
1Jörn Dreyer03.06.2008

Probabilistic Parsing

''... the overall goal is to produce a system that
can place a provably useful structure over

arbitrary sentences, that is, to build a parserparser..''

tags: chunking, grammar induction, parser

2Jörn Dreyer03.06.2008

12.1.1 Parsing for disambiguation
● Probabilities for determining the sentence
● Probabilities for speedier parsing
● Probabilities for choosing between parses

3Jörn Dreyer03.06.2008

12.1.2 Treebanks
● A collection of example parses = treebank
● Penn Treebank tree:

– NP-over-NP is wrong by syntactic theories
– but captures the notion of chunks

((S
 (NP (PRP I))
 (VP (VBD saw)
 (NP (DT the) (NN m an))
 (PP (IN w ith)
 (NP (DT the) (NN telescope))))
 (. .)))

tags: treebank, penn treebank, chunking

4Jörn Dreyer03.06.2008

12.1.3 Parsing models vs. Language models
● parsing model: evaluates the probability of trees

t for a sentence s

● language model: assigns a probability to all
trees generated by a grammar

● language models appear to provide a better
foundation for modeling

t=arg max
t

Pt∣s ,G

t=argmax
t

Pt∣s =argmax
t

Pt , s
P s

=argmax
t

P t , s

tags: parsing model, language model

5Jörn Dreyer03.06.2008

12.1.4 Weakening independence assumptions
● Context and independence assumptions

– TV vs. Bar, who, immediate prior context
● PCFGs lack lexicalization
● Probabilities dependent on structural context

tags: priming, lexicalization

Expansion
7,5% 0,2%

13,4% 0,9%
12,2% 14,4%
10,4% 13,3%
4,5% 5,9%
3,9% 9,2%
1,1% 10,4%
0,3% 5,1%

% as 1st Obj % as 2nd Obj
NP → NNS
NP → PRP
NP → NP PP
NP → DT NN
NP → NNP
NP → NNP
NP → JJ NN
NP → NP SBAR

6Jörn Dreyer03.06.2008

12.1.5 Tree probabilities and derivational
prob.

● Canonical derivation
● History-based grammars

tags: canonical derivation, history-based grammars

7Jörn Dreyer03.06.2008

12.1.6 There's more than one way to do it
● Probabilistic left-corner grammars

tags: top-down parsing, left corner parsers, shifting, projecting, attaching

comment: Initialization
Place the predicted start symbol S on top of the stack
comment: Parser
while (an action is possible) do one of the following

actions
[Shift] Put the next input symbol on top of the stack
[Attach] If is on top of the stack, remove both
[Project] If is on top of the stack ans A , replace by A
endactions

end
comment: Termination
if empty(input) ^ empty(stack)

then
exit success

else
exit failiure

fi

8Jörn Dreyer03.06.2008

12.1.7 Phrase structure / dependency
grammars

● [phrase structure] is not really needed to
construct an understanding of sentences

a. phrase structure model b. phrase structure model

a. Nx

 Ny model

phrase structure

b. Nu

phrase Nv

structure model

tags: dependency grammar, head

9Jörn Dreyer03.06.2008

12.1.8 Evaluation
● Objective criterion
● Tree accuracy
● Exact match
● PARSEVAL measures
● Precision
● Recall
● Crossing Brackets

10Jörn Dreyer03.06.2008

12.1.9 Equivalent models
● Three ways of thinking of a PCFG model

– as using more of the derivational history
– as using more of the parse tree context
– as enriching the category labels

● „.. it is frequently easier to write a quick
program to produce transformed trees than to
write a new probabilistic parser“

11Jörn Dreyer03.06.2008

12.1.10 Building Parsers: Search methods
● Tableau / Viterbi Algorithm
● Stack decoding algorithm

– Uniform-cost search
– Beam search

● A* search
– Best-first search
– A* search
– Optimally efficient

● Other methods

12Jörn Dreyer03.06.2008

12.1.11 Useof the geometric mean
● Multiplying probabilities -> errors accumulate
● Ad hoc scoring functions

– Treating the symptoms not the problems
● PCFGs give higher probability to smaller trees

