ∧ ∃hasChild.Female ∧ …
• Elephant ≡ Animal ∧ Large ∧ Grey
• transitive(ancestor)

– ABox is a set of axioms describing a concrete situation (data), e.g.:
• John:HappyFather
• <John,Mary>:hasChild

• Separation has no logical significance
– But may be conceptually and implementationally convenient

Slide 15

OWL as DL: Class Constructors

• XMLS datatypes as well as classes in ∀P.C and ∃P.C
– E.g., ∃hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors
– E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor

Slide 16

RDFS Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>

<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:toClass>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor:

Slide 17

OWL as DL: Axioms

• Axioms (mostly) reducible to inclusion (v)
– C ≡ D iff both C v D and D v C

• Obvious FOL equivalences
– E.g., C ≡ D iff ∀x. C(x) ⇔ D(x),
– C v D iff ∀x. C(x) ⇒ D(x)

Slide 18

XML Schema Datatypes in OWL

• OWL supports XML Schema primitive datatypes
– E.g., integer, real, string, …

• Strict separation between “object” classes and
datatypes
– Disjoint interpretation domain ΔD for datatypes

• For a datavalue d holds dI ⊆ ΔD

• and ΔD ∩ ΔI = ∅

– Disjoint “object” and datatype properties
• For a datatype propterty P holds PI ⊆ ΔI × ΔD

• For object property S and datatype property P hold
SI ∩ PI = ∅

• Equivalent to the “(Dn)” in SHOIN(Dn)

Slide 19

Why Separate Classes and Datatypes?

• Philosophical reasons:
– Datatypes structured by built-in predicates
– Not appropriate to form new datatypes using

ontology language
• Practical reasons:

– Ontology language remains simple and compact
– Semantic integrity of ontology language not

compromised
– Implementability not compromised — can use

hybrid reasoner

Slide 20

OWL DL Semantics

• Mapping OWL to equivalent DL (SHOIN(Dn)):
– Facilitates provision of reasoning services (using

DL systems)
– Provides well defined semantics

• DL semantics defined by interpretations: I = (ΔI, ·I),

where
– ΔI is the domain (a non-empty set)
– ·I is an interpretation function that maps:

• Concept (class) name A to subset AI of ΔI

• Role (property) name R to binary relation RI over ΔI

• Individual name i to element iI of ΔI

Slide 21

DL Semantics

• Interpretation function ·I extends to concept
expressions in the obvious way, i.e.:

Slide 22

DL Knowledge Bases (Ontologies)

• An OWL ontology maps to a DL Knowledge Base K = hT , Ai

– T (Tbox) is a set of axioms of the form:
• C v D (concept inclusion)
• C ≡ D (concept equivalence)
• R v S (role inclusion)
• R ≡ S (role equivalence)
• R+ v R (role transitivity)

– A (Abox) is a set of axioms of the form
• x ∈ D (concept instantiation)
• hx,yi ∈ R (role instantiation)

• Two sorts of Tbox axioms often distinguished
– “Definitions”

• C v D or C ≡ D where C is a concept name
– General Concept Inclusion axioms (GCIs)

• C v D where C in an arbitrary concept

Slide 23

Knowledge Base Semantics

• An interpretation I satisfies (models) an axiom A (I ² A):
– I ² C v D iff CI ⊆ DI

– I ² C ≡ D iff CI = DI

– I ² R v S iff RI ⊆ SI

– I ² R ≡ S iff RI = SI

– I ² R+ v R iff (RI)+ ⊆ RI

– I ² x ∈ D iff xI ∈ DI

– I ² hx,yi ∈ R iff (xI,yI) ∈ RI

• I satisfies a Tbox T (I ² T) iff I satisfies every axiom A in T

• I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A

• I satisfies an KB K (I ² K) iff I satisfies both T and A

Slide 24

Inference Tasks

• Knowledge is correct (captures intuitions)
– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended synonyms)
– C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) ∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K

Slide 25

DL Reasoning
• Tableau algorithms used to test satisfiability (consistency)

• Try to build a tree-like model I of the input concept C

• Decompose C syntactically
– Apply tableau expansion rules
– Infer constraints on elements of model

• Tableau rules correspond to constructors in logic (u, t etc)
– Some rules are nondeterministic (e.g., t, 6)
– In practice, this means search

• Stop when no more rules applicable or clash occurs
– Clash is an obvious contradiction, e.g., A(x), ¬ A(x)

• Cycle check (blocking) may be needed for termination

• C satisfiable iff rules can be applied such that a fully expanded clash
free tree is constructed

Slide 26

Highly Optimised Implementation

• Naive implementation leads to effective non-termination

• Modern systems include MANY optimisations

• Optimised classification (compute partial ordering)
– Use enhanced traversal (exploit information from previous tests)
– Use structural information to select classification order

• Optimised subsumption testing (search for models)
– Normalisation and simplification of concepts
– Absorption (rewriting) of general axioms
– Davis-Putnam style semantic branching search
– Dependency directed backtracking
– Caching of satisfiability results and (partial) models

– Heuristic ordering of propositional and modal expansion
– …

Slide 27

Results for Margherita Pizza

• What it means
– All Margherita_pizzas (amongst other things)

• Are Pizzas
• have_topping some Tomato_topping
• have_topping some Mozzarella_topping

– & because they are Pizzas
have_base some Pizza_base

someValuesFrom
restrictions

Properties
subpane showing
alternative ‘frame
view

	E. Description Logics
	Description Logics�
	What Are Description Logics?
	DL Architecture
	Short History of Description Logics
	Latest Developments
	From RDF to OWL
	Description Logic Family
	DL Concept and Role Constructors
	DL Knowledge Base
	OWL as DL: Class Constructors
	RDFS Syntax
	OWL as DL: Axioms
	XML Schema Datatypes in OWL
	Why Separate Classes and Datatypes?
	OWL DL Semantics
	DL Semantics
	DL Knowledge Bases (Ontologies)
	Knowledge Base Semantics
	Inference Tasks
	DL Reasoning
	Highly Optimised Implementation
	Results for Margherita Pizza

