E. Description Logics

This section is based on material from

- Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Description Logics

- OWL DL ist äquivalent zur Beschreibungslogik $\mathcal{SHOIN}(D_n)$. Auf letzterer basiert also die Semantik von OWL DL.
- Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.
- $\mathcal{SHOIN}(D_n)$ ist eine relativ komplexe Beschreibungslogik.
- Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten, werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte Fassungen.

Literatur:

Aside: Semantics and Model Theories

- Ontology/KR languages aim to model (part of) world
- Terms in language correspond to entities in world
- Meaning given by, e.g.:
 - Mapping to another formalism, such as FOL, with own well defined semantics
 - or a bespoke Model Theory (MT)
- MT defines relationship between syntax and interpretations
 - Can be many interpretations (models) of one piece of syntax
 - Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
 - Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
 - Inference (e.g., subsumption) defined in terms of MT
 - E.g., $\mathcal{T} \models A \subseteq B$ iff in every model of \mathcal{T}, $\text{ext}(A) \subseteq \text{ext}(B)$

Aside: Set Based Model Theory

- Many logics (including standard First Order Logic) use a model theory based on Zermelo-Frankel set theory
- The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often referred as Δ)
- Objects in the world are interpreted as elements of Δ
 - Classes/concepts (unary predicates) are subsets of Δ
 - Properties/roles (binary predicates) are subsets of $\Delta \times \Delta$ (i.e., Δ^2)
 - Ternary predicates are subsets of Δ^3 etc.
- The sub-class relationship between classes can be interpreted as set inclusion
- Doesn’t work for RDF, because in RDF a class (set) can be a member (element) of another class (set)
 - In Z-F set theory, elements of classes are atomic (no structure)
Aside: Set Based Model Theory Example

World

Model

Interpretation

Daisy isA Cow
Cow kindOf Animal
Mary isA Person
Person kindOf Animal
Z123ABC isA Car
Mary drives Z123ABC

\{a,b,\ldots\} \subseteq \Delta \times \Delta

What Are Description Logics?

- A family of logic based Knowledge Representation formalisms
 - Descendants of semantic networks and KL-ONE
 - Describe domain in terms of concepts (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

Aside: Set Based Model Theory Example

- Formally, the vocabulary is the set of names we use in our model of (part of) the world
 - \{Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, \ldots\}
- An interpretation \(\mathcal{I} \) is a tuple \(\langle \Delta, \mathcal{I} \rangle \)
 - \(\Delta \) is the domain (a set)
 - \(\mathcal{I} \) is a mapping that maps
 - Names of objects to elements of \(\Delta \)
 - Names of unary predicates (classes/concepts) to subsets of \(\Delta \)
 - Names of binary predicates (properties/roles) to subsets of \(\Delta \times \Delta \)
 - And so on for higher arity predicates (if any)

DL Architecture

Knowledge Base

Tbox (schema)

\textbf{Man} = \textbf{Human} \sqcap \textbf{Male}
\textbf{Happy-Father} = \textbf{Man} \sqcap \exists \textbf{has-child}
\textbf{Female} \sqcap \ldots

Abox (data)

John : \textbf{Happy-Father}
\langle John, Mary \rangle : \textbf{has-child}
Short History of Description Logics

Phase 1:
- Incomplete systems (Back, Classic, Loom, . . .)
- Based on structural algorithms

Phase 2:
- Development of tableau algorithms and complexity results
- Tableau-based systems for Pspace logics (e.g., Kris, Crack)
- Investigation of optimisation techniques

Phase 3:
- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Latest Developments

Phase 4:
- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and Semantic Web (and Grid)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
 - Commercial implementations
 - Cerebra system from Network Inference Ltd

From RDF to OWL

- Two languages developed to satisfy the requirements
 - OIL: developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme)
- Efforts merged to produce DAML+OIL
 - Development was carried out by “Joint EU/US Committee on Agent Markup Languages”
 - Extends (“DL subset” of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology (WebOnt) Working Group formed
 - WebOnt group developed OWL language based on DAML+OIL
 - OWL language now a W3C Recommendation (i.e., a standard like HTML and XML)

Description Logic Family

- DLs are a family of logic based KR formalisms
- Particular languages mainly characterised by:
 - Set of constructors for building complex concepts and roles from simpler ones
 - Set of axioms for asserting facts about concepts, roles and individuals
- \mathcal{ALC} is the smallest DL that is propositionally closed
 - Constructors include booleans (and, or, not), and
 - Restrictions on role successors
 - E.g., concept describing “happy fathers” could be written:
 \[
 \text{Man} \land \exists \text{hasChild.Female} \land \exists \text{hasChild.Male} \land \forall \text{hasChild.(Rich} \lor \text{Happy)}
 \]
DL Concept and Role Constructors

- Range of other constructors found in DLs, including:
 - Number restrictions (cardinality constraints) on roles, e.g., \(\geq 3 \) hasChild, \(\leq 1 \) hasMother
 - Qualified number restrictions, e.g., \(\geq 2 \) hasChild.Female, \(\leq 1 \) hasParent.Male
 - Nominals (singleton concepts), e.g., \{Italy\}
 - Concrete domains (datatypes), e.g., hasAge.(\(\leq 21 \))
 - Inverse roles, e.g., hasChild\(\sim \) (hasParent)
 - Transitive roles, e.g., hasChild* (descendant)
 - Role composition, e.g., hasParent \(\circ \) hasBrother (uncle)

DL Knowledge Base

- DL Knowledge Base (KB) normally separated into 2 parts:
 - TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man \(\land \) \(\exists \)hasChild.Female \(\land \)...
 - Elephant = Animal \(\land \) Large \(\land \) Grey
 - transitive(ancestor)
 - ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - \(<John,Mary>\):hasChild
 - Separation has no logical significance
 - But may be conceptually and implementationally convenient

OWL as DL: Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>DL Syntax</th>
<th>Example</th>
<th>FOL Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>(C_1 \cap \ldots \cap C_n)</td>
<td>Human (\cap) Male</td>
<td>(C_1(x) \land \ldots \land C_n(x))</td>
</tr>
<tr>
<td>unionOf</td>
<td>(C_1 \cup \ldots \cup C_n)</td>
<td>Doctor (\cup) Lawyer</td>
<td>(C_1(x) \lor \ldots \lor C_n(x))</td>
</tr>
<tr>
<td>complementOf</td>
<td>(\neg C)</td>
<td>(\neg)Male</td>
<td>(\neg C(x))</td>
</tr>
<tr>
<td>oneOf</td>
<td>({x_1 } \cup \ldots \cup {x_n })</td>
<td>({john} \cup {mary})</td>
<td>(\forall y. P(x, y) \rightarrow C(y))</td>
</tr>
<tr>
<td>allValuesFrom</td>
<td>(\forall P.C)</td>
<td>(\forall)hasChild.Lawyer</td>
<td>(\forall y. P(x, y) \land C(y))</td>
</tr>
<tr>
<td>someValuesFrom</td>
<td>(\exists P.C)</td>
<td>(\exists)hasChild.Male</td>
<td>(\exists y. P(x, y))</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>(\leq n P)</td>
<td>(\leq 1)hasChild</td>
<td>(\exists y. P(x, y))</td>
</tr>
<tr>
<td>minCardinality</td>
<td>(\geq n P)</td>
<td>(\geq 2)hasChild</td>
<td>(\exists y. P(x, y))</td>
</tr>
</tbody>
</table>

RDFS Syntax

E.g., Person \(\cap \forall \)hasChild.Doctor \(\cap \exists \)hasChild.Doctor:

```xml
<owl:Class>
  <owl:intersectionOf rdf:parseType="collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:toClass>
        <owl:unionOf rdf:parseType="collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:hasClass rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:toClass>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```
OWL as DL: Axioms

- Axioms (mostly) reducible to inclusion (\sqsubseteq)
 - $C \equiv D$ iff both $C \sqsubseteq D$ and $D \sqsubseteq C$

- Obvious FOL equivalences
 - E.g., $C \equiv D$ iff $\forall x. C(x) \iff D(x)$,
 - $C \sqsubseteq D$ iff $\forall x. C(x) \Rightarrow D(x)$

XML Schema Datatypes in OWL

- OWL supports XML Schema primitive datatypes
 - E.g., integer, real, string, ...
- Strict separation between “object” classes and datatypes
 - Disjoint interpretation domain Δ_D for datatypes
 - For a datavalue d holds $d^I \subseteq \Delta_D$
 - and $\Delta_D \cap \Delta^I = \emptyset$
 - Disjoint “object” and datatype properties
 - For a datatype property P holds $P^I \subseteq \Delta^I \times \Delta_D$
 - For object property S and datatype property P hold $S^I \cap P^I = \emptyset$
- Equivalent to the “(\mathbb{I})” in $SHOIN(\mathbb{I})$

Why Separate Classes and Datatypes?

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised — can use hybrid reasoner

OWL DL Semantics

- Mapping OWL to equivalent DL ($SHOIN(\mathbb{I})$):
 - Facilitates provision of reasoning services (using DL systems)
 - Provides well defined semantics
- DL semantics defined by interpretations: $\mathcal{I} = (\Delta^I, \mathcal{I})$, where
 - Δ^I is the domain (a non-empty set)
 - \mathcal{I} is an interpretation function that maps:
 - Concept (class) name A to subset A^I of Δ^I
 - Role (property) name R to binary relation R^I over Δ^I
 - Individual name i to element i^I of Δ^I
DL Semantics

- Interpretation function \mathcal{I} extends to concept expressions in the obvious way, i.e.:

\[
\begin{align*}
(C \cap D)^\mathcal{I} &= C^\mathcal{I} \cap D^\mathcal{I} \\
(C \cup D)^\mathcal{I} &= C^\mathcal{I} \cup D^\mathcal{I} \\
(\neg C)^\mathcal{I} &= \Delta^\mathcal{I} \setminus C^\mathcal{I} \\
\{x\}^\mathcal{I} &= \{x^\mathcal{I}\} \\
\exists R.C)^\mathcal{I} &= \{x \mid \exists y.(x, y) \in R^\mathcal{I} \land y \in C^\mathcal{I}\} \\
(\forall R.C)^\mathcal{I} &= \{x \mid \forall y.(x, y) \in R^\mathcal{I} \Rightarrow y \in C^\mathcal{I}\} \\
(\leq n R)^\mathcal{I} &= \{x \mid \#\{y \mid \langle x, y \rangle \in R^\mathcal{I}\} \leq n\} \\
(\geq n R)^\mathcal{I} &= \{x \mid \#\{y \mid \langle x, y \rangle \in R^\mathcal{I}\} \geq n\}
\end{align*}
\]

DL Knowledge Bases (Ontologies)

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle T, A \rangle$

 - T (Tbox) is a set of axioms of the form:
 - $C \subseteq D$ (concept inclusion)
 - $C \equiv D$ (concept equivalence)
 - $R \subseteq S$ (role inclusion)
 - $R \equiv S$ (role equivalence)
 - $R^+ \subseteq R$ (role transitivity)

 - A (Abox) is a set of axioms of the form
 - $x \in D$ (concept instantiation)
 - $\langle x, y \rangle \in R$ (role instantiation)

- Two sorts of Tbox axioms often distinguished
 - "Definitions"
 - $C \subseteq D$ or $C \equiv D$ where C is a concept name
 - General Concept Inclusion axioms (GCIs)
 - $C \subseteq D$ where C in an arbitrary concept

Knowledge Base Semantics

- An interpretation \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \models A$):
 - $\mathcal{I} \models C \subseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$
 - $\mathcal{I} \models C \equiv D$ iff $C^\mathcal{I} = D^\mathcal{I}$
 - $\mathcal{I} \models R \subseteq S$ iff $R^\mathcal{I} \subseteq S^\mathcal{I}$
 - $\mathcal{I} \models R \equiv S$ iff $R^\mathcal{I} = S^\mathcal{I}$
 - $\mathcal{I} \models R^+ \subseteq R$ iff $(R^+)^\mathcal{I} \subseteq R^\mathcal{I}$
 - $\mathcal{I} \models x \in D$ iff $x^\mathcal{I} \in D^\mathcal{I}$
 - $\mathcal{I} \models \langle x, y \rangle \in R$ iff $(x^\mathcal{I}, y^\mathcal{I}) \in R^\mathcal{I}$

- \mathcal{I} satisfies a Tbox T ($\mathcal{I} \models T$) iff \mathcal{I} satisfies every axiom A in T

- \mathcal{I} satisfies an Abox A ($\mathcal{I} \models A$) iff \mathcal{I} satisfies every axiom A in A

- \mathcal{I} satisfies an KB \mathcal{K} ($\mathcal{I} \models \mathcal{K}$) iff \mathcal{I} satisfies both T and A

Inference Tasks

- Knowledge is correct (captures intuitions)
 - C subsumes D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K}, $C^\mathcal{I} \subseteq D^\mathcal{I}$

- Knowledge is minimally redundant (no unintended synonyms)
 - C is equivalent to D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K}, $C^\mathcal{I} = D^\mathcal{I}$

- Knowledge is meaningful (classes can have instances)
 - C is satisfiable w.r.t. \mathcal{K} iff there exists some model \mathcal{I} of \mathcal{K} s.t. $C^\mathcal{I} \neq \emptyset$

- Querying knowledge
 - x is an instance of C w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K}, $x^\mathcal{I} \in C^\mathcal{I}$
 - $\langle x, y \rangle$ is an instance of R w.r.t. \mathcal{K} iff for, every model \mathcal{I} of \mathcal{K}, $(x^\mathcal{I}, y^\mathcal{I}) \in R^\mathcal{I}$

- Knowledge base consistency
 - A KB \mathcal{K} is consistent iff there exists some model \mathcal{I} of \mathcal{K}
DL Reasoning

- Tableau algorithms used to test satisfiability (consistency)
- Try to build a tree-like model I of the input concept C
- Decompose C syntactically
 - Apply tableau expansion rules
 - Infer constraints on elements of model
- Tableau rules correspond to constructors in logic (\cap, \cup etc)
 - Some rules are nondeterministic (e.g., \cap, \leq)
 - In practice, this means search
- Stop when no more rules applicable or clash occurs
 - Clash is an obvious contradiction, e.g., $A(x), \neg A(x)$
- Cycle check (blocking) may be needed for termination
- C satisfiable iff rules can be applied such that a fully expanded clash free tree is constructed

Highly Optimised Implementation

- Naive implementation leads to effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order
- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (rewriting) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion

What it means
- All Margherita_pizzas (amongst other things)
 - Are Pizzas
 - have_topping some Tomato_topping
 - have_topping some Mozzarella_topping
 - & because they are Pizzas
 - have_base some Pizza_base