
Chapter 4 A Semantic Web Primer1

Chapter 4
Web Ontology Language: OWL

Grigoris Antoniou
Frank van Harmelen

Chapter 4 A Semantic Web Primer2

Lecture Outline

1. Basic Ideas of OWL
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions

Chapter 4 A Semantic Web Primer3

Requirements for Ontology Languages

Ontology languages allow users to write
explicit, formal conceptualizations of domain
models
The main requirements are:
– a well-defined syntax
– efficient reasoning support
– a formal semantics
– sufficient expressive power
– convenience of expression

Chapter 4 A Semantic Web Primer4

Tradeoff between Expressive Power
and Efficient Reasoning Support

The richer the language is, the more
inefficient the reasoning support becomes
Sometimes it crosses the border of
noncomputability
We need a compromise:
– A language supported by reasonably efficient

reasoners
– A language that can express large classes of

ontologies and knowledge.

Chapter 4 A Semantic Web Primer5

Reasoning About Knowledge in
Ontology Languages

Class membership
– If x is an instance of a class C, and C is a

subclass of D, then we can infer that x is an
instance of D

Equivalence of classes
– If class A is equivalent to class B, and class B is

equivalent to class C, then A is equivalent to C,
too

Chapter 4 A Semantic Web Primer6

Reasoning About Knowledge in
Ontology Languages (2)

Consistency
– X instance of classes A and B, but A and B are

disjoint
– This is an indication of an error in the ontology

Classification
– Certain property-value pairs are a sufficient

condition for membership in a class A; if an
individual x satisfies such conditions, we can
conclude that x must be an instance of A

Chapter 4 A Semantic Web Primer7

Uses for Reasoning

Reasoning support is important for
– checking the consistency of the ontology and the knowledge
– checking for unintended relationships between classes
– automatically classifying instances in classes

Checks like the preceding ones are valuable for
– designing large ontologies, where multiple authors are

involved
– integrating and sharing ontologies from various sources

Chapter 4 A Semantic Web Primer8

Reasoning Support for OWL

Semantics is a prerequisite for reasoning support
Formal semantics and reasoning support are usually
provided by

– mapping an ontology language to a known logical formalism
– using automated reasoners that already exist for those

formalisms
OWL is (partially) mapped on a description logic, and
makes use of reasoners such as FaCT and RACER
Description logics are a subset of predicate logic for
which efficient reasoning support is possible

Chapter 4 A Semantic Web Primer9

Limitations of the Expressive Power
of RDF Schema

Local scope of properties
– rdfs:range defines the range of a property (e.g.

eats) for all classes
– In RDF Schema we cannot declare range

restrictions that apply to some classes only
– E.g. we cannot say that cows eat only plants,

while other animals may eat meat, too

Chapter 4 A Semantic Web Primer10

Limitations of the Expressive Power
of RDF Schema (2)

Disjointness of classes
– Sometimes we wish to say that classes are

disjoint (e.g. male and female)
Boolean combinations of classes
– Sometimes we wish to build new classes by

combining other classes using union, intersection,
and complement

– E.g. person is the disjoint union of the classes
male and female

Chapter 4 A Semantic Web Primer11

Limitations of the Expressive Power
of RDF Schema (3)

Cardinality restrictions
– E.g. a person has exactly two parents, a course is

taught by at least one lecturer
Special characteristics of properties
– Transitive property (like “greater than”)
– Unique property (like “is mother of”)
– A property is the inverse of another property (like

“eats” and “is eaten by”)

Chapter 4 A Semantic Web Primer12

Combining OWL with RDF Schema

Ideally, OWL would extend RDF Schema
– Consistent with the layered architecture of the

Semantic Web
But simply extending RDF Schema would
work against obtaining expressive power and
efficient reasoning
– Combining RDF Schema with logic leads to

uncontrollable computational properties

Chapter 4 A Semantic Web Primer13

Three Species of OWL

W3C’sWeb Ontology Working Group defined
OWL as three different sublanguages:
– OWL Full
– OWL DL
– OWL Lite

Each sublanguage geared toward fulfilling
different aspects of requirements

Chapter 4 A Semantic Web Primer14

OWL Full

It uses all the OWL languages primitives
It allows the combination of these primitives
in arbitrary ways with RDF and RDF Schema
OWL Full is fully upward-compatible with
RDF, both syntactically and semantically
OWL Full is so powerful that it is undecidable
– No complete (or efficient) reasoning support

Chapter 4 A Semantic Web Primer15

OWL DL

OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the constructors
from OWL and RDF

– Application of OWL’s constructors’ to each other is
disallowed

– Therefore it corresponds to a well studied description logic
OWL DL permits efficient reasoning support
But we lose full compatibility with RDF:

– Not every RDF document is a legal OWL DL document.
– Every legal OWL DL document is a legal RDF document.

Chapter 4 A Semantic Web Primer16

OWL Lite

An even further restriction limits OWL DL to a
subset of the language constructors
– E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality.
The advantage of this is a language that is
easier to
– grasp, for users
– implement, for tool builders

The disadvantage is restricted expressivity

Chapter 4 A Semantic Web Primer17

Upward Compatibility between OWL
Species

Every legal OWL Lite ontology is a legal OWL
DL ontology
Every legal OWL DL ontology is a legal OWL
Full ontology
Every valid OWL Lite conclusion is a valid OWL
DL conclusion
Every valid OWL DL conclusion is a valid OWL
Full conclusion

Chapter 4 A Semantic Web Primer18

OWL Compatibility with RDF Schema

All varieties of OWL use
RDF for their syntax
Instances are declared
as in RDF, using RDF
descriptions
and typing information
OWL constructors are
specialisations of their
RDF counterparts

Chapter 4 A Semantic Web Primer19

OWL Compatibility with RDF Schema (2)

Semantic Web design aims at downward
compatibility with corresponding reuse of
software across the various layers
The advantage of full downward compatibility
for OWL is only achieved for OWL Full, at the
cost of computational intractability

Chapter 4 A Semantic Web Primer20

Lecture Outline

1. Basic Ideas of OWL
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions

Chapter 4 A Semantic Web Primer21

OWL Syntactic Varieties

OWL builds on RDF and uses RDF’s XML-based
syntax
Other syntactic forms for OWL have also been
defined:

– An alternative, more readable XML-based syntax
– An abstract syntax, that is much more compact and

readable than the XML languages
– A graphic syntax based on the conventions of UML

Chapter 4 A Semantic Web Primer22

OWL XML/RDF Syntax: Header

<rdf:RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-

schema#"
xmlns:xsd ="http://www.w3.org/2001/

XLMSchema#">
An OWL ontology may start with a collection of
assertions for housekeeping purposes using
owl:Ontology element

Chapter 4 A Semantic Web Primer23

owl:Ontology

<owl:Ontology rdf:about="">
<rdfs:comment>An example OWL ontology
</rdfs:comment>
<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>
<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>
<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

owl:imports is a transitive property

Chapter 4 A Semantic Web Primer24

Classes

Classes are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

Disjointness is defined using owl:disjointWith

<owl:Class rdf:about="#associateProfessor">
<owl:disjointWith rdf:resource="#professor"/>
<owl:disjointWith

rdf:resource="#assistantProfessor"/>
</owl:Class>

Chapter 4 A Semantic Web Primer25

Classes (2)

owl:equivalentClass defines equivalence of
classes

<owl:Class rdf:ID="faculty">
<owl:equivalentClass rdf:resource=

"#academicStaffMember"/>
</owl:Class>

owl:Thing is the most general class, which
contains everything
owl:Nothing is the empty class

Chapter 4 A Semantic Web Primer26

Properties

In OWL there are two kinds of properties
– Object properties, which relate objects to

other objects
E.g. is-TaughtBy, supervises

– Data type properties, which relate objects to
datatype values

E.g. phone, title, age, etc.

Chapter 4 A Semantic Web Primer27

Datatype Properties

OWL makes use of XML Schema data types,
using the layered architecture of the SW

<owl:DatatypeProperty rdf:ID="age">
<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema
#nonNegativeInteger"/>

</owl:DatatypeProperty>

Chapter 4 A Semantic Web Primer28

Object Properties

User-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">
<owl:domain rdf:resource="#course"/>
<owl:range rdf:resource=

"#academicStaffMember"/>
<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

Chapter 4 A Semantic Web Primer29

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">
<rdfs:range rdf:resource="#course"/>
<rdfs:domain rdf:resource=

"#academicStaffMember"/>
<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Chapter 4 A Semantic Web Primer30

Equivalent Properties

owl:equivalentProperty
<owl:ObjectProperty rdf:ID="lecturesIn">
<owl:equivalentProperty

rdf:resource="#teaches"/>
</owl:ObjectProperty>

Chapter 4 A Semantic Web Primer31

Property Restrictions

In OWL we can declare that the class C
satisfies certain conditions
– All instances of C satisfy the conditions

This is equivalent to saying that C is subclass
of a class C', where C' collects all objects
that satisfy the conditions
– C' can remain anonymous

Chapter 4 A Semantic Web Primer32

Property Restrictions (2)

A (restriction) class is achieved through an
owl:Restriction element
This element contains an owl:onProperty
element and one or more restriction
declarations
One type defines cardinality restrictions (at
least one, at most 3,…)

Chapter 4 A Semantic Web Primer33

Property Restrictions (3)

The other type defines restrictions on the
kinds of values the property may take

– owl:allValuesFrom specifies universal
quantification

– owl:hasValue specifies a specific value
– owl:someValuesFrom specifies existential

quantification

Chapter 4 A Semantic Web Primer34

owl:allValuesFrom

<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:allValuesFrom

rdf:resource="#Professor"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Chapter 4 A Semantic Web Primer35

owl:hasValue

<owl:Class rdf:about="#mathCourse">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=

"#isTaughtBy"/>
<owl:hasValue rdf:resource=

"#949352"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Chapter 4 A Semantic Web Primer36

owl:someValuesFrom

<owl:Class rdf:about="#academicStaffMember">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#teaches"/>
<owl:someValuesFrom rdf:resource=

"#undergraduateCourse"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Chapter 4 A Semantic Web Primer37

Cardinality Restrictions

We can specify minimum and maximum
number using owl:minCardinality and
owl:maxCardinality
It is possible to specify a precise number by
using the same minimum and maximum
number
For convenience, OWL offers also
owl:cardinality

Chapter 4 A Semantic Web Primer38

Cardinality Restrictions (2)

<owl:Class rdf:about="#course">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:minCardinality rdf:datatype=

"&xsd;nonNegativeInteger">
1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer39

Special Properties

owl:TransitiveProperty (transitive property)
– E.g. “has better grade than”, “is ancestor of”
owl:SymmetricProperty (symmetry)

– E.g. “has same grade as”, “is sibling of”
owl:FunctionalProperty defines a property that has
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”
owl:InverseFunctionalProperty defines a property
for which two different objects cannot have the same
value

Chapter 4 A Semantic Web Primer40

Special Properties (2)

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type
rdf:resource="&owl;TransitiveProperty"/>

<rdf:type
rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>
<rdfs:range rdf:resource="#student"/>

</owl:ObjectProperty>

Chapter 4 A Semantic Web Primer41

Boolean Combinations

We can combine classes using Boolean operations
(union, intersection, complement)

<owl:Class rdf:about="#course">
<rdfs:subClassOf>

<owl:Restriction>
<owl:complementOf rdf:resource=

"#staffMember"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

Chapter 4 A Semantic Web Primer42

Boolean Combinations (2)

<owl:Class rdf:ID="peopleAtUni">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:Class rdf:about="#student"/>

</owl:unionOf>
</owl:Class>

The new class is not a subclass of the union, but
rather equal to the union

– We have stated an equivalence of classes

Chapter 4 A Semantic Web Primer43

Boolean Combinations (3)

<owl:Class rdf:ID="facultyInCS">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>
<owl:hasValue rdf:resource=

"#CSDepartment"/>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

Chapter 4 A Semantic Web Primer44

Nesting of Boolean Operators

<owl:Class rdf:ID="adminStaff">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>
<owl:complementOf>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#faculty"/>
<owl:Class rdf:about=

"#techSupportStaff"/>
</owl:unionOf>

</owl:complementOf>
</owl:intersectionOf>

</owl:Class>

Chapter 4 A Semantic Web Primer45

Enumerations with owl:oneOf

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Monday"/>
<owl:Thing rdf:about="#Tuesday"/>
<owl:Thing rdf:about="#Wednesday"/>
<owl:Thing rdf:about="#Thursday"/>
<owl:Thing rdf:about="#Friday"/>
<owl:Thing rdf:about="#Saturday"/>
<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

Chapter 4 A Semantic Web Primer46

Declaring Instances

Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">
<rdf:type rdf:resource=

"#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">
39<uni:age>

</academicStaffMember>

Chapter 4 A Semantic Web Primer47

No Unique-Names Assumption

OWL does not adopt the unique-names
assumption of database systems

– If two instances have a different name or ID does
not imply that they are different individuals

Suppose we state that each course is taught
by at most one staff member, and that a
given course is taught by two staff members

– An OWL reasoner does not flag an error
– Instead it infers that the two resources are equal

Chapter 4 A Semantic Web Primer48

Distinct Objects

To ensure that different individuals are
indeed recognized as such, we must
explicitly assert their inequality:

<lecturer rdf:about="949318">
<owl:differentFrom rdf:resource="949352"/>

</lecturer>

Chapter 4 A Semantic Web Primer49

Distinct Objects (2)

OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>
<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318"/>
<lecturer rdf:about="949352"/>
<lecturer rdf:about="949111"/>

</owl:distinctMembers>
</owl:allDifferent>

Chapter 4 A Semantic Web Primer50

Data Types in OWL

XML Schema provides a mechanism to construct
user-defined data types

– E.g., the data type of adultAge includes all integers greater
than 18

Such derived data types cannot be used in OWL
– The OWL reference document lists all the XML Schema

data types that can be used
– These include the most frequently used types such as

string, integer, Boolean, time, and date.

Chapter 4 A Semantic Web Primer51

Versioning Information

owl:priorVersion indicates earlier versions
of the current ontology

– No formal meaning, can be exploited for
ontology management

owl:versionInfo generally contains a string
giving information about the current version,
e.g. keywords

Chapter 4 A Semantic Web Primer52

Versioning Information (2)

owl:backwardCompatibleWith contains a reference
to another ontology

– All identifiers from the previous version have the same
intended interpretations in the new version

– Thus documents can be safely changed to commit to the
new version

owl:incompatibleWith indicates that the containing
ontology is a later version of the referenced ontology
but is not backward compatible with it

Chapter 4 A Semantic Web Primer53

Combination of Features

In different OWL languages there are
different sets of restrictions regarding the
application of features
In OWL Full, all the language constructors
may be used in any combination as long as
the result is legal RDF

Chapter 4 A Semantic Web Primer54

Restriction of Features in OWL DL

Vocabulary partitioning
– Any resource is allowed to be only a class, a data

type, a data type property, an object property, an
individual, a data value, or part of the built-in
vocabulary, and not more than one of these

Explicit typing
– The partitioning of all resources must be stated

explicitly (e.g. a class must be declared if used in
conjunction with rdfs:subClassOf)

Chapter 4 A Semantic Web Primer55

Restriction of Features in OWL DL (2)

Property Separation
– The set of object properties and data type

properties are disjoint
– Therefore the following can never be specified for

data type properties:
owl:inverseOf
owl:FunctionalProperty
owl:InverseFunctionalProperty

owl:SymmetricProperty

Chapter 4 A Semantic Web Primer56

Restriction of Features in OWL DL (3)

No transitive cardinality restrictions
– No cardinality restrictions may be placed on

transitive properties
Restricted anonymous classes: Anonymous
classes are only allowed to occur as:

– the domain and range of either
owl:equivalentClass or owl:disjointWith

– the range (but not the domain) of
rdfs:subClassOf

Chapter 4 A Semantic Web Primer57

Restriction of Features in OWL Lite

Restrictions of OWL DL and more
owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue are not
allowed
Cardinality statements (minimal, maximal, and exact
cardinality) can only be made on the values 0 or 1
owl:equivalentClass statements can no longer be
made between anonymous classes but only between
class identifiers

Chapter 4 A Semantic Web Primer58

Lecture Outline

1. Basic Ideas of OWL
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions

Chapter 4 A Semantic Web Primer59

An African Wildlife Ontology –
Class Hierarchy

Chapter 4 A Semantic Web Primer60

An African Wildlife Ontology –
Schematic Representation

Βranches are parts of trees

Chapter 4 A Semantic Web Primer61

An African Wildlife Ontology –
Properties

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">
<rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">
<owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

Chapter 4 A Semantic Web Primer62

An African Wildlife Ontology –
Plants and Trees

<owl:Class rdf:ID="plant">
<rdfs:comment>Plants are disjoint from animals.
</rdfs:comment>
<owl:disjointWith="#animal"/>

</owl:Class>
<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plant.
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>

Chapter 4 A Semantic Web Primer63

An African Wildlife Ontology –
Branches

<owl:Class rdf:ID="branch">
<rdfs:comment>Branches are parts of trees.
</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#tree"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer64

An African Wildlife Ontology –
Leaves

<owl:Class rdf:ID="leaf">
<rdfs:comment>Leaves are parts of branches.
</rdfs:comment>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#branch"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer65

An African Wildlife Ontology –
Carnivores

<owl:Class rdf:ID="carnivore">
<rdfs:comment>Carnivores are exactly those animals
that eat also animals.</rdfs:comment>
<owl:intersectionOf rdf:parsetype="Collection">
<owl:Class rdf:about="#animal"/>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:someValuesFrom rdf:resource="#animal"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Chapter 4 A Semantic Web Primer66

An African Wildlife Ontology –
Herbivores

<owl:Class rdf:ID="herbivore">
<rdfs:comment>

Herbivores are exactly those animals
that eat only plants or parts of plants.

</rdfs:comment>
<rdfs:comment>

Try it out! See book for code.
<rdfs:comment>

</owl:Class>

Chapter 4 A Semantic Web Primer67

An African Wildlife Ontology –
Giraffes

<owl:Class rdf:ID="giraffe">
<rdfs:comment>Giraffes are herbivores, and they
eat only leaves.</rdfs:comment>
<rdfs:subClassOf rdf:type="#herbivore"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#leaf"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer68

An African Wildlife Ontology –
Lions

<owl:Class rdf:ID="lion">
<rdfs:comment>Lions are animals that eat
only herbivores.</rdfs:comment>
<rdfs:subClassOf rdf:type="#carnivore"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer69

An African Wildlife Ontology –
Tasty Plants

owl:Class rdf:ID="tasty-plant">
<rdfs:comment>Plants eaten both by herbivores
and carnivores </rdfs:comment>
<rdfs:comment>

Try it out! See book for code.
<rdfs:comment>

</owl:Class>

Chapter 4 A Semantic Web Primer70

A Printer Ontology – Class Hierarchy

Chapter 4 A Semantic Web Primer71

A Printer Ontology –
Products and Devices

<owl:Class rdf:ID="product">
<rdfs:comment>Products form a class. </rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">
<rdfs:comment>Printing and digital imaging devices
form a subclass of products.</rdfs:comment>
<rdfs:label>Device</rdfs:label>
<rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

Chapter 4 A Semantic Web Primer72

A Printer Ontology – HP Products

<owl:Class rdf:ID="hpProduct">
<owl:intersectionOf>

<owl:Class rdf:about="#product"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#manufactured-by"/>
<owl:hasValue>

<xsd:string rdf:value="Hewlett Packard"/>
</owl:hasValue>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Chapter 4 A Semantic Web Primer73

A Printer Ontology –
Printers and Personal Printers

<owl:Class rdf:ID="printer">
<rdfs:comment>Printers are printing and digital imaging
devices.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">
<rdfs:comment>Printers for personal use form
a subclass of printers.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

Chapter 4 A Semantic Web Primer74

A Printer Ontology –
HP LaserJet 1100se Printers

<owl:Class rdf:ID="1100se">
<rdfs:comment>1100se printers belong to the 1100 series

and cost $450.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#1100series"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#price"/>
<owl:hasValue><xsd:integer rdf:value="450"/>
</owl:hasValue>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Chapter 4 A Semantic Web Primer75

A Printer Ontology – Properties

<owl:DatatypeProperty rdf:ID="manufactured-by">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">
<rdfs:domain rdf:resource="#printer"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

Chapter 4 A Semantic Web Primer76

Lecture Outline

1. Basic Ideas of OWL
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions

Chapter 4 A Semantic Web Primer77

OWL in OWL

We present a part of the definition of OWL in
terms of itself
The following captures some of OWL’s
meaning in OWL
– It does not capture the entire semantics
– A separate semantic specification is necessary

The URI of the OWL definition is defined as
the default namespace

Chapter 4 A Semantic Web Primer78

Classes of Classes (Metaclasses)

The class of all OWL classes is itself a
subclass of the class of all RDF Schema
classes:

<rdfs:Class rdf:ID="Class">
<rdfs:label>Class</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdfs:Class>

Chapter 4 A Semantic Web Primer79

Classes of Classes (Metaclasses) –
Thing and Nothing

Thing is most general object class in OWL
Nothing is most specific class: the empty
object class
The following relationships hold:

Thing Nothing Nothing= ∪

Nothing Thing Nothing Nothing Nothing Nothing= = ∪ = ∩ =∅

Chapter 4 A Semantic Web Primer80

Classes of Classes (Metaclasses) –
Thing and Nothing (2)

<Class rdf:ID="Thing">
<rdfs:label>Thing</rdfs:label>
<unionOf rdf:parseType="Collection">

<Class rdf:about="#Nothing"/>
<Class>

<complementOf rdf:resource="#Nothing"/>
</Class>

</unionOf>
</Class>
<Class rdf:ID="Nothing">

<rdfs:label>Nothing</rdfs:label>
<complementOf rdf:resource="#Thing"/>

</Class>

Chapter 4 A Semantic Web Primer81

Class and Property Equivalences

<rdf:Property rdf:ID="EquivalentClass">
<rdfs:label>EquivalentClass</rdfs:label>
<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>
<rdf:Property rdf:ID="EquivalentProperty">

<rdfs:label>EquivalentProperty</rdfs:label>
<rdfs:subPropertyOf

rdf:resource="&rdfs;subPropertyOf"/>
</rdf:Property>

Chapter 4 A Semantic Web Primer82

Class Disjointness

<rdf:Property rdf:ID="disjointWith">
<rdfs:label>disjointWith</rdfs:label>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

Chapter 4 A Semantic Web Primer83

Equality and Inequality

Equality and inequality can be stated
between arbitrary things

– In OWL Full this statement can also be applied
to classes

Properties sameIndividualAs, sameAs
and differentFrom

Chapter 4 A Semantic Web Primer84

Equality and Inequality (2)

<rdf:Property rdf:ID="sameIndividualAs">
<rdfs:domain rdf:resource="#Thing"/>
<rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

<rdf:Property rdf:ID="sameAs">
<EquivalentProperty rdf:resource=

"#sameIndividualAs"/>
</rdf:Property>

Chapter 4 A Semantic Web Primer85

Union and Intersection of Classes

Build a class from a list, assumed to be a list
of other class expressions

<rdf:Property rdf:ID="unionOf">
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="&rdf;List"/>

</rdf:Property>

Chapter 4 A Semantic Web Primer86

Restriction Classes

Restrictions in OWL define the class of those
objects that satisfy some attached conditions

<rdfs:Class rdf:ID="Restriction">
<rdfs:label>Restriction</rdfs:label>
<rdfs:subClassOf rdf:resource="#Class"/>

</rdfs:Class>

Chapter 4 A Semantic Web Primer87

Restriction Properties

All the following properties (onProperty,
allValuesFrom, minCardinality, etc.) are only
allowed to occur within a restriction definition
– Their domain is owl:Restriction, but they differ with

respect to their range

Chapter 4 A Semantic Web Primer88

Restriction Properties (2)

<rdf:Property rdf:ID="onProperty">
<rdfs:label>onProperty</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource="&rdf;Property"/>

</rdf:Property>
<rdf:Property rdf:ID="allValuesFrom">

<rdfs:label>allValuesFrom</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>

Chapter 4 A Semantic Web Primer89

Restriction Properties (3)

<rdf:Property rdf:ID="hasValue">
<rdfs:label>hasValue</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>

</rdf:Property>
<rdf:Property rdf:ID="minCardinality">

<rdfs:label>minCardinality</rdfs:label>
<rdfs:domain rdf:resource="#Restriction"/>
<rdfs:range rdf:resource=

"&xsd;nonNegativeInteger"/>
</rdf:Property>

Chapter 4 A Semantic Web Primer90

Properties

owl:ObjectProperty and owl:DatatypeProperty are
special cases of rdf:Property

<rdfs:Class rdf:ID="ObjectProperty">
<rdfs:label>ObjectProperty</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;Property"/>

</rdfs:Class>

Chapter 4 A Semantic Web Primer91

Properties (2)

Symmetric, functional and inverse functional
properties can only be applied to object
properties

<rdfs:Class rdf:ID="TransitiveProperty">
<rdfs:label>TransitiveProperty</rdfs:label>
<rdfs:subClassOf rdf:resource=

"#ObjectProperty"/>
</rdfs:Class>

Chapter 4 A Semantic Web Primer92

Properties (3)

owl:inverseOf relates two object properties:

<rdf:Property rdf:ID="inverseOf">
<rdfs:label>inverseOf</rdfs:label>
<rdfs:domain rdf:resource="#ObjectProperty"/>
<rdfs:range rdf:resource="#ObjectProperty"/>

</rdf:Property>

Chapter 4 A Semantic Web Primer93

Lecture Outline

1. Basic Ideas of OWL
2. The OWL Language
3. Examples
4. The OWL Namespace
5. Future Extensions

Chapter 4 A Semantic Web Primer94

Future Extensions of OWL

Modules and Imports
Defaults
Closed World Assumption
Unique Names Assumption
Procedural Attachments
Rules for Property Chaining

Chapter 4 A Semantic Web Primer95

Modules and Imports

The importing facility of OWL is very trivial:
– It only allows importing of an entire ontology, not

parts of it
Modules in programming languages based
on information hiding: state functionality,
hide implementation details
– Open question how to define appropriate module

mechanism for Web ontology languages

Chapter 4 A Semantic Web Primer96

Defaults

Many practical knowledge representation
systems allow inherited values to be
overridden by more specific classes in the
hierarchy
– treat inherited values as defaults

No consensus has been reached on the right
formalization for the nonmonotonic behaviour
of default values

Chapter 4 A Semantic Web Primer97

Closed World Assumption

OWL currently adopts the open-world assumption:
– A statement cannot be assumed true on the basis of a

failure to prove it
– On the huge and only partially knowable WWW, this is a

correct assumption

Closed-world assumption: a statement is true when
its negation cannot be proved
– tied to the notion of defaults, leads to nonmonotonic

behaviour

Chapter 4 A Semantic Web Primer98

Unique Names Assumption

Typical database applications assume that
individuals with different names are indeed different
individuals
OWL follows the usual logical paradigm where this is
not the case

– Plausible on the WWW

One may want to indicate portions of the ontology for
which the assumption does or does not hold

Chapter 4 A Semantic Web Primer99

Procedural Attachments

A common concept in knowledge representation is to
define the meaning of a term by attaching a piece of
code to be executed for computing the meaning of the
term

– Not through explicit definitions in the language

Although widely used, this concept does not lend itself
very well to integration in a system with a formal
semantics, and it has not been included in OWL

Chapter 4 A Semantic Web Primer100

Rules for Property Chaining

OWL does not allow the composition of properties for
reasons of decidability
In many applications this is a useful operation
One may want to define properties as general rules
(Horn or otherwise) over other properties
Integration of rule-based knowledge representation
and DL-style knowledge representation is currently
an active area of research

Chapter 4 A Semantic Web Primer101

Summary

OWL is the proposed standard for Web
ontologies
OWL builds upon RDF and RDF Schema:

– (XML-based) RDF syntax is used
– Instances are defined using RDF descriptions
– Most RDFS modeling primitives are used

Chapter 4 A Semantic Web Primer102

Summary (2)

Formal semantics and reasoning support is
provided through the mapping of OWL on
logics
– Predicate logic and description logics have been

used for this purpose
While OWL is sufficiently rich to be used in
practice, extensions are in the making
– They will provide further logical features, including

rules

	Chapter 4�Web Ontology Language: OWL
	Lecture Outline
	Requirements for Ontology Languages
	Tradeoff between Expressive Power and Efficient Reasoning Support
	Reasoning About Knowledge in Ontology Languages
	Reasoning About Knowledge in Ontology Languages (2)
	Uses for Reasoning
	Reasoning Support for OWL
	Limitations of the Expressive Power of RDF Schema
	Limitations of the Expressive Power of RDF Schema (2)
	Limitations of the Expressive Power of RDF Schema (3)
	Combining OWL with RDF Schema
	Three Species of OWL
	OWL Full
	OWL DL
	OWL Lite
	Upward Compatibility between OWL Species
	OWL Compatibility with RDF Schema
	OWL Compatibility with RDF Schema (2)
	Lecture Outline
	OWL Syntactic Varieties
	OWL XML/RDF Syntax: Header
	owl:Ontology
	Classes
	Classes (2)
	Properties
	Datatype Properties
	Object Properties
	Inverse Properties
	Equivalent Properties
	Property Restrictions
	Property Restrictions (2)
	Property Restrictions (3)
	owl:allValuesFrom
	owl:hasValue
	owl:someValuesFrom
	Cardinality Restrictions
	Cardinality Restrictions (2)
	Special Properties
	Special Properties (2)
	Boolean Combinations
	Boolean Combinations (2)
	Boolean Combinations (3)
	Nesting of Boolean Operators
	Enumerations with owl:oneOf
	Declaring Instances
	No Unique-Names Assumption
	Distinct Objects
	Distinct Objects (2)
	Data Types in OWL
	Versioning Information
	Versioning Information (2)
	Combination of Features
	Restriction of Features in OWL DL
	Restriction of Features in OWL DL (2)
	Restriction of Features in OWL DL (3)
	Restriction of Features in OWL Lite
	Lecture Outline
	An African Wildlife Ontology – �Class Hierarchy
	An African Wildlife Ontology – �Schematic Representation
	An African Wildlife Ontology – �Properties
	An African Wildlife Ontology – �Plants and Trees
	An African Wildlife Ontology – �Branches
	An African Wildlife Ontology – �Leaves
	An African Wildlife Ontology – �Carnivores
	An African Wildlife Ontology – �Herbivores
	An African Wildlife Ontology – �Giraffes
	An African Wildlife Ontology – �Lions
	An African Wildlife Ontology – �Tasty Plants
	A Printer Ontology – Class Hierarchy
	A Printer Ontology – �Products and Devices
	A Printer Ontology – HP Products
	A Printer Ontology – �Printers and Personal Printers
	A Printer Ontology – �HP LaserJet 1100se Printers
	A Printer Ontology – Properties
	Lecture Outline
	OWL in OWL
	Classes of Classes (Metaclasses)
	Classes of Classes (Metaclasses) – Thing and Nothing
	Classes of Classes (Metaclasses) – Thing and Nothing (2)
	Class and Property Equivalences
	Class Disjointness
	Equality and Inequality
	Equality and Inequality (2)
	Union and Intersection of Classes
	Restriction Classes
	Restriction Properties
	Restriction Properties (2)
	Restriction Properties (3)
	Properties
	Properties (2)
	Properties (3)
	Lecture Outline
	Future Extensions of OWL
	Modules and Imports
	Defaults
	Closed World Assumption
	Unique Names Assumption
	Procedural Attachments
	Rules for Property Chaining
	Summary
	Summary (2)

