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E. Description Logics

This section is based on material from

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/
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Description Logics

• OWL DL ist äquivalent zur Beschreibungslogik SHOIN(Dn). Auf letzterer basiert 
also die Semantik von OWL DL.

• Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von 
Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind. 

• SHOIN(Dn) ist eine relativ komplexe Beschreibungslogik.
• Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten, 

werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte 
Fassungen.

Literatur:
• D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader, 

D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.): 
Description Logic Handbook, Cambridge University Press, 2002, 5-44.

• F. Baader, W. Nutt: Basic Description Logics. In:  Description Logic Handbook, 
47-100.

• Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ 
and RDF to OWL: The making of a web ontology language. 
http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoPH03a.pdf
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Aside: Semantics and Model Theories

• Ontology/KR languages aim to model (part of) world

• Terms in language correspond to entities in world

• Meaning given by, e.g.:
– Mapping to another formalism, such as FOL, with own well defined

semantics
– or a bespoke Model Theory (MT)

• MT defines relationship between syntax and interpretations
– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., T ² A v B iff in every model of T, ext(A) ⊆ ext(B)
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Aside: Set Based Model Theory

• Many logics (including standard First Order Logic) use a model theory 
based on Zermelo-Frankel set theory

• The domain of discourse (i.e., the part of the world being modelled) is 
represented as a set (often refered as Δ)

• Objects in the world are interpreted as elements of Δ
– Classes/concepts (unary predicates) are subsets of Δ
– Properties/roles (binary predicates) are subsets of Δ × Δ (i.e., Δ2)
– Ternary predicates are subsets of Δ3 etc.

• The sub-class relationship between classes can be interpreted as set 
inclusion

• Doesn’t work for RDF, because in RDF a class (set) can be a member 
(element) of another class (set)
– In Z-F set theory, elements of classes are atomic (no structure)
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Aside: Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ

{ha,bi,…}   ⊆ Δ × Δ

a

b

Model

Mary drives Z123ABC
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Aside: Set Based Model Theory Example

• Formally, the vocabulary is the set of names we use in 
our model of (part of) the world
– {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, 

drives, …}
• An interpretation I is a tuple h Δ, ·I i

– Δ is the domain (a set)
– ·I is a mapping that maps

• Names of objects to elements of Δ
• Names of unary predicates (classes/concepts) to subsets    

of Δ
• Names of binary predicates (properties/roles) to subsets of  
Δ × Δ

• And so on for higher arity predicates (if any)
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What Are Description Logics?

• A family of logic based Knowledge 
Representation formalisms
– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts 

(classes), roles (relationships) and individuals
• Distinguished by:

– Formal semantics (typically model theoretic)
• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key 

problems
• Implemented systems (highly optimised)
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DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ≡ Human u Male

Happy-Father ≡ Man u ∃ has-child 
Female u …

John : Happy-Father

hJohn, Maryi : has-child In
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Short History of Description Logics

Phase 1:
– Incomplete systems (Back, Classic, Loom, . . . )
– Based on structural algorithms

Phase 2:
– Development of tableau algorithms and complexity results
– Tableau-based systems for Pspace logics (e.g., Kris, Crack)
– Investigation of optimisation techniques

Phase 3:
– Tableau algorithms for very expressive DLs
– Highly optimised tableau systems for ExpTime logics (e.g., 

FaCT, DLP, Racer)
– Relationship to modal logic and decidable fragments of FOL
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Latest Developments

Phase 4:
– Mature implementations
– Mainstream applications and Tools

• Databases
– Consistency of conceptual schemata (EER, UML etc.)
– Schema integration
– Query subsumption (w.r.t. a conceptual schema)

• Ontologies and Semantic Web (and Grid)
– Ontology engineering (design, maintenance, 

integration)
– Reasoning with ontology-based markup (meta-data)
– Service description and discovery

– Commercial implementations
• Cerebra system from Network Inference Ltd
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From RDF to OWL

• Two languages developed to satisfy the requirements
– OIL: developed by group of (largely) European researchers 

(several from EU OntoKnowledge project)
– DAML-ONT: developed by group of (largely) US researchers 

(in DARPA DAML programme)
• Efforts merged to produce DAML+OIL

– Development was carried out by “Joint EU/US Committee on 
Agent Markup Languages”

– Extends (“DL subset” of) RDF
• DAML+OIL submitted to W3C as basis for standardisation

– Web-Ontology (WebOnt) Working Group formed
– WebOnt group developed OWL language based on 

DAML+OIL
– OWL language now a W3C Recommendation (i.e., a 

standard like HTML and XML)



Slide 12

Description Logic Family

• DLs are a family of logic based KR formalisms

• Particular languages mainly characterised by:
– Set of constructors for building complex concepts 

and roles from simpler ones
– Set of axioms for asserting facts about concepts, 

roles and individuals

• ALC is the smallest DL that is propositionally closed
– Constructors include booleans (and, or, not), and
– Restrictions on role successors
– E.g., concept describing “happy fathers” could be 

written:
Man ∧ ∃hasChild.Female ∧ ∃hasChild.Male

∧ ∀hasChild.(Rich ∨ Happy)
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DL Concept and Role Constructors

• Range of other constructors found in DLs, including:
– Number restrictions (cardinality constraints) on 

roles, e.g.,      ≥3 hasChild, ·1 hasMother
– Qualified number restrictions, e.g., ≥2 

hasChild.Female,           ·1 hasParent.Male
– Nominals (singleton concepts), e.g., {Italy}
– Concrete domains (datatypes), e.g., 

hasAge.(· 21) 

– Inverse roles, e.g., hasChild- (hasParent)
– Transitive roles, e.g., hasChild* (descendant)
– Role composition, e.g., hasParent ◦ hasBrother

(uncle)
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DL Knowledge Base

• DL Knowledge Base (KB) normally separated into 2 parts:
– TBox is a set of axioms describing structure of domain (i.e., a 

conceptual schema), e.g.:
• HappyFather ≡ Man ∧ ∃hasChild.Female ∧ …
• Elephant ≡ Animal ∧ Large ∧ Grey
• transitive(ancestor)

– ABox is a set of axioms describing a concrete situation (data), e.g.:
• John:HappyFather
• <John,Mary>:hasChild

• Separation has no logical significance
– But may be conceptually and implementationally convenient
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OWL as DL: Class Constructors

• XMLS datatypes as well as classes in ∀P.C and ∃P.C
– E.g., ∃hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors
– E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor
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RDFS Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>

<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:toClass>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor:
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OWL as DL: Axioms

• Axioms (mostly) reducible to inclusion (v)
– C ≡ D iff both C v D and D v C

• Obvious FOL equivalences
– E.g., C ≡ D iff ∀x.  C(x) ⇔ D(x),
– C v D   iff ∀x.  C(x) ⇒ D(x)
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XML Schema Datatypes in OWL

• OWL supports XML Schema primitive datatypes
– E.g., integer, real, string, …

• Strict separation between “object” classes and 
datatypes
– Disjoint interpretation domain ΔD for datatypes

• For a datavalue d holds dI ⊆ ΔD

• and ΔD ∩ ΔI = ∅

– Disjoint “object” and datatype properties
• For a datatype propterty P holds PI ⊆ ΔI × ΔD

• For object property S and datatype property P hold         
SI ∩ PI = ∅

• Equivalent to the “(Dn)” in SHOIN(Dn)
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Why Separate Classes and Datatypes?

• Philosophical reasons:
– Datatypes structured by built-in predicates
– Not appropriate to form new datatypes using 

ontology language
• Practical reasons:

– Ontology language remains simple and compact
– Semantic integrity of ontology language not 

compromised
– Implementability not compromised — can use 

hybrid reasoner
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OWL DL Semantics

• Mapping OWL to equivalent DL (SHOIN(Dn)):
– Facilitates provision of reasoning services (using 

DL systems)
– Provides well defined semantics

• DL semantics defined by interpretations: I = (ΔI, ·I), 

where
– ΔI is the domain (a non-empty set) 
– ·I is an interpretation function that maps:

• Concept (class) name A to subset AI of ΔI

• Role (property) name R to binary relation RI over ΔI

• Individual name i to element iI of ΔI
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DL Semantics

• Interpretation function ·I extends to concept 
expressions in the obvious way, i.e.:
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DL Knowledge Bases (Ontologies)

• An OWL ontology maps to a DL Knowledge Base K = hT , Ai

– T  (Tbox) is a set of axioms of the form:
• C v D (concept inclusion)
• C ≡ D (concept equivalence)
• R v S (role inclusion)
• R ≡ S (role equivalence)
• R+ v R (role transitivity)

– A  (Abox) is a set of axioms of the form 
• x ∈ D (concept instantiation)
• hx,yi ∈ R (role instantiation)

• Two sorts of Tbox axioms often distinguished
– “Definitions”

• C v D or C ≡ D where C is a concept name
– General Concept Inclusion axioms (GCIs)

• C v D where C in an arbitrary concept
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Knowledge Base Semantics

• An interpretation I satisfies (models) an axiom A (I ² A):
– I ² C v D iff CI ⊆ DI

– I ² C ≡ D iff CI = DI

– I ² R v S iff RI ⊆ SI

– I ² R ≡ S iff RI = SI

– I ² R+ v R iff (RI)+ ⊆ RI

– I ² x ∈ D iff xI ∈ DI

– I ² hx,yi ∈ R iff (xI,yI) ∈ RI

• I satisfies a Tbox T (I ² T ) iff I satisfies every axiom A in T

• I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A

• I satisfies an KB K (I ² K) iff I satisfies both T  and A
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Inference Tasks

• Knowledge is correct (captures intuitions)
– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended synonyms)
– C is equivalent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) ∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K
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DL Reasoning
• Tableau algorithms used to test satisfiability (consistency)

• Try to build a tree-like model I of the input concept C

• Decompose C syntactically
– Apply tableau expansion rules
– Infer constraints on elements of model

• Tableau rules correspond to constructors in logic (u, t etc)
– Some rules are nondeterministic (e.g., t, 6)
– In practice, this means search

• Stop when no more rules applicable or clash occurs 
– Clash is an obvious contradiction, e.g., A(x), ¬ A(x)

• Cycle check (blocking) may be needed for termination

• C satisfiable iff rules can be applied such that a fully expanded clash 
free tree is constructed
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Highly Optimised Implementation

• Naive implementation leads to effective non-termination

• Modern systems include MANY optimisations

• Optimised classification (compute partial ordering)
– Use enhanced traversal (exploit information from previous tests)
– Use structural information to select classification order

• Optimised subsumption testing (search for models)
– Normalisation and simplification of concepts
– Absorption (rewriting) of general axioms
– Davis-Putnam style semantic branching search
– Dependency directed backtracking
– Caching of satisfiability results and (partial) models

– Heuristic ordering of propositional and modal expansion
– …
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Results for Margherita Pizza

• What it means
– All Margherita_pizzas (amongst other things)

• Are Pizzas
• have_topping some Tomato_topping
• have_topping some Mozzarella_topping

– & because they are Pizzas
have_base some Pizza_base

someValuesFrom
restrictions

Properties 
subpane showing
alternative ‘frame
view
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