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F. Description Logics – Part 2

This section is based on material from:

• Carsten Lutz, Uli Sattler: http://www.computational-
logic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/ 1

Hitzler & Sure, 2005
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2. Tableau algorithms for ALC and extensions

We see a tableau algorithm for ALC and extend it with

① general TBoxes and

② inverse roles

Goal: Design sound and complete desicion procedures for

satisfiability (and subsumption) of DLs which are

well-suited for implementation purposes
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A tableau algorithm for the satisfiability of ALC concepts

Goal: design an algorithm which takes an ALC concept C0 and

1. returns “satisfiable” iff C0 is satisfiable and

2. terminates, on every input,

i.e., which decides satisfiability of ALC concepts.

Recall: such an algorithm cannot exist for FOL since

satisfiability of FOL is undecidable.

Idea: our algorithm

• is tableau-based and

• tries to construct a model of C0

• by breaking C0 down syntactically, thus

• inferring new constraints on such a model.
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Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C0 into an equivalent C1 in NNF

Equivalent: C0 � C1 and C1 � C0

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

¬(C � D) � ¬C � ¬D

¬(C � D) � ¬C � ¬D

¬¬C � C

¬∀R.C � ∃R.¬C

¬∃R.C � ∀R.¬C

From now on: concepts are in NNF and

sub(C) denotes the set of all sub-concepts of C
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More intuition

Find out whether A � ∃R.B � ∀R.¬B

A � ∃R.B � ∀R.(¬B � ∃S.E)

is satisfiable...

Our tableau algorithm works on a completion tree which

• represents a model I : nodes represent elements of ΔI

� each node x is labelled with concepts L(x) ⊆ sub(C0)

C ∈ L(x) is read as “x should be an instance of C”

edges represent role successorship

� each edge 〈x, y〉 is labelled with a role-name from C0

R ∈ L(〈x, y〉) is read as “(x, y) should be in RI”

• is initialised with a single root node x0 with L(x0) = {C0}
• is expanded using completion rules
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Completion rules for ALC

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} �⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}
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Properties of the completion rules for ALC

We only apply rules if their application does “something new”

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} �⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}
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Properties of the completion rules for ALC

The �-rule is non-deterministic:

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} �⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

University of
Manchester

7 30

Last details on tableau algorithm for ALC

Clash: a c-tree contains a clash if it has a node x with ⊥ ∈ L(x) or

{A, ¬A} ⊆ L(x) — otherwise, it is clash-free
Complete: a c-tree is complete if none of the completion rules can be

applied to it

Answer behaviour: when started for C0 (in NNF!), the tableau algorithm

• is initialised with a single root node x0 with L(x0) = {C0}
• repeatedly applies the completion rules (in whatever order it

likes)

• answer “C0 is satisfiable” iff the completion rules can be ap-

plied in such a way that it results in a complete and clash-free

c-tree (careful: this is non-deterministic)

...go back to examples
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Properties of our tableau algorithm

Lemma: Let C0 an ALC-concept in NNF. Then

1. the algorithm terminates when applied to C0 and

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C0 is satisfiable.

Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.

2. Satisfiability (and subsumption) in ALC is decidable in PSpace.

3. ALC has the finite model property
i.e., every satisfiable concept has a finite model.

4. ALC has the tree model property
i.e., every satisfiable concept has a tree model.

5. ALC has the finite tree model property
i.e., every satisfiable concept has a finite tree model.
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Proof of the Lemma: Termination

(1) Termination is an immediate consequence of these observations:

1. the c-tree is constructed in a monotonic way,

each rule either adds nodes or extends node labels, nothing is removed

2. node labels are restricted to subsets of sub(C0) and # sub(C0) ≤ |C0|,
at each position in C0, at most one sub-concepts starts

3. the c-tree is of bounded breadth ≤ |C0|,
at most 1 successor for each ∃R.C ∈ sub(C0)

4. the c-tree is of bounded depth ≤ |C0|,
the maximal depth of concepts in node labels decreases from a node to its successor,

i.e., for y a successor of x: max{|C| | C ∈ L(y)} < max{|C| | C ∈ L(x)}
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Proof of the Lemma: Termination

If we construct c-tree in depth-first manner and

re-use space for branches already visited,

mark ∃R.C ∈ L(x) with “todo” or “done”

we can run tableau algorithm in polynomial space:

• c-tree is of depth bounded by |C0|, and

• we keep only a single branch in memory at any time.

� (2) of our corollary: ALC is in PSpace
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Proof of the Lemma: Soundness

(2) Let the algorithm stop with a complete and clash-free c-tree.

From this, define an interpretation I as follows:

ΔI := {x | x is a node in c-tree}
AI := {x | A ∈ L(x)} for concept names A

RI := {(x, y) | y is an R-successor of x in c-tree}

and show, by induction on structure of concepts, for all x ∈ ΔI , D ∈ sub(C0, T ):

D ∈ L(x) implies x ∈ DI

➙ concept names D: by definition of I
➙ for negated concept names D: due to clash-freeness and induction

➙ for conjunctions/disjunctions/existential restrictions/universal restrictions D:

due to completeness and by induction

� since C0 is in label of root node, I is a model of C0

University of
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Proof of the Lemma: Completeness

(3) Let C0 be satisfiable, and let I be a model of it with a0 ∈ CI
0 .

Use I to steer the application of the (only non-deterministic) �-rule:

Inductively define a total mapping π :

start with π(x0) = a0, and show that

each rule can be applied such that (∗) is preserved

Completion tree C0

π

π

π

Model of

C0

(∗) if C ∈ L(x), then π(x) ∈ CI

if y is an R-succ. of x, then 〈π(x), π(y)〉 ∈ RI

• easy for �- and ∀-rule,

• for ∃-rule, we need to extend π to the newly created R-successor

• for �-rule, if C1 � C2 ∈ L(x), (∗) implies that π(x) ∈ (C1 � C2)
I

� we can choose Ci with π(x) ∈ CI
i to add to L(x) and thus preserve (∗)

� easy to see: (∗) implies that c-tree is clash-free
University of
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Proof of the Lemma: Harvest

Look again at the model I constructed for a clash-free, complete c-tree:

I is • finite because c-tree has finitely many nodes

• a tree because c-tree is a tree

Hence we get Corollary (3) – (5) for free from our proof:

C0 is satisfiable

� tableau algorithm stops with clash-free, complete c-tree

� C0 has a finite tree model.
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Extend tableau algorithm to ALC with general TBoxes

Recall: • Concept inclusion: of the form C �̇ D for C, D (complex) concepts

• (General) TBox: a finite set of concept inclusions

• I satisfies C �̇ D iff CI ⊆ DI

• I is a model of TBox T iff I satisfies each concept equation in T
• C0 is satisfiable w.r.t. T iff there is a model I of T with CI

0 �= ∅

Goal – Lemma: Let C0 an ALC-concept and T be a an ALC-TBox. Then

1. the algorithm terminates when applied to T and C0 and

2. the rules can be applied such that they generate a clash-free

and complete completion tree iff C0 is satisfiable w.r.t. T .

University of
Manchester

15 38

Extend tableau algorithm to ALC with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:

• remember that nodes represent elements of ΔI and

• if C �̇ D ∈ T , then for each element x in a model I of T
if x ∈ CI , then x ∈ DI

hence x ∈ (¬C)I or x ∈ DI

x ∈ (¬C � D)I

x ∈ (NNF(¬C � D))I

for NNF(E) the negation normal form of E

University of
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Completion rules for ALC with TBoxes

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} �⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x) and x has no S-successor y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x) and there is an S-successor y of x with C /∈ L(y)

then set L(y) = L(y) ∪ {C}

T -rule: if C1 �̇ C2 ∈ T and NNF(¬C1 � C2) �∈ L(x)

then set L(x) = L(x) ∪ {NNF(¬C1 � C2)}
University of
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A tableau algorithm for ALC with general TBoxes

Example: Consider satisfiability of C w.r.t. {C �̇ ∃R.C}

Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and

we keep repeating ourselves

Regain termination with a “cycle-detection” technique called blocking

Intuitively, whenever we find a situation where y has to satisfy

stronger constraints than x, we freeze x, i.e., block rules from

being applied to x
L(x) ⊆ L(y)

y

x
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A tableau algorithm for ALC with general TBoxes: Blocking

• x is directly blocked if it has an ancestor y with L(x) ⊆ L(y)

• in this case and if y is the “closest” such node to x, we say that x is blocked by y

• a node is blocked if it is directly blocked or one of its ancestors is blocked

⊕ restrict the application of all rules to nodes which are not blocked

� completion rules for ALC w.r.t. TBoxes

University of
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A tableau algorithm for ALC with general TBoxes

�-rule: if C1 � C2 ∈ L(x), {C1, C2} �⊆ L(x), and x is not blocked

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x), {C1, C2} ∩ L(x) = ∅, and x is not blocked

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x has no S-successor y with C ∈ L(y),

and x is not blocked

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x), there is an S-successor y of x with C /∈ L(y)

and x is not blocked

then set L(y) = L(y) ∪ {C}

T -rule: if C1 �̇ C2 ∈ T , NNF(¬C1 � C2) �∈ L(x)

and x is not blocked

then set L(x) = L(x) ∪ {NNF(¬C1 � C2)}
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Tableaux Rules for ALC

→�

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x
R

y {C, . . .}y

R
x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→�
for C ∈ {C1, C2}

x {C1 � C2, C, . . .}

x {C1 � C2, C1, C2, . . .}

x {C1 � C2, . . .}

x {C1 � C2, . . .}

Reasoning with Expressive Description Logics – p. 5/27
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Tableaux Rule for Transitive Roles

x
R

yy

R
x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.�)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w
L(w) = {∃S.C, ∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C � ¬D} x

S

L(w) = {∃S.C, ∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C � ¬D} x

S

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C � ¬D),¬C}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

clashL(x) = {C, (¬C � ¬D),¬C}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C � ¬D} x

S

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C � ¬D),¬D}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

xL(x) = {C, (¬C � ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C � ¬D), ∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C � ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C � ¬D), ∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C � ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C, ∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
61

Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C, ∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

Reasoning with Expressive Description Logics – p. 7/27
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

blocked
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C � ∀S.(¬C � ¬D) � ∃R.C � ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C � ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C � ¬D),∃R.C,∀R.(∃R.C)}

R

Concept is satisfiable: T corresponds to model
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Properties of our tableau algorithm for ALC with TBoxes

Lemma: Let T be a general ALC-Tbox and C0 an ALC-concept. Then

1. the algorithm terminates when applied to T and C0 and

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C0 is satisfiable w.r.t. T .

Corollary: 1. Satisfiability of ALC-concept w.r.t. TBoxes is decidable

2. ALC with TBoxes has the finite model property

3. ALC with TBoxes has the tree model property
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Proof of the Lemma: Termination

(1) termination is, again, due to the following properties: let n = |C0| + |CT | and

sub(C0, T ) = sub(C0) ∪
⋃

C�̇D∈T
sub(C) ∪ sub(D)

1. the c- tree is built in a monotonic way:

each rule either extends node labels or adds a node (with a label)

2. node labels are restricted to subsets of sub(C0, T ) and # sub(C0, T ) ≤ n

3. the breadth of the c-tree is bounded by n:

at most 1 successor per ∃R.C ∈ sub(C0, T )

4. the depth of the c-tree is bounded:

on a path of length 2n, blocking occurs, and thus it does not get longer

Important: in the presence of TBoxes, c-tree can be of exponential depth

whereas without TBoxes, depth was linearly bounded
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Proof of the Lemma: Soundness

(2) let the algorithm stop with a complete and clash-free c-tree.

Again, from this, we define an interpretation:

ΔI := {x | x is a node in T , x is not blocked}
AI := {x ∈ ΔI | A ∈ L(x)} for concept names A

RI := {〈x, y〉 ∈ ΔI2 | y is an R-succ of x in c-tree or

y blocks an R-succ of x in c-tree}

y

R

R

x

y′

and show, by induction on the structure of concepts, for all x ∈ ΔI , D ∈ sub(C0, T ):

D ∈ L(x) implies x ∈ DI.

This implies that I is indeed a model of C0 and T because

(a) C0 is in the label of the root node which cannot be blocked (!) and

(b) ¬C � D is in the label of each node, for each C �̇ D ∈ T
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Proof of the Lemma: Completeness

(3) Let C0 be satisfiable w.r.t. T and I a model of them with a0 ∈ CI
0 .

Use I to steer the application of the (only non-deterministic) �-rule:

Inductively define a total mapping π : nodes of completion tree → ΔI,

start with π(x0) = a0, and show that

each rule can be applied in such a way that (∗) is preserved

if C ∈ L(x), then π(x) ∈ CI (∗)

if y is an R-succ. of x, then 〈π(x), π(y)〉 ∈ RI

• easy for �-, T -, and ∀-rule,

• for ∃-rule, we need to extend π to the newly created R-successor

• for �-rule, if C1 � C2 ∈ L(x), (∗) implies that π(x) ∈ (C1 � C2)
I

� we can choose Ci with π(x) ∈ CI
i to add to L(x) and thus preserve (∗)

� easy to see: (∗) implies that c-tree is clash-free
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Proof of the Lemma: Harvest

Look again at the model I constructed for a clash-free, complete c-tree:

I is • finite because c-tree has finitely many nodes

• but it is not a tree if blocking occurs

Hence we get Corollary (2) for free from our proof:

C0 is satisfiable

� tableau algorithm stops with clash-free, complete c-tree

� C0 has a finite model.

To obtain Corollary (3), the tree model property, we must work a bit more:

� build the model in a different way, “unravel” the c-tree into an infinite tree

intuitively, instead of going to a blocked node, go to a copy of its blocking node
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A tableau algorithm for ALC with general TBoxes: Summary

The tableau algorithm presented here

➔ decides satisfiability of ALC-concepts w.r.t. TBoxes, and thus also

➔ decides subsumption of ALC-concepts w.r.t. TBoxes

➔ uses blocking to ensure termination, and

➔ is non-deterministic due to the →�-rule

➔ in the worst case, it builds a tree of depth exponential in the size of the input,

and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,

➔ can be implemented in various ways,

– order/priorities of rules

– data structure

– etc.

➔ is amenable to optimisations – more on this next week

University of
Manchester

26 75

What next?

Next, we could

• discuss implementation issues for our tableau algorithms, e.g.,

– datastructures,

– more efficient (i.e., less strict) blocking conditions,

– a good strategy for the order of rule applications,

– how to “determinise” our non-deterministic algorithm: e.g., backtracking

– etc.

• discuss other reasoning techniques for DLs

• analyse computational complexity of DLs

• further extend our tableau algorithm for more expressive DLs

with one more expressive means
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Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27
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Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.� � C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles
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Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

x
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

�
L(x) ∪ {C1}

x

x
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

�
L(x) ∪ {C1}

x

x

x

�

L(x) ∪ {Cn-1}
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

�
L(x) ∪ {C1}

L(x) ∪ {Cn}

x

x

x

x�

�

L(x) ∪ {Cn-1}
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

clash

�

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A � B),¬A, A, B}

x

x

x

y

x�

�

L(x) ∪ {Cn-1}
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

clashclash

�

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A � B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A � B),¬A, A, B}
R

�

�

�
L(x) ∪ {Cn-1}
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

clashclash . . . . . .

�

�

�

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A � B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A � B),¬A, A, B}
R

�

�

�
L(x) ∪ {Cn-1}
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Backjumping

E.g., if ∃R.¬A � ∀R.(A � B) � (C1 
 D1) � . . . � (Cn 
 Dn) ⊆ L(x)

PruningBackjump

clashclash . . .

�

�

�

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A � B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A � B),¬A, A, B}
R

�

�

�
L(x) ∪ {Cn-1}

. . .
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Inverse Roles

Reactor
Core

Nuclear
Reactor

Control−rod
Consider the following TBox

Control-rod �̇ Device � ∃part-of.Reactor-core
Reactor-core �̇ Device � ∃has-part.Control-rod �

∃part-of.N-reactor,
Reactor-core � ∃has part.Faulty �̇ Dangerous,

Now, w.r.t. such a TBox, we find that

Control rod � Faulty should be subsumed by ∃part-of.Dangerous

But this is not true: no interaction between part-of and has-part!

� also allow for ∃R−.C and ∀R−.C, where (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
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A tableau algorithm for ALCI with general TBoxes

ALCI is the extension of ALC with inverse roles R− in the place of role names:

(R−)I := {〈y, x〉 | 〈x, y〉 ∈ RI}

Example: does ∀parent.∀child.Blond � Blond w.r.t. {� �̇ ∃parent.�}?

does ∀parent.∀parent−.Blond � Blond w.r.t. {� �̇ ∃parent.�}?

Example: is C0 = ∃R.∃S.∃T.A satisf. w.r.t. { C �̇ ∃R.C � ∀R.B

� �̇ ∀T −.∀S−.∀R−.C}?

Clear: inverse roles � tableau algorithm must reason up and down edges
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A tableau algorithm for ALCI with general TBoxes

Modifications necessary to handle inverse roles:

① extend edge labels in c-trees to inverse roles,

② call y an R-neighbour of x if either

y is an R-successor of x or

x is an R− successor of y,

R−

x
R

R

x

y

y

③ substitute “R-successor” in the ∀- and ∃-rule with “R-neighbour”

still create an R-successor of x if no R-neighbour exists for ∃R.C ∈ L(x)

R−-successor of x if no R−-neighbour exists for an ∃R−.C ∈ L(x)
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A tableau algorithm for ALCI with general TBoxes

�-rule: if C1 � C2 ∈ L(x), {C1, C2} �⊆ L(x), and x is not blocked

then set L(x) = L(x) ∪ {C1, C2}

�-rule: if C1 � C2 ∈ L(x), {C1, C2} ∩ L(x) = ∅, and x is not blocked

then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃S.C ∈ L(x), x has no S-neighbour y with C ∈ L(y),

and x is not blocked

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if ∀S.C ∈ L(x), there is an S-neighbour y of x with C /∈ L(y)

and x is not indirectly blocked

then set L(y) = L(y) ∪ {C}

T -rule: if C1 �̇ C2 ∈ T , NNF(¬C1 � C2) �∈ L(x)

and x is not blocked

then set L(x) = L(x) ∪ {NNF(¬C1 � C2)}
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A tableau algorithm for ALCI with general TBoxes

Example: is A satisfiable w.r.t. {A �̇ ∃R−.A � ∀R.(¬A � ∃S.B)}?

Example: is ∃R.B satisfiable w.r.t. {B �̇ ∃R.B � ∀R−.∀R−.⊥}?

Problem: algorithm returns “satisfiable” for

unsatisfiable

input � incorrect!

Reason: blocking condition L(y′) ⊆ L(y) is too

loose:

universal value restrictions from blocking node

may be violated

Solution: tighten blocking condition to L(y′) = L(y)

R

R

∀R−.A

∀R.B

y′

x

y ∀R−.X
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A tableau algorithm for ALCI with general TBoxes

④ A node x is directly blocked if it has an ancestor y with L(x) = L(y).

Lemma: Let T be a general ALCI-Tbox and C0 an ALCI-concept. Then

1. the algorithm terminates when applied to T and C0,

2. the rules can be applied such that they generate a

clash-free and complete completion tree iff C0 is satisfiable w.r.t. T .

Proof: (1) termination is identical to the ALC case.
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Proof of the Lemma: Soundness

(2) let the algorithm stop with a complete and clash-free c-tree.

Again, from this, we define an interpretation:

ΔI := {x | x is a node in T , x is not blocked}
AI := {x ∈ ΔI | A ∈ L(x)} for concept names A

RI := {〈x, y〉 ∈ ΔI2 | y is an R-succ of x or

y blocks an R-succ of x or

x is an R−-succ of y or

x blocks an R−-succ of y }

and show, by induction on the structure of concepts, for all

x ∈ ΔI , D ∈ sub(C0, T ):

D ∈ L(x) implies x ∈ DI.

y

R

R

x

y′

x

R−

R

y

R

x′

As for ALC, this implies that I is indeed a model of C0 and T
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Proof of the Lemma: Completeness

(3) completely identical to the ALC case...

That’s it!

I hope you got an idea of how we can

• build tableau algorithms for description logics and

• see that they do indeed what we want them to do,

i.e., decide satisfiability
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Research Challenges

Reasoning with Expressive Description Logics – p. 15/27
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Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ
• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27
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Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27
99

Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: � � ∃R.{Spy}
– Finite domains: {Spy} � �nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness
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Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners
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101

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ
• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope
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Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language
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Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies
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Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure
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Resources

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm
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