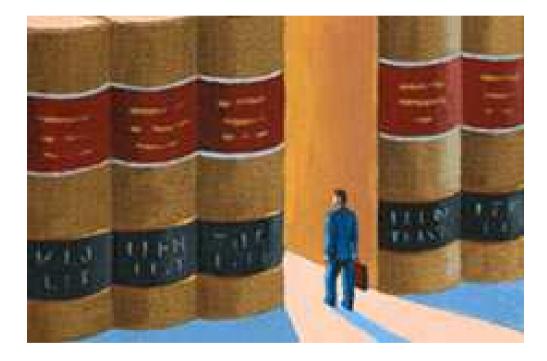


F. Description Logics



This section is based on material from

• Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Description Logics

- OWL DL ist äquivalent zur Beschreibungslogik *SHOIN*(**D**_n). Auf letzterer basiert also die Semantik von OWL DL.
- Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.
- $SHOIN(D_n)$ ist eine relativ komplexe Beschreibungslogik.
- Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten, werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte Fassungen.

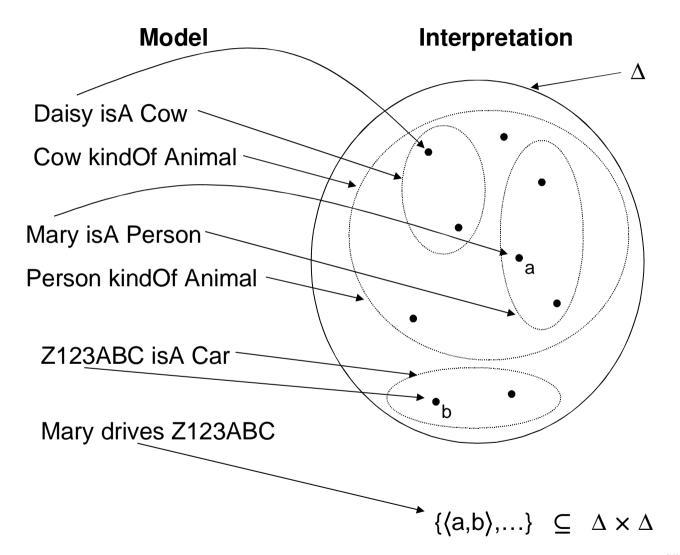
Literatur:

- D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.): Description Logic Handbook, Cambridge University Press, 2002, 5-44.
- F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook, 47-100.
- Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. http://www.cs.man.ac.uk/% 7Ehorrocks/Publications/download/2003/HoPH03a.pdf

- Ontology/KR languages aim to model (part of) world
- Terms in language correspond to entities in world
- Meaning given by, e.g.:
 - Mapping to another formalism, such as FOL, with own well defined semantics
 - or a bespoke Model Theory (MT)
- MT defines relationship between syntax and *interpretations*
 - Can be many interpretations (models) of one piece of syntax
 - Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
 - Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
 - Inference (e.g., subsumption) defined in terms of MT
 - E.g., $\mathcal{T} \vDash A \sqsubseteq B$ iff in every model of \mathcal{T} , $ext(A) \subseteq ext(B)$

- Many logics (including standard First Order Logic) use a model theory based on Zermelo-Frankel set theory
- The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often referred as Δ)
- Objects in the world are interpreted as elements of Δ
 - Classes/concepts (unary predicates) are subsets of Δ
 - Properties/roles (binary predicates) are subsets of $\Delta \times \Delta$ (i.e., Δ^2)
 - Ternary predicates are subsets of Δ^3 etc.
- The sub-class relationship between classes can be interpreted as set inclusion
- Doesn't work for RDF, because in RDF a class (set) can be a member (element) of another class (set)
 - In Z-F set theory, elements of classes are atomic (no structure)

Aside: Set Based Model Theory Example



Slide 5

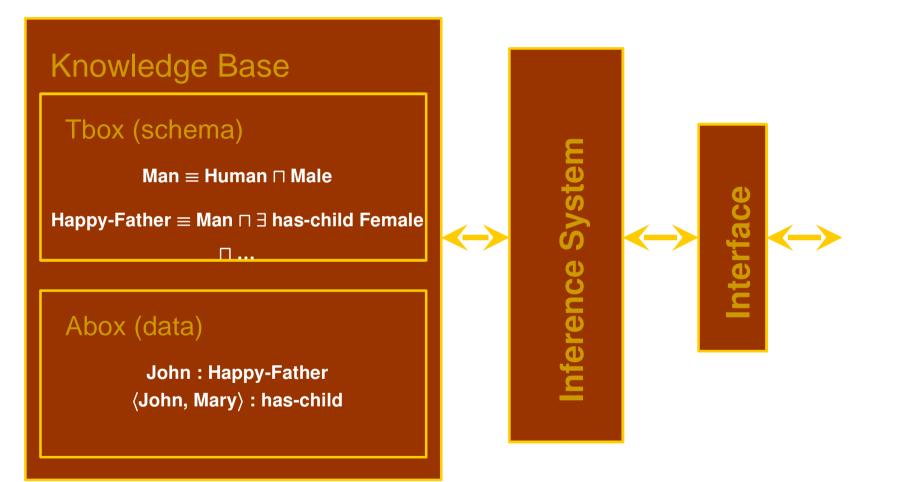
Aside: Set Based Model Theory Example

- Formally, the vocabulary is the set of names we use in our model of (part of) the world
 - {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
- An interpretation \mathcal{I} is a tuple $\langle \Delta, \cdot^{\mathcal{I}} \rangle$
 - Δ is the domain (a set)
 - $\cdot^{\mathcal{I}}$ is a mapping that maps
 - Names of objects to elements of Δ
 - Names of unary predicates (classes/concepts) to subsets of Δ
 - Names of binary predicates (properties/roles) to subsets of $\Delta\times\Delta$
 - And so on for higher arity predicates (if any)

What Are Description Logics?

- A family of logic based Knowledge Representation formalisms
 - Descendants of semantic networks and KL-ONE
 - Describe domain in terms of concepts
 (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

DL Architecture



Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

Phase 2:

- Development of tableau algorithms and complexity results
- Tableau-based systems for Pspace logics (e.g., Kris, Crack)
- Investigation of optimisation techniques

Phase 3:

- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Phase 4:

- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and Semantic Web (and Grid)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
- Commercial implementations
 - Cerebra system from Network Inference Ltd

From RDF to OWL

- Two languages developed to satisfy the requirements
 - OIL: developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme)
- Efforts merged to produce DAML+OIL
 - Development was carried out by "Joint EU/US Committee on Agent Markup Languages"
 - Extends ("DL subset" of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology (WebOnt) Working Group formed
 - WebOnt group developed OWL language based on DAML+OIL
 - OWL language now a W3C Recommendation (i.e., a standard like HTML and XML)

- Particular languages mainly characterised by:
 - Set of constructors for building complex concepts and roles from simpler ones
 - Set of axioms for asserting facts about concepts, roles and individuals
- *ALC* is the smallest DL that is propositionally closed
 - Constructors include booleans (and, or, not), and
 - Restrictions on role successors
 - E.g., concept describing "happy fathers" could be written:

Man 🗆 ∃hasChild.Female 🗆 ∃hasChild.Male

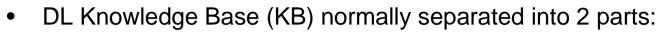
□ ∀hasChild.(Rich □ Happy)

DL Concept and Role Constructors

- Range of other constructors found in DLs, including:
 - Number restrictions (cardinality constraints) on roles, e.g., \geq 3 hasChild, \leq 1 hasMother
 - _ Qualified number restrictions, e.g., \geq 2 hasChild.Female, \leq 1 hasParent.Male
 - Nominals (singleton concepts), e.g., {Italy}
 - Concrete domains (datatypes), e.g., hasAge.(\leq 21)
 - Inverse roles, e.g., hasChild⁻ (hasParent)

(uncle)

Slide 13



- TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man \Box \exists hasChild.Female \Box ...
 - Elephant = Animal □ Large □ Grey
 - transitive(ancestor)
- ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - <John,Mary>:hasChild
- Separation has no logical significance
 - But may be conceptually and implementationally convenient

- XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - $_$ E.g., \exists hasAge.nonNegativeInteger
- Arbitrarily complex nesting of constructors

 _____E.g., Person □ ∀hasChild.Doctor ⊔∃hasChild.Doctor

```
E.g., Person \sqcap \forall hasChild.Doctor \sqcup \exists hasChild.Doctor:
<owl:Class>
  <owl:intersectionOf rdf:parseType="""</pre>
  collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
       <owl:onProperty
  rdf:resource="#hasChild"/>
       <owl:toClass>
         <owl:unionOf rdf:parseType="""</pre>
  collection">
            <owl:Class rdf:about="#Doctor"/>
            <owl:Restriction>
              <owl:onProperty
  rdf:resource="#hasChild"/>
              <owl:hasClass</pre>
  rdf:resource="#Doctor"/>
            </owl:Restriction>
         </owl:unionOf>
                                               Slide 16
       </owl:toClass>
    </owl:Restriction>
  </owl:intersectionOf>
```


• Axioms (mostly) reducible to inclusion (\Box)

 $_\ C \equiv D \ \ \text{iff} \ \ \text{both} \ C \sqsubseteq D \ \text{and} \ D \sqsubseteq C$

• Obvious FOL equivalences

 $\ \ \, _ \ \, \mathsf{E.g.}, \ C \equiv D \ \, \mathsf{iff} \ \ \, \forall x. \ \, C(x) \Leftrightarrow D(x),$

 $C \sqsubseteq D$ iff $\forall x. C(x) \Rightarrow D(x)$

Slide 17

- OWL supports XML Schema primitive datatypes
 - E.g., integer, real, string, ...
- Strict separation between "object" classes and datatypes
 - Disjoint interpretation domain $\Delta_{\!_D}$ for datatypes
 - . For a datavalue d holds $d^{\mathcal{I}} \subseteq \Delta_{\!_D}$
 - and $\Delta_{\mathrm{D}} = \emptyset$
 - Disjoint "object" and datatype properties
 - . For a datatype propterty P holds $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{_D}$
 - For object property S and datatype property P hold $S^{\mathcal{I}} P^{\mathcal{I}} = \emptyset$
- Equivalent to the " (D_n) " in SHOIN (D_n)

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner

- Facilitates provision of reasoning services (using DL systems)
- Provides well defined semantics
- DL semantics defined by interpretations: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}),$

where

- $\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
- $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - . Concept (class) name $A \ \ to \ subset \ A^{\mathcal I} \ of \ \Delta^{\mathcal I}$
 - Role (property) name ${\bf R}$ to binary relation ${\bf R}^{\mathcal I}$ over $\Delta^{\mathcal I}$
 - Individual name \mathbf{i} to element $\mathbf{i}^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$

Interpretation function .¹ extends to concept
 expressions in the obvious way, i.e.:

DL Knowledge Bases (Ontologies)

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - T(Tbox) is a set of axioms of the form:
 - $C \sqsubseteq D$ (concept inclusion)
 - C = D (concept equivalence)
 - $R \sqsubseteq S$ (role inclusion)
 - $R \equiv S$ (role equivalence)
 - $R^+ \sqsubseteq R$ (role transitivity)
 - $\mathcal{A}(Abox)$ is a set of axioms of the form
 - $x \in D$ (concept instantiation)
 - $\langle x,y \rangle \in R$ (role instantiation)

- An interpretation \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \vDash A$):
 - $\neg \quad \mathcal{I} \vDash \mathcal{C} \sqsubseteq \mathcal{D} \text{ iff } \mathcal{C}^{\mathcal{I}} \subseteq \mathcal{D}^{\mathcal{I}}$
 - $\neg \quad \mathcal{I} \vDash \mathbf{C} \equiv \mathbf{D} \text{ iff } \mathbf{C}^{\mathcal{I}} = \mathbf{D}^{\mathcal{I}}$
 - $\neg \quad \mathcal{I} \vDash \mathbf{R} \sqsubseteq \mathbf{S} \text{ iff } \mathbf{R}^{\mathcal{I}} \subseteq \mathbf{S}^{\mathcal{I}}$
 - $\mathcal{I} \vDash \mathbf{R} \equiv \mathbf{S}$ iff $\mathbf{R}^{\mathcal{I}} = \mathbf{S}^{\mathcal{I}}$
 - $\mathcal{I} \vDash \mathbb{R}^+ \sqsubseteq \mathbb{R}$ iff $(\mathbb{R}^{\mathcal{I}})^+ \subseteq \mathbb{R}^{\mathcal{I}}$
 - $\mathcal{I} \vDash x \in D$ iff $x^{\mathcal{I}} \in D^{\mathcal{I}}$
 - $\neg \ \mathcal{I} \vDash \langle x, y \rangle \in R \text{ iff } (x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- \mathcal{I} satisfies a Tbox \mathcal{T} ($\mathcal{I} \vDash \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}
- \mathcal{I} satisfies an Abox \mathcal{A} ($\mathcal{I} \vDash \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}
- \mathcal{I} satisfies an KB \mathcal{K} ($\mathcal{I} \vDash \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

Inference Tasks

- Knowledge is correct (captures intuitions)
 - _ C subsumes D w.r.t. $\mathcal K$ iff for *every* model $\mathcal I$ of $\mathcal K,\, \mathrm C^{\mathcal I}\subseteq\mathrm D^{\mathcal I}$
- Knowledge is minimally redundant (no unintended synonyms)
 - _ C is equivalent to D w.r.t. \mathcal{K} iff for *every* model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} = D^{\mathcal{I}}$
- Knowledge is meaningful (classes can have instances)
 C is satisfiable w.r.t. K iff there exists some model I of K s.t. C^I ≠ Ø
- Querying knowledge
 - x is an instance of C w.r.t. $\mathcal K$ iff for every model $\mathcal I$ of $\mathcal K,\,x^{\mathcal I}\in C^{\mathcal I}$
 - $\langle x,y \rangle \text{ is an instance of } R \text{ w.r.t. } \mathcal{K} \text{ iff for, } every \text{ model } \mathcal{I} \text{ of } \mathcal{K}, (x^{\mathcal{I}},y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- Knowledge base consistency
 - _ A KB \mathcal{K} is consistent iff there exists *some* model \mathcal{I} of \mathcal{K}

DL Reasoning

- Tableau algorithms used to test satisfiability (consistency)
- Try to build a tree-like model *I* of the input concept C
- Decompose C syntactically
 - Apply tableau expansion rules
 - Infer constraints on elements of model
- Tableau rules correspond to constructors in logic (\Box , \Box etc)
 - Some rules are nondeterministic (e.g., \sqcup , \leq)
 - In practice, this means search
- Stop when no more rules applicable or clash occurs
 _ Clash is an obvious contradiction, e.g., A(x), ¬ A(x)
- Cycle check (blocking) may be needed for termination

- Naive implementation leads to effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order
- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (rewriting) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion

- ...

