

Lecture Outline

- 1. Today's Web
- 2. The Semantic Web Impact
- 3. Semantic Web Technologies
- 4. A Layered Approach

A Semantic Web Primer

Today's Web

- Most of today's Web content is suitable for human consumption
 - Even Web content that is generated automatically from databases is usually presented without the original structural information found in databases
- Typical Web uses today people's
 - seeking and making use of information, searching for and getting in touch with other people, reviewing catalogs of online stores and ordering products by filling out forms

Chapter 1

Keyword-Based Search Engines

Chapter 1

- Current Web activities are not particularly well supported by software tools
 - Except for keyword-based search engines (e.g. Google, AltaVista, Yahoo)
- The Web would not have been the huge success it was, were it not for search engines

Problems of Keyword-Based Search Engines

- High recall, low precision.
- Low or no recall
- Results are highly sensitive to vocabulary
- Results are single Web pages
- Human involvement is necessary to interpret and combine results
- Results of Web searches are not readily accessible by other software tools

Chapter 1

A Semantic Web Primer

The Semantic Web Approach

- Represent Web content in a form that is more easily machine-processable.
- Use intelligent techniques to take advantage of these representations.
- The Semantic Web will gradually evolve out of the existing Web, it is not a competition to the current WWW

Chapter 1

The Key Problem of Today's Web

- The meaning of Web content is not machineaccessible: lack of semantics
- It is simply difficult to distinguish the meaning between these two sentences:
 - I am a professor of computer science.
 - I am a professor of computer science, you may think. Well, . . .

Chapter 1

A Semantic Web Primer

Lecture Outline

- 1. Today's Web
- 2. The Semantic Web Impact
- 3. Semantic Web Technologies
- 4. A Layered Approach

The Semantic Web Impact – Knowledge Management

- Knowledge management concerns itself with acquiring, accessing, and maintaining knowledge within an organization
- Key activity of large businesses: internal knowledge as an intellectual asset
- It is particularly important for international, geographically dispersed organizations
- Most information is currently available in a weakly structured form (e.g. text, audio, video)

Chapter 1

A Semantic Web Primer

Semantic Web Enabled Knowledge Management

- Knowledge will be organized in conceptual spaces according to its meaning.
- Automated tools for maintenance and knowledge discovery
- Semantic query answering
- Query answering over several documents
- Defining who may view certain parts of information (even parts of documents) will be possible.

Limitations of Current Knowledge Management Technologies

- Searching information
 - Keyword-based search engines
- Extracting information
 - human involvement necessary for browsing, retrieving, interpreting, combining
- Maintaining information
 - inconsistencies in terminology, outdated information.
- Viewing information
 - Impossible to define views on Web knowledge

Chapter 1

A Semantic Web Primer

The Semantic Web Impact – B2C Electronic Commerce

- A typical scenario: user visits one or several online shops, browses their offers, selects and orders products.
- Ideally humans would visit all, or all major online stores; but too time consuming
- Shopbots are a useful tool

Limitations of Shopbots

- They rely on wrappers: extensive programming required
- Wrappers need to be reprogrammed when an online store changes its outfit
- Wrappers extract information based on textual analysis

Chapter 1

- Error-prone
- Limited information extracted

13

A Semantic Web Primer

The Semantic Web Impact – B2B Electronic Commerce

- Greatest economic promise
- Currently relies mostly on EDI
 - Isolated technology, understood only by experts
 - Difficult to program and maintain, error-prone
 - Each B2B communication requires separate programming
- Web appears to be perfect infrastructure
 - But B2B not well supported by Web standards

A Semantic Web Primer

Semantic Web Enabled B2C Electronic Commerce

- Software agents that can interpret the product information and the terms of service.
 - Pricing and product information, delivery and privacy policies will be interpreted and compared to the user requirements.
- Information about the reputation of shops

Chapter 1

• Sophisticated shopping agents will be able to conduct automated negotiations

14

A Semantic Web Primer

Semantic Web Enabled B2B Electronic Commerce

- Businesses enter partnerships without much overhead
- Differences in terminology will be resolved using standard abstract domain models
- Data will be interchanged using translation services.
- Auctioning, negotiations, and drafting contracts will be carried out automatically (or semi-automatically) by software agents

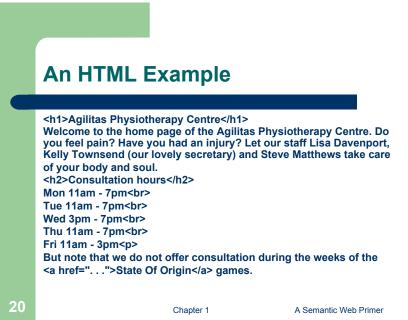
Lecture Outline

- 1. Today's Web
- 2. The Semantic Web Impact
- 3. Semantic Web Technologies
- 4. A Layered Approach

Chapter 1

A Semantic Web Primer

Semantic Web Technologies


- Explicit Metadata
- Ontologies
- Logic and Inference
- Agents

Chapter 1

A Semantic Web Primer

On HTML

- Web content is currently formatted for human readers rather than programs
- HTML is the predominant language in which Web pages are written (directly or using tools)
- Vocabulary describes presentation

Problems with HTML

- Humans have no problem with this
- Machines (software agents) do:
 - How distinguish therapists from the secretary,
 - How determine exact consultation hours
 - They would have to follow the link to the State Of Origin games to find when they take place.

Chapter 1

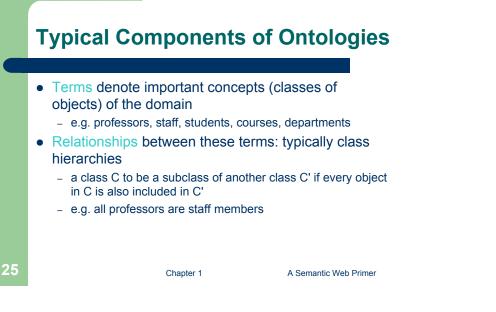
A Semantic Web Primer

Explicit Metadata

- This representation is far more easily processable by machines
- Metadata: data about data
 - Metadata capture part of the meaning of data
- Semantic Web does not rely on text-based manipulation, but rather on machineprocessable metadata

A Better Representation

Ontologies


The term ontology originates from philosophy

• The study of the nature of existence

Different meaning from computer science

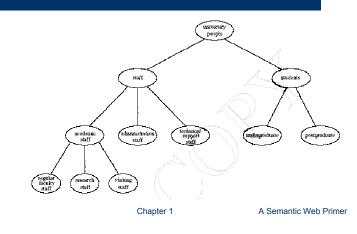
 An ontology is an explicit and formal specification of a conceptualization

24

Further Components of Ontologies

- Properties:
 - e.g. X teaches Y
- Value restrictions
 - e.g. only faculty members can teach courses
- Disjointness statements
 - e.g. faculty and general staff are disjoint

Chapter 1


- Logical relationships between objects
 - e.g. every department must include at least 10 faculty

26

A Semantic Web Primer

Example of a Class Hierarchy

The Role of Ontologies on the Web

- Ontologies provide a shared understanding of a domain: semantic interoperability
 - overcome differences in terminology
 - mappings between ontologies
- Ontologies are useful for the organization and navigation of Web sites

The Role of Ontologies in Web Search

- Ontologies are useful for improving the accuracy of Web searches
 - search engines can look for pages that refer to a precise concept in an ontology
- Web searches can exploit generalization/ specialization information
 - If a query fails to find any relevant documents, the search engine may suggest to the user a more general query.
 - If too many answers are retrieved, the search engine may suggest to the user some specializations.

Chapter 1

A Semantic Web Primer

Web Ontology Languages (2)

OWL

- A richer ontology language
- relations between classes
 - e.g., disjointness
- cardinality
 - e.g. "exactly one"
- richer typing of properties
- characteristics of properties (e.g., symmetry)

Chapter 1

A Semantic Web Primer

Web Ontology Languages

RDF Schema

- RDF is a data model for objects and relations between them
- RDF Schema is a vocabulary description language
- Describes properties and classes of RDF resources
- Provides semantics for generalization hierarchies of properties and classes

30

Chapter 1

A Semantic Web Primer

Logic and Inference

- Logic is the discipline that studies the principles of reasoning
- Formal languages for expressing knowledge
- Well-understood formal semantics
 - Declarative knowledge: we describe what holds without caring about how it can be deduced
- Automated reasoners can deduce (infer) conclusions from the given knowledge

32

An Inference Example

 $\begin{array}{l} prof(X) \rightarrow faculty(X) \\ faculty(X) \rightarrow staff(X) \\ prof(michael) \end{array}$ We can deduce the following conclusions: faculty(michael) \\ staff(michael) \\ prof(X) \rightarrow staff(X) \end{array}

Chapter 1

33

Tradeoff between Expressive Power and Computational Complexity

- The more expressive a logic is, the more computationally expensive it becomes to draw conclusions
 - Drawing certain conclusions may become impossible if noncomputability barriers are encountered.
- Our previous examples involved rules "*If conditions, then conclusion*," and only finitely many objects
 - This subset of logic is tractable and is supported by efficient reasoning tools

A Semantic Web Primer

Logic versus Ontologies

- The previous example involves knowledge typically found in ontologies
 - Logic can be used to uncover ontological knowledge that is implicitly given
 - It can also help uncover unexpected relationships and inconsistencies
- Logic is more general than ontologies

Chapter 1

 It can also be used by intelligent agents for making decisions and selecting courses of action

34

A Semantic Web Primer

Inference and Explanations

- Explanations: the series of inference steps can be retraced
- They increase users' confidence in Semantic Web agents
- Activities between agents: create or validate proofs

36

Typical Explanation Procedure

- Facts will typically be traced to some Web addresses
 - The trust of the Web address will be verifiable by agents
- Rules may be a part of a shared commerce ontology or the policy of the online shop

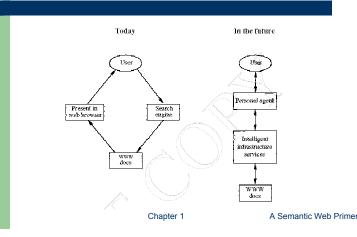
A Semantic Web Primer

Software Agents

- · Software agents work autonomously and proactively
 - They evolved out of object oriented and compontent-based programming
- A personal agent on the Semantic Web will:
 - receive some tasks and preferences from the person
 - seek information from Web sources, communicate with other agents
 - compare information about user requirements and preferences, make certain choices

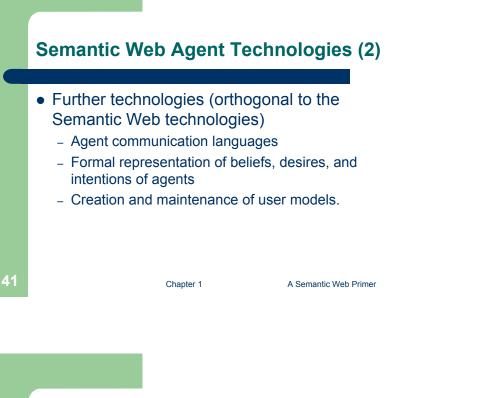
Chapter 1

- give answers to the user



38

A Semantic Web Primer



Chapter 1

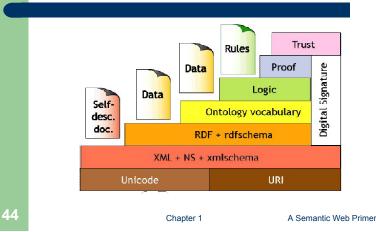
Semantic Web Agent Technologies

- Metadata
 - Identify and extract information from Web sources
- Ontologies
 - Web searches, interpret retrieved information
 - Communicate with other agents
- Logic
 - Process retrieved information, draw conclusions

A Layered Approach

- The development of the Semantic Web proceeds in steps
- Each step building a layer on top of another Principles:
- Downward compatibility
- Upward partial understanding

Lecture Outline


- 1. Today's Web
- 2. The Semantic Web Impact
- 3. Semantic Web Technologies
- 4. A Layered Approach

9	
74	

Chapter 1

A Semantic Web Primer

The Semantic Web Layer Tower

Semantic Web Layers

- XML layer
 - Syntactic basis
- RDF layer
 - RDF basic data model for facts
 - RDF Schema simple ontology language

Chapter 1

- Ontology layer
 - More expressive languages than RDF Schema
 - Current Web standard: OWL

A Semantic Web Primer

Semantic Web Layers (2)

- Logic layer
 - enhance ontology languages further
 - application-specific declarative knowledge
- Proof layer
 - Proof generation, exchange, validation
- Trust layer
 - Digital signatures
 - recommendations, rating agencies

A Semantic Web Primer

Book Outline

- 2. Structured Web Documents in XML
- 3. Describing Web Resources in RDF

Chapter 1

- 4. Web Ontology Language: OWL
- 5. Logic and Inference: Rules
- 6. Applications
- 7. Ontology Engineering
- 8. Conclusion and Outlook

47

A Semantic Web Primer