F. Description Logics

This section is based on material from

- Ian Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Description Logics

- OWL DL ist äquivalent zur Beschreibungslogik $SHOIN(D_n)$. Auf letzterer basiert also die Semantik von OWL DL.
- Unter Beschreibungslogiken (Description Logics) versteht man eine Familie von Teilsprachen der Prädikatenlogik 1. Stufe, die entscheidbar sind.
- $SHOIN(D_n)$ ist eine relativ komplexe Beschreibungslogik.
- Um einen ersten Einblick in das Prinzip der Beschreibungslogiken zu erhalten, werfen wir zum Abschluss der Vorlesung einen Blick auf etwas abgespeckte Fassungen.

Literatur:

Aside: Semantics and Model Theories

- Ontology/KR languages aim to model (part of) world
- Terms in language correspond to entities in world
- Meaning given by, e.g.:
 - Mapping to another formalism, such as FOL, with own well defined semantics
 - or a bespoke Model Theory (MT)
- MT defines relationship between syntax and interpretations
 - Can be many interpretations (models) of one piece of syntax
 - Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
 - Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
 - Inference (e.g., subsumption) defined in terms of MT
 - E.g., $\mathcal{T} \models A \sqsubseteq B$ iff in every model of \mathcal{T}, $\text{ext}(A) \subseteq \text{ext}(B)$

Aside: Set Based Model Theory

- Many logics (including standard First Order Logic) use a model theory based on Zermelo-Frankel set theory
- The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often refered as Δ)
- Objects in the world are interpreted as elements of Δ
 - Classes/concepts (unary predicates) are subsets of Δ
 - Properties/roles (binary predicates) are subsets of $\Delta \times \Delta$ (i.e., Δ^2)
 - Ternary predicates are subsets of Δ^3 etc.
- The sub-class relationship between classes can be interpreted as set inclusion
- Doesn’t work for RDF, because in RDF a class (set) can be a member (element) of another class (set)
 - In Z-F set theory, elements of classes are atomic (no structure)
Aside: Set Based Model Theory Example

- Formally, the vocabulary is the set of names we use in our model of (part of) the world
 - \{Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, \ldots\}
- An interpretation \(\mathcal{I}\) is a tuple \(\langle \Delta, \mathcal{I} \rangle\)
 - \(\Delta\) is the domain (a set)
 - \(\mathcal{I}\) is a mapping that maps
 - Names of objects to elements of \(\Delta\)
 - Names of unary predicates (classes/concepts) to subsets of \(\Delta\)
 - Names of binary predicates (properties/roles) to subsets of \(\Delta \times \Delta\)
 - And so on for higher arity predicates (if any)

What Are Description Logics?

- A family of logic based Knowledge Representation formalisms
 - Descendants of semantic networks and KL-ONE
 - Describe domain in terms of concepts (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

DL Architecture
Short History of Description Logics

Phase 1:
- Incomplete systems (Back, Classic, Loom, . . .)
- Based on structural algorithms

Phase 2:
- Development of tableau algorithms and complexity results
- Tableau-based systems for Pspace logics (e.g., Kris, Crack)
- Investigation of optimisation techniques

Phase 3:
- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Latest Developments

Phase 4:
- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and Semantic Web (and Grid)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
 - Commercial implementations
 - Cerebra system from Network Inference Ltd

From RDF to OWL

- Two languages developed to satisfy the requirements
 - OIL: developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme)
- Efforts merged to produce DAML+OIL
 - Development was carried out by “Joint EU/US Committee on Agent Markup Languages”
 - Extends (“DL subset” of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology (WebOnt) Working Group formed
 - WebOnt group developed OWL language based on DAML+OIL
 - OWL language now a W3C Recommendation (i.e., a standard like HTML and XML)

Description Logic Family

- DLs are a family of logic based KR formalisms
- Particular languages mainly characterised by:
 - Set of constructors for building complex concepts and roles from simpler ones
 - Set of axioms for asserting facts about concepts, roles and individuals
- \mathcal{ALC} is the smallest DL that is propositionally closed
 - Constructors include booleans (and, or, not), and
 - Restrictions on role successors
 - E.g., concept describing “happy fathers” could be written:

 $\text{Man} \sqcap \exists \text{hasChild.Female} \sqcap \exists \text{hasChild.Male}$
 $\sqcap \forall \text{hasChild.}(\text{Rich} \sqcap \text{Happy})$
DL Concept and Role Constructors

- Range of other constructors found in DLs, including:
 - Number restrictions (cardinality constraints) on roles, e.g., \(\geq 3 \) hasChild, \(\leq 1 \) hasMother
 - Qualified number restrictions, e.g., \(\geq 2 \)
 hasChild.Female, \(\leq 1 \) hasParent.Male
 - Nominals (singleton concepts), e.g., \{Italy\}
 - Concrete domains (datatypes), e.g., hasAge.(\(\leq 21 \))
 - Inverse roles, e.g., hasChild: (hasParent)
 - Transitive roles, e.g., hasChild* (descendant)
 - Role composition, e.g., hasParent o hasBrother

OWL as DL: Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>DL Syntax</th>
<th>Example</th>
<th>FOL Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>(C_1 \cap \ldots \cap C_n)</td>
<td>Human & Male</td>
<td>(C_1(x) \land \ldots \land C_n(x))</td>
</tr>
<tr>
<td>unionOf</td>
<td>(C_1 \cup \ldots \cup C_n)</td>
<td>Doctor & Lawyer -Male</td>
<td>(C_1(x) \lor \ldots \lor C_n(x))</td>
</tr>
<tr>
<td>complementOf</td>
<td>({x_1} \cup \ldots \cup {x_n})</td>
<td>{john} \cup {mary}</td>
<td>(\forall y.P(x, y) \rightarrow C(y))</td>
</tr>
<tr>
<td>oneValuesFrom</td>
<td>(\exists P.C)</td>
<td>hasChild.Doctor</td>
<td>(\exists y.P(x, y) \land C(y))</td>
</tr>
<tr>
<td>someValuesFrom</td>
<td>(\exists P.C)</td>
<td>hasChild.Lawyer</td>
<td>(\exists y.P(x, y) \land C(y))</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>(\leq m P)</td>
<td>(\leq 1) hasChild</td>
<td>(\exists y.P(x, y))</td>
</tr>
<tr>
<td>minCardinality</td>
<td>(\geq m P)</td>
<td>(\geq 2) hasChild</td>
<td>(\exists y.P(x, y))</td>
</tr>
</tbody>
</table>

- XMLS datatypes as well as classes in \(\forall P.C \) and \(\exists P.C \)
 - E.g., \(\exists P.C \) hasAge.nonNegativeInteger
- Arbitrarily complex nesting of constructors
 - E.g., Person \(\cap \forall hasChild.Doctor \cup \exists hasChild.Doctor \)

DL Knowledge Base

- DL Knowledge Base (KB) normally separated into 2 parts:
 - TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather \(\equiv \) Man \(\cap \exists \) hasChild.Female \(\cap \ldots \)
 - Elephant \(\equiv \) Animal \(\cap \exists \) Large \(\cap \exists \) Grey
 - transitive(ancestor)
 - ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - <John,Mary>:hasChild

- Separation has no logical significance
 - But may be conceptually and implementationally convenient

RDFS Syntax

E.g., Person \(\cap \forall hasChild.Doctor \cup \exists hasChild.Doctor \):

\[
<\text{owl:Class}>
<\text{owl:intersectionOf}\ rdf:parseType="collection">
<\text{owl:Class} rdf:about="#Person"/>
<\text{owl:Restriction}>
<\text{owl:onProperty} rdf:resource="#hasChild"/>
<\text{owl:toClass}>
<owl:unionOf rdf:parseType="collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf>
</owl:toClass>
</owl:Restriction>
</owl:intersectionOf>
\]
OWL as DL: Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>DL Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>subClassOf</td>
<td>$C_1 \sqsubseteq C_2$</td>
<td>Human \sqsubseteq Animal \sqcap Biped</td>
</tr>
<tr>
<td>equivalentClass</td>
<td>$C_1 \equiv C_2$</td>
<td>Man \equiv Human \sqcap Male</td>
</tr>
<tr>
<td>disjointWith</td>
<td>$C_1 \sqsubseteq \neg C_2$</td>
<td>Male $\sqsubseteq \neg$ Female</td>
</tr>
<tr>
<td>sameIndividualAs</td>
<td>${x_1} \equiv {x_2}$</td>
<td>President_Bush \equiv G.W.Bush</td>
</tr>
<tr>
<td>differentFrom</td>
<td>${x_1} \sqsubseteq \neg {x_2}$</td>
<td>John $\subseteq \neg$ Peter</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasDaughter \sqsubseteq hasChild</td>
</tr>
<tr>
<td>equivalentProperty</td>
<td>$P_1 \equiv P_2$</td>
<td>cost \equiv price</td>
</tr>
<tr>
<td>inverseOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasChild \equiv hasParent$^{-}$</td>
</tr>
<tr>
<td>transitiveProperty</td>
<td>$P^+ \subseteq P$</td>
<td>ancestor$^+$ \subseteq ancestor</td>
</tr>
<tr>
<td>functionalProperty</td>
<td>$T \sqsubseteq \lessdot 1P$</td>
<td>T \sqsubseteq x hasMother</td>
</tr>
<tr>
<td>inverseFunctionalProperty</td>
<td>$T \sqsubseteq \lessdot 1P^-$</td>
<td>T \sqsubseteq x hasSSN$^-$</td>
</tr>
</tbody>
</table>

- Axioms (mostly) reducible to inclusion (\sqsubseteq)
 - $C \equiv D$ iff both $C \sqsubseteq D$ and $D \sqsubseteq C$

- Obvious FOL equivalences
 - E.g., $C \equiv D$ iff $\forall x. \ C(x) \leftrightarrow D(x)$,
 - $C \sqsubseteq D$ iff $\forall x. \ C(x) \Rightarrow D(x)$

Why Separate Classes and Datatypes?

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised — can use hybrid reasoner

XML Schema Datatypes in OWL

- OWL supports XML Schema primitive datatypes
 - E.g., integer, real, string, …
- Strict separation between “object” classes and datatypes
 - Disjoint interpretation domain Δ_D for datatypes
 - For a datavalue d holds $d \sqsubseteq \Delta_D$
 - and $\Delta_D \sqcap \Delta^I = \emptyset$
 - Disjoint “object” and datatype properties
 - For a datatype property P holds $P^D \subseteq \Delta^I \times \Delta_D$
 - For object property S and datatype property P hold $S^I \sqcap P^D = \emptyset$
 - Equivalent to the “(D_n)” in $SHOIN(D_n)$

OWL DL Semantics

- Mapping OWL to equivalent DL ($SHOIN(D_n)$):
 - Facilitates provision of reasoning services (using DL systems)
 - Provides well defined semantics
- DL semantics defined by interpretations: $\mathcal{I} = (\Delta^I, \mathcal{I})$,
 where
 - Δ^I is the domain (a non-empty set)
 - \mathcal{I} is an interpretation function that maps:
 - Concept (class) name \mathcal{A} to subset \mathcal{A}^I of Δ^I
 - Role (property) name \mathfrak{R} to binary relation \mathfrak{R}^I over Δ^I
 - Individual name $\downarrow i$ to element i^I of Δ^I
Interpretation function \(\mathcal{I} \) extends to **concept expressions** in the obvious way, i.e.:

\[
\begin{align*}
(C \cap D)^\mathcal{I} &= C^\mathcal{I} \cap D^\mathcal{I} \\
(C \cup D)^\mathcal{I} &= C^\mathcal{I} \cup D^\mathcal{I} \\
(-C)^\mathcal{I} &= \Delta^\mathcal{I} \setminus C^\mathcal{I} \\
\{x\}^\mathcal{I} &= \{x^\mathcal{I}\} \\
\exists R.C)^\mathcal{I} &= \{x \mid \exists y. (x, y) \in R^\mathcal{I} \land y \in C^\mathcal{I}\} \\
(\forall R.C)^\mathcal{I} &= \{x \mid \forall y. (x, y) \in R^\mathcal{I} \Rightarrow y \in C^\mathcal{I}\} \\
(n R)^\mathcal{I} &= \{x \mid \#\{y \mid (x, y) \in R^\mathcal{I}\} \leq n\} \\
(\geq n R)^\mathcal{I} &= \{x \mid \#\{y \mid (x, y) \in R^\mathcal{I}\} \geq n\}
\end{align*}
\]

Knowledge Base Semantics

- An **interpretation** \(\mathcal{I} \) satisfies (models) an axiom \(\Lambda (\mathcal{I} \models \Lambda) \):
 - \(\mathcal{I} \models C \subseteq D \) iff \(C^\mathcal{I} \subseteq D^\mathcal{I} \)
 - \(\mathcal{I} \models C \equiv D \) iff \(C^\mathcal{I} = D^\mathcal{I} \)
 - \(\mathcal{I} \models R \subseteq S \) iff \(R^\mathcal{I} \subseteq S^\mathcal{I} \)
 - \(\mathcal{I} \models R \equiv S \) iff \(R^\mathcal{I} = S^\mathcal{I} \)
 - \(\mathcal{I} \models x \in D \) iff \(x^\mathcal{I} \in D^\mathcal{I} \)
 - \(\mathcal{I} \models (x, y) \in R \) iff \((x^\mathcal{I}, y^\mathcal{I}) \in R^\mathcal{I} \)

- **\(\mathcal{I} \) satisfies a Tbox** \(\mathcal{T} (\mathcal{I} \models \mathcal{T}) \) iff **\(\mathcal{I} \) satisfies every axiom** \(\Lambda \) in \(\mathcal{T} \)

- **\(\mathcal{I} \) satisfies an Abox** \(\mathcal{A} (\mathcal{I} \models \mathcal{A}) \) iff **\(\mathcal{I} \) satisfies every axiom** \(\Lambda \) in \(\mathcal{A} \)

- **\(\mathcal{I} \) satisfies a KB** \(\mathcal{K} (\mathcal{I} \models \mathcal{K}) \) iff **\(\mathcal{I} \) satisfies both** \(\mathcal{T} \) and \(\mathcal{A} \)

DL Knowledge Bases (Ontologies)

- An **OWL ontology maps to a DL Knowledge Base** \(\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle \)
 - \(\mathcal{T}(\text{Tbox}) \) is a set of axioms of the form:
 - \(C \subseteq D \) (concept inclusion)
 - \(C \equiv D \) (concept equivalence)
 - \(R \subseteq S \) (role inclusion)
 - \(R \equiv S \) (role equivalence)
 - \(R^+ \subseteq R \) (role transitivity)
 - \(\mathcal{A}(\text{Abox}) \) is a set of axioms of the form
 - \(x \in D \) (concept instantiation)
 - \((x, y) \in R \) (role instantiation)

Inference Tasks

- Knowledge is **correct** (captures intuitions)
 - \(C \) subsumes \(D \) w.r.t. \(\mathcal{K} \) iff for every model \(\mathcal{I} \) of \(\mathcal{K} \), \(C^\mathcal{I} \subseteq D^\mathcal{I} \)

- Knowledge is **minimally redundant** (no unintended synonyms)
 - \(C \) is equivalent to \(D \) w.r.t. \(\mathcal{K} \) iff for every model \(\mathcal{I} \) of \(\mathcal{K} \), \(C^\mathcal{I} = D^\mathcal{I} \)

- Knowledge is **meaningful** (classes can have instances)
 - \(C \) is satisfiable w.r.t. \(\mathcal{K} \) iff there exists some model \(\mathcal{I} \) of \(\mathcal{K} \) s.t. \(C^\mathcal{I} \neq \emptyset \)

- **Querying** knowledge
 - \(x \) is an instance of \(C \) w.r.t. \(\mathcal{K} \) iff for every model \(\mathcal{I} \) of \(\mathcal{K} \), \(x^\mathcal{I} \in C^\mathcal{I} \)
 - \((x, y) \) is an instance of \(R \) w.r.t. \(\mathcal{K} \) iff for every model \(\mathcal{I} \) of \(\mathcal{K} \), \((x^\mathcal{I}, y^\mathcal{I}) \in R^\mathcal{I} \)

- Knowledge base **consistency**
 - A KB \(\mathcal{K} \) is consistent iff there exists some model \(\mathcal{I} \) of \(\mathcal{K} \)
DL Reasoning

- Tableau algorithms used to test satisfiability (consistency)
- Try to build a tree-like model I of the input concept C

- Decompose C syntactically
 - Apply tableau expansion rules
 - Infer constraints on elements of model

- Tableau rules correspond to constructors in logic (\land, \lor, etc)
 - Some rules are nondeterministic (e.g., \lor, \leq)
 - In practice, this means search

- Stop when no more rules applicable or clash occurs
 - Clash is an obvious contradiction, e.g., $A(x), \neg A(x)$

- Cycle check (blocking) may be needed for termination

- C satisfiable iff rules can be applied such that a fully expanded clash free tree is constructed

Highly Optimised Implementation

- Naive implementation leads to effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order

- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (rewriting) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion
 - ...