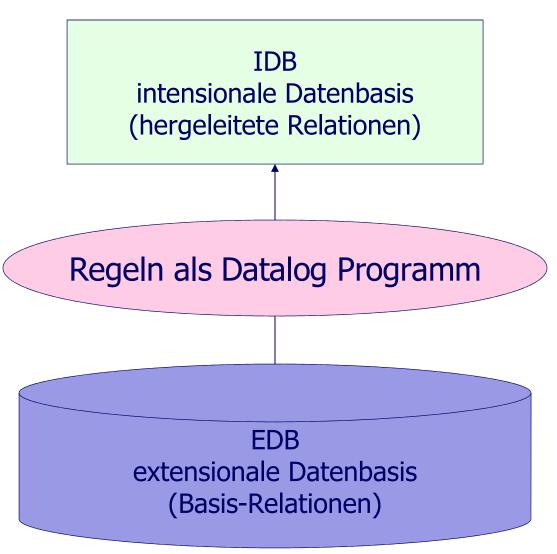
Teil 1: Deduktive Datenbanken


Gerd Stumme Christoph Schmitz

Wintersemester 2004/05

Deduktive Datenbanken

Grundkonzepte einer deduktiven Datenbank

Terminologie

- Die extensionale Datenbasis (EDB), die manchmal auch Faktenbasis genannt wird. Die EDB besteht aus einer Menge von Relationen(Ausprägungen) und entspricht einer "ganz normalen" relationalen Datenbasis.
- Die *Deduktionskomponente*, die aus einer Menge von (Herleitungs-)*Regeln* besteht. Die Regelsprache heißt *Datalog* abgeleitet von dem Wort *Data* und dem Namen der Logikprogrammiersprache *Prolog*.
- Die *intensionale Datenbasis* (*IDB*), die aus einer Menge von hergeleiteten Relationen(Ausprägungen) besteht. Die IDB wird durch Auswertung des Datalog-Programms aus der EDB generiert.

Datalog

Regel:

sokLV(T,S):-vorlesungen(V,T,S,P), professoren(P, "Sokrates",R,Z), >(S,2).

Äquivalenter Domänenkalkül-Ausdruck:

$$\{[t,s] \mid \exists v,p ([v,t,s,p] \in Vorlesungen \land \\ \exists n,r,z ([p,n,r,z] \in Professoren \land \\ n = "Sokrates" \land s > 2))\}$$

Grundbausteine der Regeln sind atomare Formeln oder Literale:

$$q(A_1, ..., A_m).$$

q ist dabei der Name einer Basisrelation, einer abgeleiteten Relation oder eines eingebauten Prädikats: <,=,>,...

Beispiel: professoren(S, "Sokrates",R,Z).

	ren		Studenten							Vorlesungen							
PersNr	Name	ame Rang Rau		m	MatrNr Nar		ame	Semester		١	VorlNr		Titel	SWS	gelesenV		
2125	Sokrates		C4	226		24002		Xenokrates			18						on
2126	Russel		C4	232		2!	25403 Jo		onas		12		5001	C	rundzüge	4	213 <mark>7</mark>
2127	127 Kopernikus		C 3	310		26120		Fichte		10		L	5041		Ethik	4	2125
2133	133 Popper		C 3	3 52		26	6830	Aristoxenos			8		5043	Erke	nntnistheorie	3	2126
2134	4 Augustinus		C 3	309	309 2		7550 Schop		enhauer		6		5049		Mäeutik	2	2125
2136	6 Curie		C4	36	5 28		8106	6 Carnap			3		4052	Logik		4	2125
2137	Kant		C4	7	11	29	9120	Theophrastos			2		5052	Wissenschaftstheorie		3	2126
					- '	29	· · · · · · · · · · · · · · · · · · ·		erbach		2		5216		Bioethik	2	2126
	voraus							hö				L	5259	Der Wiener Kreis		2	2133
	gänger	Na	achfolger				AAnd		nören			L	5022	Glaube und Wissen		2	2134
	5001		5041					trNr	VorlN				4630	Die 3 Kritiken		4	2137
5001		5043			4		26120		5001								
Ţ	5001		5049				27550		5001								
Ţ	5041		5216					550 4052			_		Assistantan				
	5043		5052					106	5041			1	Assistenten				
	5041		5052				28106		5052		PerslNr				Fachgebiet		Boss
Ţ.	5052		5259				28106		5216		3002		Platon		Ideenlehre		2125
							28106		5259		3003		Aristoteles		Syllogistik		2125
	pr	üfe	n				29120		5001		3004		Wittgenstein		Sprachtheorie		2126
MatrNr	VorlN	r F	PersNr	No	te		29	120	5041		3005		Rheti	kus	Planetenbew	egung	2127
28106	5001		2126	1			29	120	5049		3006		New	ton	Keplersche Ge	esetze	2127
25403	5041		2125	2)		29	555	5022		3007		Spino	oza	Gott und Na	atur	2126
27550 Dedukt 63 and objekt 3 Tentierte Daten par ken 45 1903, WS 2004 50 22												5					

Eine Datalog-Regel

$$p(X_1,...,X_m):-q_1(A_{11},...,A_{1m_1}),...,q_n(A_{n1},...,A_{nm_n}).$$

Jedes q_j (...) ist eine atomare Formel. Die q_j werden oft als Subgoals bezeichnet.

 $X_1, ..., X_m$ sind Variablen, die mindestens einmal auch auf der rechten Seite des Zeichens :- vorkommen müssen.

Logisch äquivalente Form obiger Regel:

$$p(\ldots) \vee \neg q_1(\ldots) \vee \ldots \vee \neg q_n(\ldots)$$

Wir halten uns an folgende Notation:

- Prädikate beginnen mit einem Kleinbuchstaben.
- Die zugehörigen Relationen seien es EDB- oder IDB-Relationen werden mit gleichem Namen, aber mit einem Großbuchstaben beginnend, bezeichnet.

Beispiel Datalog-Programm

Zur Bestimmung von (thematisch) verwandten Vorlesungspaaren

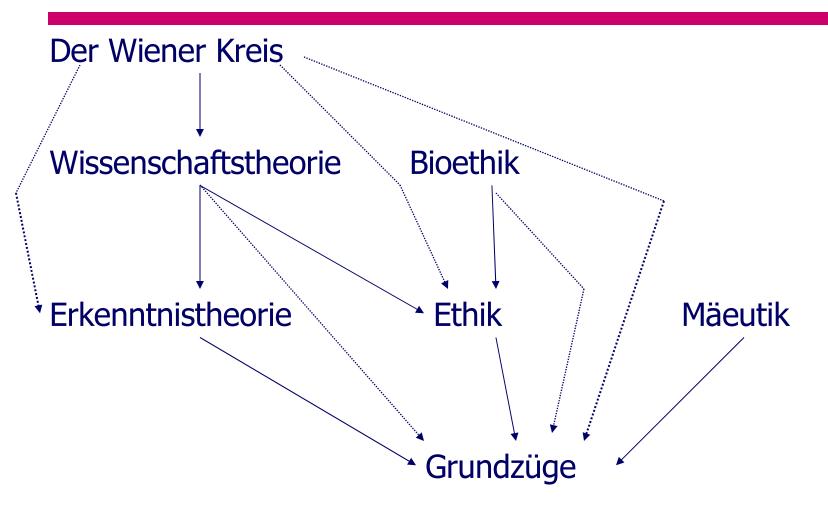
```
geschwisterVorl(N 1, N 2):- voraussetzen(V, N 1),
                                        voraussetzen(V, N2)), N1 < N2.
         geschwisterThemen(T 1, T 2):- geschwisterVorl(N 1, N 2),
                                        vorlesungen(N 1, T 1, S 1, R 1),
                                        Vorlesungen(N 2, T 2, S 2, R 2).
  aufbauen(V,N):- voraussetzen(V,N)
  aufbauen(V,N):- aufbauen(V,M), voraussetzen(M,N).
  verwandt(N,M):- aufbauen(N,M).
  verwandt(N,M):- aufbauen(M,N).
  verwandt(N,M):- aufbauen(V,N), aufbauen(V,M).
Voraussetzen: {[Vorgänger, Nachfolger]}
Vorlesungen: {VorlNr, Titel, SWS, gelesenVon]}
```

Deduktive und objektorientierte Datenbanken, Kassel, WS 2004/05

Analogie zur EDB/IDB in rel. DBMS

Basis-Relationen entsprechen der EDB.

Sichten entsprechen der IDB:


"Aufbauen" als Regeln in einem deduktiven DBMS:

```
aufbauen(V,N):- voraussetzen(V,N)
aufbauen(V,N):- aufbauen(V,M), voraussetzen(M,N).
```

"Aufbauen" als Sichtdefinition in DB2:

```
create view aufbauen(V,N) as
  (select Vorgaenger, Nachfolger
    from voraussetzen
        union all
    select a.V, v.Nachfolger
    from aufbauen a, voraussetzen v
    where a.N = v.Vorgaenger)
```

select * from aufbauen

Rekursion in DB2/SQL99: gleiche Anfrage

```
with TransVorl (Vorg, Nachf)
as (select Vorgänger, Nachfolger from voraussetzen
          union all
          select t.Vorg, v.Nachfolger
          from TransVorl t, voraussetzen v
          where t.Nachf= v.Vorgänger)
```

select Titel from Vorlesungen where VorlNr in
 (select Vorg from TransVorl where Nachf in
 (select VorlNr from Vorlesungen
 where Titel= `Der Wiener Kreis'))

Sicherheit von Datalog-Regeln

Es gibt unsichere Regeln, wie z.B.

ungleich(X, Y) :- $X \neq Y$.

Diese definieren unendliche Relationen.

Eine Datalog-Regel ist sicher, wenn alle Variablen im Kopf beschränkt (range restricted) sind. Dies ist für eine Variable X dann der Fall, wenn:

- die Variable im Rumpf der Regel in mindestens einem normalen Prädikat - also nicht nur in eingebauten Vergleichsprädikaten vorkommt oder
- ein Prädikat der Form X = c mit einer Konstante c im Rumpf der Regel existiert oder
- ein Prädikat der Form X = Y im Rumpf vorkommt, und man schon nachgewiesen hat, dass Y eingeschränkt ist.

Ausdruckskraft von Datalog

Die Sprache Datalog, eingeschränkt auf nicht-rekursive Programme aber erweitert um Negation, wird in der Literatur manchmal als *Datalog* ¬_{non-rec} bezeichnet

Diese Sprache *Datalog* non-rec hat genau die gleiche Ausdruckskraft wie die relationale Algebra - und damit ist sie hinsichtlich Ausdruckskraft auch äquivalent zum relativen Tupel- und Domänenkalkül

Datalog mit Negation und Rekursion geht natürlich über die Ausdruckskraft der relationalen Algebra hinaus - man konnte in Datalog ja z.B. die transitive Hülle der Relation *Voraussetzen* definieren.

Datalog-Formulierung der relationalen Algebra-Operatoren

Selektion

$$\sigma_{SWS > 3}^{(Vorlesungen)},$$
 $query(V,T,S,R):-vorlesungen(V,T,S,R),S > 3.$
 $query(V,S,R):-vorlesungen(V,"M\"{a}eutik",S,R).$

Projektion

query(Name, Rang): -professoren(PersNr, Name, Rang, Raum).

Join

$$\Pi_{Titel, Name}$$
 (Vorlesungen $A_{gelesenVor=PersNr}$ Professoren)

$$query(T, N)$$
: $-vorlesungen(V, T, S, R)$, $professoren(R, N, Rg, Ra)$

Datalog-Formulierung der relationalen Algebra-Operatoren

Kreuzprodukt

$$query(V1,V2,V3,V4,P1,P2,P3,P4): -vorlesungen(V1,V2,V3,V4), \\ professoren(P1,P2,P3,P4).$$

Professore n × Vorlesungen

Vereinigung

$$\Pi_{PersNr,Name}$$
 (Assistenten) $\cup \Pi_{PersNr,Name}$ (Professoren)

query(PersNr, Name) : -assistenten(PersNr, Name, F, B).

query(PersNr, Name) : -professoren(PersNr, Name, Rg, Ra).

Datalog-Formulierung der relationalen Algebra-Operatoren

Mengendifferenz

$$\Pi_{\mathit{VorlNr}}(\mathit{Vorlesungen}) - \Pi_{\mathit{Vorgänger}}(\mathit{Voraussetzen})$$

vorlNr(V) : -vorlesungen(V, T, S, R). grundlagen(V) : -vorlesungen(V, N). $query(V) : -vorlNr(V), \neg grundlagen(V).$