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Requirements for Ontology Languages

Ontology languages allow users to write 
explicit, formal conceptualizations of domain 
models
The main requirements are:
– a well-defined syntax 
– efficient reasoning support 
– a formal semantics 
– sufficient expressive power 
– convenience of expression
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Tradeoff between Expressive Power 
and Efficient Reasoning Support

The richer the language is, the more 
inefficient the reasoning support becomes
Sometimes it crosses the border of 
noncomputability
We need a compromise:
– A language supported by reasonably efficient 

reasoners
– A language that can express large classes of 

ontologies and knowledge.



Chapter 4 A Semantic Web Primer5

Reasoning About Knowledge in 
Ontology Languages

Class membership 
– If x is an instance of a class C, and C is a 

subclass of D, then we can infer that x is an 
instance of D

Equivalence of classes 
– If class A is equivalent to class B, and class B is 

equivalent to class C, then A is equivalent to C, 
too
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Reasoning About Knowledge in 
Ontology Languages (2)

Consistency
– X instance of classes A and B, but A and B are 

disjoint
– This is an indication of an error in the ontology

Classification
– Certain property-value pairs are a sufficient 

condition for membership in a class A; if an 
individual x satisfies such conditions, we can 
conclude that x must be an instance of A
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Uses for Reasoning 

Reasoning support is important for
– checking the consistency of the ontology and the knowledge
– checking for unintended relationships between classes
– automatically classifying instances in classes

Checks like the preceding ones are valuable for 
– designing large ontologies, where multiple authors are 

involved
– integrating and sharing ontologies from various sources
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Reasoning Support for OWL

Semantics is a prerequisite for reasoning support
Formal semantics and reasoning support are usually 
provided by 

– mapping an ontology language to a known logical formalism
– using automated reasoners that already exist for those 

formalisms
OWL is (partially) mapped on a description logic, and 
makes use of reasoners such as FaCT and RACER 
Description logics are a subset of predicate logic for 
which efficient reasoning support is possible
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Limitations of the Expressive Power 
of RDF Schema

Local scope of properties
– rdfs:range defines the range of a property (e.g. 

eats) for all classes 
– In RDF Schema we cannot declare range 

restrictions that apply to some classes only 
– E.g. we cannot say that cows eat only plants, 

while other animals may eat meat, too
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Limitations of the Expressive Power 
of RDF Schema (2)

Disjointness of classes
– Sometimes we wish to say that classes are 

disjoint (e.g. male and female)
Boolean combinations of classes
– Sometimes we wish to build new classes by 

combining other classes using union, intersection, 
and complement

– E.g. person is  the disjoint union of the classes 
male and female
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Limitations of the Expressive Power 
of RDF Schema (3)

Cardinality restrictions
– E.g. a person has exactly two parents, a course is 

taught by at least one lecturer
Special characteristics of properties
– Transitive property (like “greater than”)
– Unique property (like “is mother of”)
– A property is the inverse of another property (like 

“eats” and “is eaten by”)
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Combining OWL with RDF Schema

Ideally, OWL would extend RDF Schema
– Consistent with the layered architecture of the 

Semantic Web
But simply extending RDF Schema would 
work against obtaining expressive power and 
efficient reasoning 
– Combining RDF Schema with logic leads to 

uncontrollable computational properties 
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Three Species of OWL

W3C’sWeb Ontology Working Group defined 
OWL as three different sublanguages:
– OWL Full
– OWL DL
– OWL Lite

Each sublanguage geared toward fulfilling 
different aspects of requirements
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OWL Full

It uses all the OWL languages primitives
It allows the combination of these primitives 
in arbitrary ways with RDF and RDF Schema
OWL Full is fully upward-compatible with 
RDF, both syntactically and semantically
OWL Full is so powerful that it is undecidable
– No complete (or efficient) reasoning support
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OWL DL

OWL DL (Description Logic) is a sublanguage of 
OWL Full that restricts application of the constructors 
from OWL and RDF

– Application of OWL’s constructors’ to each other is 
disallowed

– Therefore it corresponds to a well studied description logic
OWL DL permits efficient reasoning support
But we lose full compatibility with RDF: 

– Not every RDF document is a legal OWL DL document. 
– Every legal OWL DL document is a legal RDF document.
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OWL Lite

An even further restriction limits OWL DL to a 
subset of the language constructors
– E.g., OWL Lite excludes enumerated classes, 

disjointness statements, and arbitrary cardinality.
The advantage of this is a language that is 
easier to
– grasp, for users
– implement, for tool builders

The disadvantage is restricted expressivity
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Upward Compatibility between OWL 
Species

Every legal OWL Lite ontology is a legal OWL 
DL ontology
Every legal OWL DL ontology is a legal OWL 
Full ontology
Every valid OWL Lite conclusion is a valid OWL 
DL conclusion
Every valid OWL DL conclusion is a valid OWL 
Full conclusion
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OWL Compatibility with RDF Schema

All varieties of OWL use 
RDF for their syntax
Instances are declared 
as in RDF, using RDF 
descriptions 
and typing information
OWL constructors are 
specialisations of their
RDF counterparts
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OWL Compatibility with RDF Schema (2)

Semantic Web design aims at downward 
compatibility with corresponding reuse of 
software across the various layers
The advantage of full downward compatibility 
for OWL is only achieved for OWL Full, at the 
cost of computational intractability
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Lecture Outline
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OWL Syntactic Varieties

OWL builds on RDF and uses RDF’s XML-based 
syntax
Other syntactic forms for OWL have also been 
defined:

– An alternative, more readable XML-based syntax 
– An abstract syntax, that is much more compact and 

readable than the XML languages
– A graphic syntax based on the conventions of UML
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OWL XML/RDF Syntax: Header

<rdf:RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-

schema#"
xmlns:xsd ="http://www.w3.org/2001/ 

XLMSchema#">
An OWL ontology may start with a collection of 
assertions for housekeeping purposes using 
owl:Ontology element
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owl:Ontology

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology 
</rdfs:comment>
<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>
<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>
<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

owl:imports is a transitive property 
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Classes

Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">
<owl:disjointWith rdf:resource="#professor"/>
<owl:disjointWith

rdf:resource="#assistantProfessor"/>
</owl:Class>



Chapter 4 A Semantic Web Primer25

Classes (2)

owl:equivalentClass defines equivalence of 
classes

<owl:Class rdf:ID="faculty">
<owl:equivalentClass rdf:resource= 

"#academicStaffMember"/>
</owl:Class>

owl:Thing is the most general class, which 
contains everything
owl:Nothing is the empty class 
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Properties

In OWL there are two kinds of properties
– Object properties, which relate objects to 

other objects
E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to 
datatype values

E.g. phone, title, age, etc.
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Datatype Properties

OWL makes use of XML Schema data types, 
using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">
<rdfs:range rdf:resource= 

"http://www.w3.org/2001/XMLSchema
#nonNegativeInteger"/>

</owl:DatatypeProperty>
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Object Properties

User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">
<owl:domain rdf:resource="#course"/>
<owl:range rdf:resource= 

"#academicStaffMember"/>
<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>
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Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">
<rdfs:range rdf:resource="#course"/>
<rdfs:domain rdf:resource= 

"#academicStaffMember"/>
<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>



Chapter 4 A Semantic Web Primer30

Equivalent Properties

owl:equivalentProperty
<owl:ObjectProperty rdf:ID="lecturesIn">
<owl:equivalentProperty

rdf:resource="#teaches"/>
</owl:ObjectProperty>
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Property Restrictions

In OWL we can declare that the class C 
satisfies certain conditions
– All instances of C satisfy the conditions

This is equivalent to saying that C is subclass 
of a class C', where C' collects all objects 
that satisfy the conditions
– C' can remain anonymous
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Property Restrictions (2)

A (restriction) class is achieved through an 
owl:Restriction element 
This element contains an owl:onProperty
element and one or more restriction 
declarations
One type defines cardinality restrictions (at 
least one, at most 3,…)
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Property Restrictions (3)

The other type defines restrictions on the 
kinds of values the property may take

– owl:allValuesFrom specifies universal 
quantification 

– owl:hasValue specifies a specific value 
– owl:someValuesFrom specifies existential 

quantification
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owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:allValuesFrom

rdf:resource="#Professor"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
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owl:hasValue

<owl:Class rdf:about="#mathCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource= 

"#isTaughtBy"/>
<owl:hasValue rdf:resource= 

"#949352"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
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owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#teaches"/>
<owl:someValuesFrom rdf:resource= 

"#undergraduateCourse"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
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Cardinality Restrictions

We can specify minimum and maximum 
number using owl:minCardinality and 
owl:maxCardinality
It is possible to specify a precise number by 
using the same minimum and maximum 
number
For convenience, OWL offers also 
owl:cardinality



Chapter 4 A Semantic Web Primer38

Cardinality Restrictions (2)

<owl:Class rdf:about="#course">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:minCardinality rdf:datatype= 

"&xsd;nonNegativeInteger">
1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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Special Properties

owl:TransitiveProperty (transitive property) 
– E.g. “has better grade than”, “is ancestor of”
owl:SymmetricProperty (symmetry)

– E.g. “has same grade as”, “is sibling of”
owl:FunctionalProperty defines a property that has 
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”
owl:InverseFunctionalProperty defines a property 
for which two different objects cannot have the same 
value
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Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type
rdf:resource="&owl;TransitiveProperty"/>

<rdf:type
rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>
<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>
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Boolean Combinations

We can combine classes using Boolean operations 
(union, intersection, complement)

<owl:Class rdf:about="#course">
<rdfs:subClassOf>

<owl:Restriction>
<owl:complementOf rdf:resource= 

"#staffMember"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>
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Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:Class rdf:about="#student"/>

</owl:unionOf>
</owl:Class>

The new class is not a subclass of the union, but 
rather equal to the union

– We have stated an equivalence of classes
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Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>
<owl:hasValue rdf:resource= 

"#CSDepartment"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>
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Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:complementOf>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#faculty"/>
<owl:Class rdf:about= 

"#techSupportStaff"/>
</owl:unionOf>

</owl:complementOf>
</owl:intersectionOf>

</owl:Class>
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Enumerations with owl:oneOf 

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Monday"/>
<owl:Thing rdf:about="#Tuesday"/>
<owl:Thing rdf:about="#Wednesday"/>
<owl:Thing rdf:about="#Thursday"/>
<owl:Thing rdf:about="#Friday"/>
<owl:Thing rdf:about="#Saturday"/>
<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>
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Declaring Instances

Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">
<rdf:type rdf:resource= 

"#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer"> 
39<uni:age>

</academicStaffMember>
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No Unique-Names Assumption

OWL does not adopt the unique-names 
assumption of database systems

– If two instances have a different name or ID does 
not imply that they are different individuals

Suppose we state that each course is taught 
by at most one staff member, and that a 
given course is taught by two staff members 

– An OWL reasoner does not flag an error 
– Instead it infers that the two resources are equal
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Distinct Objects

To ensure that different individuals are 
indeed recognized as such, we must 
explicitly assert their inequality:

<lecturer rdf:about="949318">
<owl:differentFrom rdf:resource="949352"/>

</lecturer>
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Distinct Objects (2)

OWL provides a shorthand notation to assert the 
pairwise inequality of all individuals in a given list

<owl:allDifferent>
<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>
<lecturer rdf:about="949352"/>
<lecturer rdf:about="949111"/>

</owl:distinctMembers>
</owl:allDifferent>
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Data Types in OWL

XML Schema provides a mechanism to construct 
user-defined data types 

– E.g., the data type of adultAge includes all integers greater 
than 18

Such derived data types cannot be used in OWL 
– The OWL reference document lists all the XML Schema 

data types that can be used
– These include the most frequently used types such as 

string, integer, Boolean, time, and date.
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Versioning Information

owl:priorVersion indicates earlier versions 
of the current ontology 

– No formal meaning, can be exploited for 
ontology management

owl:versionInfo generally contains a string 
giving information about the current version, 
e.g. keywords
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Versioning Information (2)

owl:backwardCompatibleWith contains a reference 
to another ontology 

– All identifiers from the previous version have the same 
intended interpretations in the new version 

– Thus documents can be safely changed to commit to the 
new version 

owl:incompatibleWith indicates that the containing 
ontology is a later version of the referenced ontology 
but is not backward compatible with it 
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Combination of Features

In different OWL languages there are 
different sets of restrictions regarding the 
application of features
In OWL Full, all the language constructors 
may be used in any combination as long as 
the result is legal RDF 



Chapter 4 A Semantic Web Primer54

Restriction of Features in OWL DL

Vocabulary partitioning
– Any resource is allowed to be only a class, a data 

type, a data type property, an object property, an 
individual, a data value, or part of the built-in 
vocabulary, and not more than one of these 

Explicit typing
– The partitioning of all resources must be stated 

explicitly (e.g. a class must be declared if used in 
conjunction with rdfs:subClassOf)
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Restriction of Features in OWL DL (2)

Property Separation
– The set of object properties and data type 

properties are disjoint
– Therefore the following can never be specified for 

data type properties:
owl:inverseOf
owl:FunctionalProperty
owl:InverseFunctionalProperty

owl:SymmetricProperty
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Restriction of Features in OWL DL (3)

No transitive cardinality restrictions
– No cardinality restrictions may be placed on 

transitive properties 
Restricted anonymous classes: Anonymous 
classes are only allowed to occur as:

– the domain and range of either 
owl:equivalentClass or owl:disjointWith

– the range (but not the domain) of 
rdfs:subClassOf
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Restriction of Features in OWL Lite

Restrictions of OWL DL and more
owl:oneOf, owl:disjointWith, owl:unionOf, 
owl:complementOf and owl:hasValue are not 
allowed 
Cardinality statements (minimal, maximal, and exact 
cardinality) can only be made on the values 0 or 1 
owl:equivalentClass statements can no longer be 
made between anonymous classes but only between 
class identifiers 
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Lecture Outline

1. Basic Ideas of OWL 
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions
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An African Wildlife Ontology –
Class Hierarchy
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An African Wildlife Ontology –
Schematic Representation

Βranches are parts of trees 
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An African Wildlife Ontology –
Properties

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">
<rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">
<owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>
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An African Wildlife Ontology –
Plants and Trees

<owl:Class rdf:ID="plant">
<rdfs:comment>Plants are disjoint from animals. 
</rdfs:comment>
<owl:disjointWith="#animal"/>

</owl:Class>
<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plant. 
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>
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An African Wildlife Ontology –
Branches

<owl:Class rdf:ID="branch">
<rdfs:comment>Branches are parts of trees. 
</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#tree"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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An African Wildlife Ontology –
Leaves

<owl:Class rdf:ID="leaf">
<rdfs:comment>Leaves are parts of branches. 
</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#branch"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>



Chapter 4 A Semantic Web Primer65

An African Wildlife Ontology –
Carnivores

<owl:Class rdf:ID="carnivore">
<rdfs:comment>Carnivores are exactly those animals
that eat also animals.</rdfs:comment>
<owl:intersectionOf rdf:parsetype="Collection">
<owl:Class rdf:about="#animal"/>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:someValuesFrom rdf:resource="#animal"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
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An African Wildlife Ontology –
Herbivores

<owl:Class rdf:ID="herbivore">
<rdfs:comment>

Herbivores are exactly those animals 
that eat only plants or parts of plants. 

</rdfs:comment>
<rdfs:comment>

Try it out! See book for code.
<rdfs:comment>

</owl:Class>
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An African Wildlife Ontology –
Giraffes

<owl:Class rdf:ID="giraffe">
<rdfs:comment>Giraffes are herbivores, and they
eat only leaves.</rdfs:comment>
<rdfs:subClassOf rdf:type="#herbivore"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#leaf"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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An African Wildlife Ontology –
Lions

<owl:Class rdf:ID="lion">
<rdfs:comment>Lions are animals that eat
only herbivores.</rdfs:comment>
<rdfs:subClassOf rdf:type="#carnivore"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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An African Wildlife Ontology –
Tasty Plants

owl:Class rdf:ID="tasty-plant">
<rdfs:comment>Plants eaten both by herbivores 
and carnivores </rdfs:comment>
<rdfs:comment>

Try it out! See book for code.
<rdfs:comment>

</owl:Class>
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A Printer Ontology – Class Hierarchy



Chapter 4 A Semantic Web Primer71

A Printer Ontology –
Products and Devices

<owl:Class rdf:ID="product">
<rdfs:comment>Products form a class. </rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">
<rdfs:comment>Printing and digital imaging devices
form a subclass of products.</rdfs:comment>
<rdfs:label>Device</rdfs:label>
<rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>
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A Printer Ontology – HP Products

<owl:Class rdf:ID="hpProduct">
<owl:intersectionOf>

<owl:Class rdf:about="#product"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#manufactured-by"/>
<owl:hasValue>

<xsd:string rdf:value="Hewlett Packard"/>
</owl:hasValue>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
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A Printer Ontology –
Printers and Personal Printers

<owl:Class rdf:ID="printer">
<rdfs:comment>Printers are printing and digital imaging 
devices.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">
<rdfs:comment>Printers for personal use form
a subclass of printers.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>
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A Printer Ontology –
HP LaserJet 1100se Printers

<owl:Class rdf:ID="1100se">
<rdfs:comment>1100se printers belong to the 1100 series

and cost $450.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#1100series"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#price"/>
<owl:hasValue><xsd:integer rdf:value="450"/>
</owl:hasValue>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
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A Printer Ontology – Properties

<owl:DatatypeProperty rdf:ID="manufactured-by">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">
<rdfs:domain rdf:resource="#printer"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
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Lecture Outline

1. Basic Ideas of OWL 
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions
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OWL in OWL

We present a part of the definition of OWL in 
terms of itself 
The following captures some of OWL’s
meaning in OWL
– It does not capture the entire semantics
– A separate semantic specification is necessary

The URI of the OWL definition is defined as 
the default namespace 
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Classes of Classes (Metaclasses)

The class of all OWL classes is itself a 
subclass of the class of all RDF Schema 
classes:

<rdfs:Class rdf:ID="Class">
<rdfs:label>Class</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdfs:Class>
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Classes of Classes (Metaclasses) –
Thing and Nothing

Thing is most general object class in OWL
Nothing is most specific class: the empty 
object class
The following relationships hold:

Thing Nothing Nothing= ∪

Nothing Thing Nothing Nothing Nothing Nothing= = ∪ = ∩ =∅
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Classes of Classes (Metaclasses) –
Thing and Nothing (2)

<Class rdf:ID="Thing">
<rdfs:label>Thing</rdfs:label>
<unionOf rdf:parseType="Collection">

<Class rdf:about="#Nothing"/>
<Class>

<complementOf rdf:resource="#Nothing"/>
</Class>

</unionOf>
</Class>
<Class rdf:ID="Nothing">

<rdfs:label>Nothing</rdfs:label>
<complementOf rdf:resource="#Thing"/>

</Class>
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Class and Property Equivalences

<rdf:Property rdf:ID="EquivalentClass">
<rdfs:label>EquivalentClass</rdfs:label>
<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>
<rdf:Property rdf:ID="EquivalentProperty">

<rdfs:label>EquivalentProperty</rdfs:label>
<rdfs:subPropertyOf

rdf:resource="&rdfs;subPropertyOf"/>
</rdf:Property>
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Class Disjointness

<rdf:Property rdf:ID="disjointWith">
<rdfs:label>disjointWith</rdfs:label>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>
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Equality and Inequality

Equality and inequality can be stated 
between arbitrary things

– In OWL Full this statement can also be applied 
to classes 

Properties sameIndividualAs, sameAs
and differentFrom 
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Equality and Inequality (2)

<rdf:Property rdf:ID="sameIndividualAs">
<rdfs:domain rdf:resource="#Thing"/>
<rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

<rdf:Property rdf:ID="sameAs">
<EquivalentProperty rdf:resource= 

"#sameIndividualAs"/>
</rdf:Property>
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Union and Intersection of Classes

Build a class from a list, assumed to be a list 
of other class expressions

<rdf:Property rdf:ID="unionOf">
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="&rdf;List"/>

</rdf:Property>
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Restriction Classes

Restrictions in OWL define the class of those 
objects that satisfy some attached conditions 

<rdfs:Class rdf:ID="Restriction">
<rdfs:label>Restriction</rdfs:label>
<rdfs:subClassOf rdf:resource="#Class"/>

</rdfs:Class>
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Restriction Properties 

All the following properties (onProperty, 
allValuesFrom, minCardinality, etc.) are only 
allowed to occur within a restriction definition
– Their domain is owl:Restriction, but they differ with 

respect to their range
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Restriction Properties (2)

<rdf:Property rdf:ID="onProperty">
<rdfs:label>onProperty</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource="&rdf;Property"/>

</rdf:Property>
<rdf:Property rdf:ID="allValuesFrom">

<rdfs:label>allValuesFrom</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>
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Restriction Properties (3)

<rdf:Property rdf:ID="hasValue">
<rdfs:label>hasValue</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>

</rdf:Property>
<rdf:Property rdf:ID="minCardinality">

<rdfs:label>minCardinality</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource= 

"&xsd;nonNegativeInteger"/>
</rdf:Property>
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Properties

owl:ObjectProperty and owl:DatatypeProperty are 
special cases of rdf:Property

<rdfs:Class rdf:ID="ObjectProperty">
<rdfs:label>ObjectProperty</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;Property"/>

</rdfs:Class>
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Properties (2)

Symmetric, functional and inverse functional 
properties can only be applied to object 
properties 

<rdfs:Class rdf:ID="TransitiveProperty">
<rdfs:label>TransitiveProperty</rdfs:label>
<rdfs:subClassOf rdf:resource= 

"#ObjectProperty"/>
</rdfs:Class>
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Properties (3)

owl:inverseOf relates two object properties:

<rdf:Property rdf:ID="inverseOf">
<rdfs:label>inverseOf</rdfs:label>
<rdfs:domain rdf:resource="#ObjectProperty"/>
<rdfs:range rdf:resource="#ObjectProperty"/>

</rdf:Property>
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Lecture Outline

1. Basic Ideas of OWL 
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions
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Future Extensions of OWL

Modules and Imports
Defaults
Closed World Assumption
Unique Names Assumption
Procedural Attachments
Rules for Property Chaining
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Modules and Imports

The importing facility of OWL is very trivial: 
– It only allows importing of an entire ontology, not 

parts of it
Modules in programming languages based 
on information hiding: state functionality, 
hide implementation details
– Open question how to define appropriate module 

mechanism for Web ontology languages
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Defaults

Many practical knowledge representation 
systems allow inherited values to be 
overridden by more specific classes in the 
hierarchy
– treat inherited values as defaults 

No consensus has been reached on the right 
formalization for the nonmonotonic behaviour 
of default values 
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Closed World Assumption

OWL currently adopts the open-world assumption: 
– A statement cannot be assumed true on the basis of a 

failure to prove it
– On the huge and only partially knowable WWW, this is a 

correct assumption

Closed-world assumption: a statement is true when 
its negation cannot be proved
– tied to the notion of defaults, leads to nonmonotonic 

behaviour
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Unique Names Assumption

Typical database applications assume that 
individuals with different names are indeed different 
individuals 
OWL follows the usual logical paradigm where this is 
not the case

– Plausible on the WWW

One may want to indicate portions of the ontology for 
which the assumption does or does not hold
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Procedural Attachments

A common concept in knowledge representation is to 
define the meaning of a term by attaching a piece of 
code to be executed for computing the meaning of the 
term

– Not through explicit definitions in the language 

Although widely used, this concept does not lend itself 
very well to integration in a system with a formal 
semantics, and it has not been included in OWL 
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Rules for Property Chaining

OWL does not allow the composition of properties for 
reasons of decidability
In many applications this is a useful operation
One may want to define properties as general rules 
(Horn or otherwise) over other properties 
Integration of rule-based knowledge representation 
and DL-style knowledge representation is currently 
an active area of research 
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Summary

OWL is the proposed standard for Web 
ontologies 
OWL builds upon RDF and RDF Schema: 

– (XML-based) RDF syntax is used
– Instances are defined using RDF descriptions
– Most RDFS modeling primitives are used
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Summary (2)

Formal semantics and reasoning support is 
provided through the mapping of OWL on 
logics
– Predicate logic and description logics have been 

used for this purpose
While OWL is sufficiently rich to be used in 
practice, extensions are in the making
– They will provide further logical features, including 

rules 
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