Grundlagen des relationalen Modells

- Das relationale Modell
- Verfeinerung des relationalen Schemas
- Relationale Algebra
- Relationenkalkül

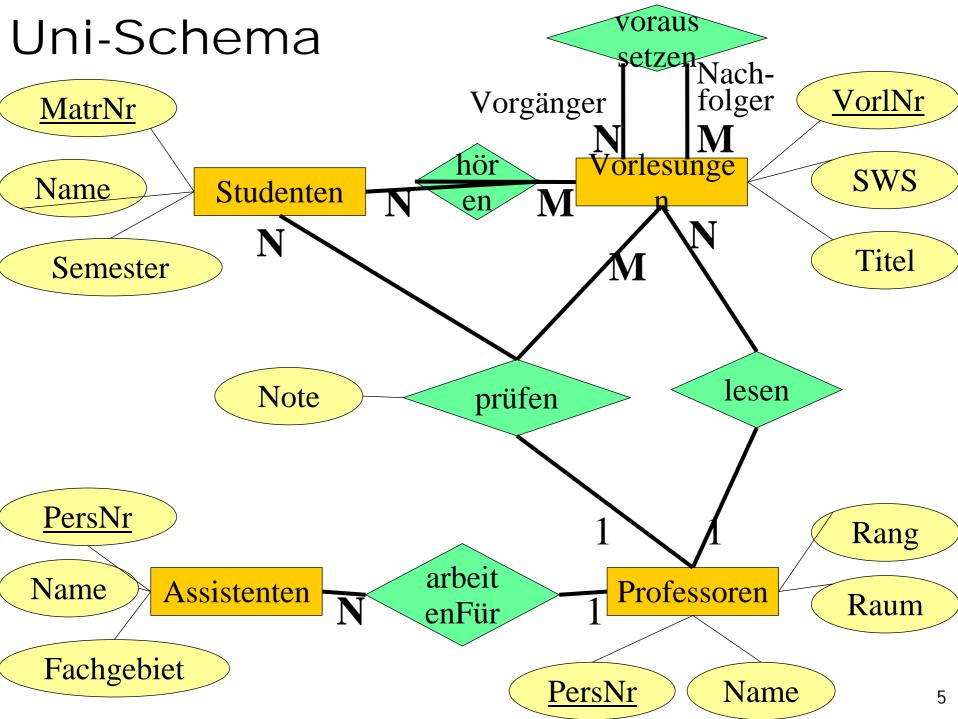
Kapitel 3

Grundlagen des relationalen Modells

Seien D_1 , D_2 , ..., D_n Domänen (Wertebereiche, Mengen)

• Eine *Relation* ist eine Teilmenge $R \subseteq D_1$ x ... x D_n *Bsp.: Telefonbuch* \subseteq *string x string x integer*

- Ein *Tupel* ist jedes Element t ∈ R von R
 Bsp.: t = ("Mickey Mouse", "Main Street", 4711)
- Schema: legt die Struktur der gespeicherten Daten fest Bsp.:


Telefonbuch: {[Name: string, Adresse: string, Telefon#:integer]}

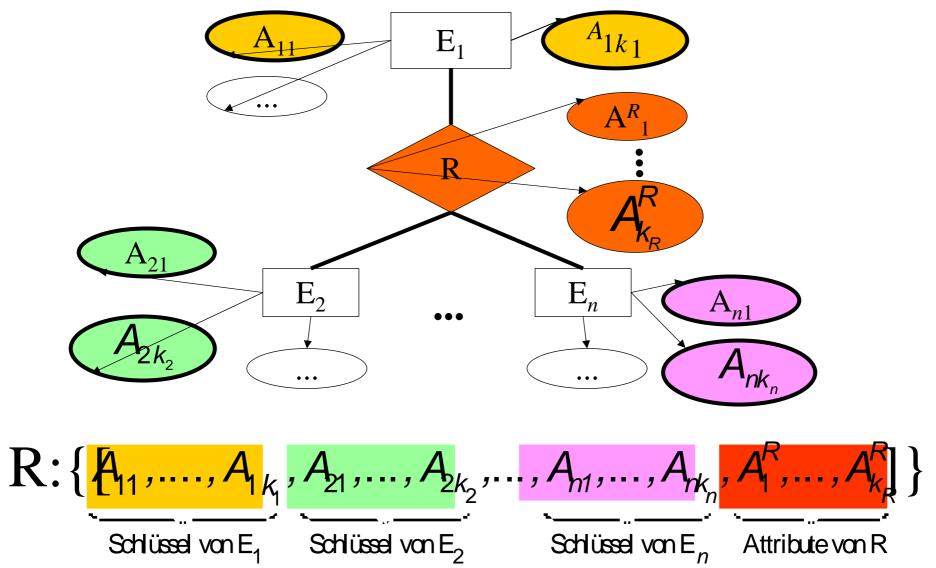
Telefonbuch					
Name Straße <u>Telefon#</u>					
Mickey Mouse	Main Street	4711			
Mini Mouse	Broadway	94725			
Donald Duck Broadway		95672			
•••	• • •	• • •			

- Ausprägung: der aktuelle Zustand der Datenbasis
- •Schlüssel: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren
- Primärschlüssel: wird unterstrichen
 - Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt
 - Hat eine besondere Bedeutung bei der Referenzierung von Tupeln

Telefonbuch				
Name Straße <u>Telefon#</u>				
Mickey Mouse	Main Street	4711		
Mini Mouse	Broadway	94725		
Donald Duck	Broadway	95672		
• • •	• • •	• • •		

- Die Festlegung eines (Primär-)Schlüssels ist eine Designentscheidung.
- Bei einer gegebenen Datenbank wird dann bei einer Konsistenzprüfung überprüft, ob sie dieser Einschränkung gehorcht.

Relationale Darstellung von Entitytypen


```
Studenten: {[MatrNr:integer, Name: string, Semester: integer]}
```

```
Vorlesungen: {[VorlNr:integer, Titel: string, SWS: integer]}
```

```
Professoren: {[PersNr:integer, Name: string, Rang: string, Raum: integer]}
```

Assistenten: {[PersNr:integer, Name: string, Fachgebiet: string]}

Relationale Darstellung von Beziehungen

Ausprägung der Beziehung hören

Studenten		
MatrNr		
26120	• • •	
27550	• • •	
• • •	• • •	

höı	hören		
MatrNr	VorlNr		
26120	5001		
27550	5001		
27550	4052		
28106	5041		
28106	5052		
28106	5216		
28106	5259		
29120	5001		
29120	5041		
29120	5049		
29555	5022		
25403	5022		
29555	5001		

Vorlesungen			
VorINr			
5001	• • •		
4052			

MatrNr

Studenten

N

hören

<u>VorlNr</u>

Vorlesungen

M

Beziehungen unseres Beispiel-Schemas

```
hören : {[MatrNr: integer, VorlNr: integer]}
lesen : {[PersNr: integer, VorlNr: integer]}
arbeitenFür: {[AssistentenPersNr: integer, ProfPersNr: integer]}
voraussetzen : {[Vorgänger: integer, Nachfolger: integer]}
prüfen: {[MatrNr: integer, VorlNr: integer, PersNr: integer,
```

Note: decimal)

Schlüssel der Relationen

```
hören : {[MatrNr: integer, VorlNr: integer]}
lesen : {[PersNr: integer, VorlNr: integer]}
arbeitenFür: {[AssistentenPersNr: integer, ProfPersNr: integer]}
voraussetzen : {[Vorgänger: integer, Nachfolger: integer]}
prüfen: {[MatrNr: integer, VorlNr: integer, PersNr: integer,
           Note: decimal)
```

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

Vorlesungen: {[<u>VorlNr</u>, Titel, SWS]}

Professoren: {[PersNr, Name, Rang, Raum]}

lesen: {[VorINr, PersNr]}

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

```
Vorlesungen: {[VorlNr, Titel, SWS]}
Professoren: {[PersNr, Name, Rang, Raum]}
Iesen: {[VorlNr, PersNr]}
```

Verfeinerung durch Zusammenfassung

```
Vorlesungen : {[<u>VorlNr</u>, Titel, SWS, gelesenVon]}
```

Professoren : {[PersNr, Name, Rang, Raum]}

Regel

Relationen mit gleichem Schlüssel kann man zusammenfassen aber nur diese und keine anderen!

Ausprägung von Professoren und

Vorlesung

	Professoren				
PersNr	Name	Rang	Raum		
2125	Sokrates	C4	226		
2126	Russel	C4	232		
2127	Kopernikus	C3	310		
2133	Popper	C3	52		
2134	Augustinus	C3	309		
2136	Curie	C4	36		
2137	Kant	C4	7		

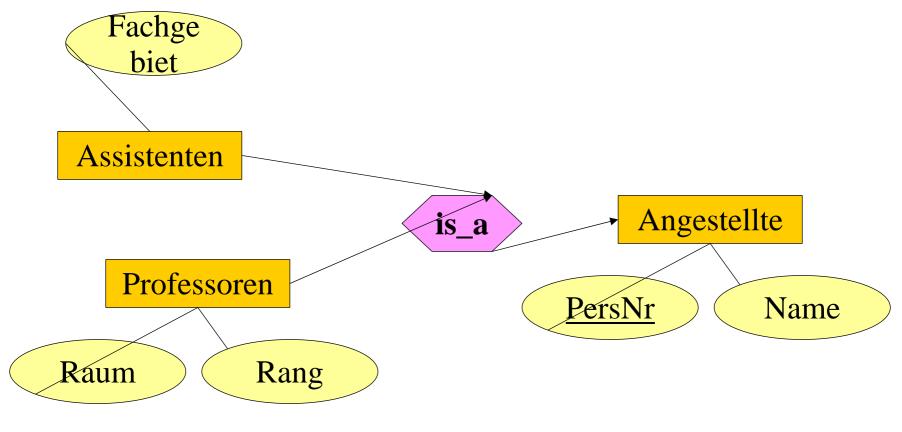
	Vorlesungen			
VorlNr	Titel	SWS	Gelesen Von	
5001	Grundzüge	4	2137	
5041	Ethik	4	2125	
5043	Erkenntnistheorie	3	2126	
5049	Mäeutik	2	2125	
4052	Logik	4	2125	
5052	Wissenschaftstheorie	3	2126	
5216	Bioethik	2	2126	
5259	Der Wiener Kreis	2	2133	
5022	Glaube und Wissen	2	2134	
4630	Die 3 Kritiken	4	2137	

Vorsicht: So geht es NICHT

	Professoren			
PersNr	Name Rang Raum liest			
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
•••	•••		•••	•••
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

Vorlesungen		
VorlNr	Titel	SWS
5001	Grundzüge	4
5041	Ethik	4
5043	Erkenntnistheorie	3
5049	Mäeutik	2
4052	Logik	4
5052	Wissenschaftstheorie	3
5216	Bioethik	2
5259	Der Wiener Kreis	2
5022	Glaube und Wissen	2
4630	Die 3 Kritiken	4

Vorsicht: So geht es NICHT:

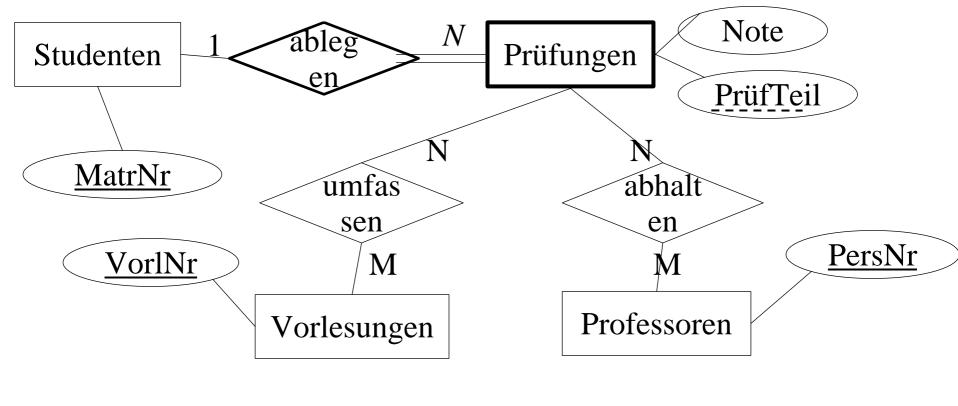

Folgen -> Anomalien

	Professoren				
PersNr	Nr Name Rang Raum liest				
2125	Sokrates	C4	226	5041	
2125	Sokrates	C4	226	5049	
2125	Sokrates	C4	226	4052	
•••	•••		•••	• • •	
2134	Augustinus	C3	309	5022	
2136	Curie	C4	36	??	

Vorlesungen		
VorINr	/orlNr Titel	
5001	Grundzüge	4
5041	Ethik	4
5043	Erkenntnistheorie	3
5049	Mäeutik	2
4052	Logik	4
5052	Wissenschaftstheorie	3
5216	Bioethik	2
5259	Der Wiener Kreis	2
5022	Glaube und Wissen	2
4630	Die 3 Kritiken	4

- Update-Anomalie: Was passiert wenn Sokrates umzieht?
- Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt?
- Einfügeanomalie: Curie ist neu und liest noch keine
 Vorlesungen? (→ Funktionale Abhängigkeiten)₁₅

Relationale Modellierung der Generalisierung



Angestellte: {[*PersNr, Name*]}

Professoren: {[*PersNr*, Rang, Raum]}

Assistenten: {[PersNr, Fachgebiet]}

Relationale Modellierung schwacher Entitytypen

umfassen: {[MatrNr: integer, PrüfTeil: string, VorlNr: integer]}

Prüfungen: { [MatrNr: integer, PrüfTeil: string, Note: integer] }

abhalten: {[MatrNr: integer, PrüfTeil: string, PersNr: integer]}

Man beachte, dass in diesem Fall der (global eindeutige) Schlüssel der Relation *Prüfung* nämlich *MatrNr* **und** *PrüfTeil* als Fremdschlüssel in die Relationen *umfassen* und *abhalten* übernommen werden muss.

Die relationale Uni-DB

Professoren					
PersNr	PersNr Name Rang Raum				
2125	Sokrates	C4	226		
2126	Russel	C4	232		
2127	Kopernikus	C3	310		
2133	Popper	C3	52		
2134	Augustinus	C3	309		
2136	Curie	C4	36		
2137	Kant	C4	7		

Studenten		
MatrNr	Name	Semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

VorlNr	Titel	SWS	gelesen von
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

Vorlesungen

voraussetzen		
Vorgänger	Nachfolger	
5001	5041	
5001	5043	
5001	5049	
5041	5216	
5043	5052	
5041	5052	
5052	5259	

	hören	
	MatrNr	VorlNr
	26120	5001
	27550	5001
	27550	4052
	28106	5041
	28106	5052
	28106	5216
,	28106	5259
	29120	5001
	29120	5041
	29120	5049
1	29555	5022
]	25403	5022

Assistenten			
PersINr	Name	Fachgebiet	Boss
3002	Platon	Ideenlehre	2125
3003	Aristoteles	Syllogistik	2125
3004	Wittgenstein	Sprachtheorie	2126
3005	Rhetikus	Planetenbewegung	2127
3006	Newton	Keplersche Gesetze	2127
3007	Spinoza	Gott und Natur	2126

pruien			
MatrNr	VorlNr	PersNr	Note
28106	5001	2126	1
25403	5041	2125	2
27550	4630	2137	2

priifon

Die relationale Algebra

- σ Selektion
- \bullet π Projektion
- x Kreuzprodukt
- ρ Umbenennung
- Mengendifferenz
- ÷ Division
- → Uereinigung
- Mengendurchschnitt
- → Semi-Join (linker)
- Semi-Join (rechter)

 $\sigma_{\text{Semester} > 10}$ (Studenten)

Selektion

$\sigma_{Semester > 10}$ (Studenten)			
MatrNr	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	12	

In der Selektion $\sigma_F(R)$ ist das Selektionsprädikat F eine Formel, die aufgebaut ist aus

- Attributnamen von R und Konstanten
- $\bullet = , <, >, \leq, \geq, \neq$
- den logischen Operatoren ∧, ∨, ¬

Das Ergebnis von $\sigma_F(R)$ besteht aus allen Tupeln $t \in R$, die F erfüllen, wenn jedes Auftreten eines Attributes A durch den Wert t.A ersetzt wird.

Projektion

 Π_{Rang} (Professoren)

Π_{Rang} (Professoren)
Rang
C4
C3

- Die Projektion wählt (eine oder mehrere) Spalten der Relation aus.
- Duplikate im Ergebnis werden nur einmal gelistet (aufgrund der Mengensemantik des Relationenkalküls)

Studenten		
MatrNr	Name	Semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10

Studenten		
MatrNr	Name	Semester
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

Vereinigung

Studenten		
MatrNr	Name	Semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

• Relationen mit gleichem Schema können vereinigt werden.

Studenten		
MatrNr	Name	Semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

Differenz

	Studenten					
MatrNr	Name	Semester				
24002	Xenokrates	18				
25403	Jonas	12				
26120	Fichte	10				

	Studenten							
MatrNr	Name	Semester						
26830	Aristoxenos	8						
27550	Schopenhauer	6						
28106	Carnap	3						
29120	Theophrastos	2						
29555	Feuerbach	2						
12345	Waalkes	22						

• Von Relationen mit gleichem Schema kann die Mengendifferenz gebildet werden.

Kartesisches Produkt Professoren x hören

	hören				
PersNr	Name	Rang	Raum	MatrNr	VorINr
2125	Sokrates	C4	226	26120	5001
•••	•••	•••	•••	•••	•••
2125	Sokrates	C4	226	29555	5001
•••	• • •	•••	•••	•••	•••
2137	Kant	C4	7	29555	5001

- Das Schema enthält alle Attribute beider Relationen.
- Die Relation enthält alle n×m möglichen Kombinationen der jeweiligen Tupel der beiden Relationen.

Kartesisches Produkt Professoren x hören

	höı	ren			
PersNr	Name	Rang	Raum	MatrNr	VorINr
2125	Sokrates	C4	226	26120	5001
• • •	•••	• • •	• • •	• • •	• • •
2125	Sokrates	C4	226	29555	5001
•••	• • •	• • •	•••	• • •	•••
2137	Kant	C4	7	29555	5001

- Problem: riesige Zwischenergebnisse
- Beispiel: (Professoren x hören)
- "bessere" Operation: Join (siehe unten)

Umbenennung

- Umbenennung von Relationen
- Beispiel: Ermittlung indirekter Vorgänger 2. Stufe der Vorlesung 5216

```
\Pi_{V1.\ Vorgänger}(\sigma_{V2.\ Nachfolger=5216\ \land\ V1.\ Nachfolger=\ V2.\ Vorgänger} ( \rho_{V1} (voraussetzen) x \rho_{V2} (voraussetzen)))
```

Umbenennung von Attributen

ρ_{Voraussetzung} ← _{Vorgänger} (voraussetzen)

Formale Definition der Algebra

- Basisausdrücke
- Relation der Datenbank oder
- konstante Relationen

Operationen

- Selektion: σ_p (E₁)
- Projektion: Π_S (E₁)
- Kartesisches Produkt: E₁ x E₂
- Umbenennung: $\rho_V(E_1)$, $\rho_{A \leftarrow B}(E_1)$
- Vereinigung: $E_1 \cup E_2$
- Differenz: E₁ E₂

Weitere Operationen können aus diesen zusammengesetzt werden ->

Der natürliche Verbund (Join)

Gegeben seien:

$$\bullet R(A_1,..., A_m, B_1,..., B_k)$$

$$\bullet S(B_1,..., B_k, C_1,..., C_n)$$

$$R \bowtie S = \prod_{A1,..., Am, R.B1,..., R.Bk, C1,..., Cn} (\sigma_{R.B1=S. B1 \land ... \land R.Bk = S.Bk}(RxS))$$

	$R \bowtie S$										
R – S				$R \cap S$			S – R				
A_1	A ₁ A ₂ A _m				B_2	• • •	B_k	C_1	C_2	• • •	C_n
:	÷	:	:	:	i	i	i	i	i	i	÷

Professoren				Studenten				Vorlesungen										
Pers	Nr	Name	•	Rang	Rau	m	Ma	atrNr	N	ame	Sen	nester	Vor	lNr		Titel	sws	gelesen
212	25	Sokrate	s	C4	220	5	2	4002	Xen	okrates		18						Von
212	26	Russel		C4	232	2	2!	5403	J	onas		12	50		G	Grundzüge	4	2137
212	27 I	Kopernik	us	C3	310)	2	6120	Fi	chte		10	50			Ethik	4	2125
213	33	Poppei	r	C3	52		2	6830	Arist	oxenos		8	50	43	Erke	nntnistheorie	3	2126
213	34 /	Augustin		C3	309	9	2	7550	Schop	enhauer		6	50	49		Mäeutik	2	2125
213		Curie		C4	36		28	8106	Ca	ırnap		3	40	52		Logik	4	2125
213	37	Kant		C4	7		2	9120	Theo	ohrastos		2	50	52	Wisser	nschaftstheorie	3	2126
						ᅦ		9555		erbach		2	52	16		Bioethik	2	2126
	\	oraus	se	tzen		Ц							52	59	Der	Wiener Kreis	2	2133
V	org/	änger	Na	chfolg	er					ren			50	22	Glaub	e und Wissen	2	2134
	50	001		5041					rNr	VorIN			46	30	Die	e 3 Kritiken	4	2137
	50	001		5043					120	5001			-					
	50	001		5049			1	275	550	5001								
	50	041		5216			1	275	550	4052					_	_		
	50	043		5052			1	281	106	5041					As	sistenten		
	50	041		5052			1	281	106	5052		PersIN	lr	Nan	ne	Fachgeb	iet	Boss
	5(052		5259			1	281	106	5216		3002		Plat	on	Ideenleh	re	2125
L								281	106	5259		3003	Aı	risto	teles	Syllogisti	ik	2125
		pri	üfe	en			Ш	291	120	5001		3004	Wi	ttger	nstein	Sprachtheo	orie	2126
Mat	rNr	VorIN	r P	ersNr	No	te	11	291	120	5041		3005	F	Rheti	kus	Planetenbew	egung	2127
281	06	5001		2126	1			291	120	5049		3006		New	ton	Keplersche G	esetze	2127
254	03	5041		2125	2	2	11	295	555	5022		3007		Spin	oza	Gott und N	atur	2126
275	50	4630		2137	2	2		254	403	5022								30

Join-Beispiel

Studenten ⋈ hören						
MatrNr	Name	Semester	VorlNr			
26120	Fichte	10	5001			
27550	Jonas	12	5022			
28106	Carnap	3	4052			
	•••	•••	•••			

Drei-Wege-Join

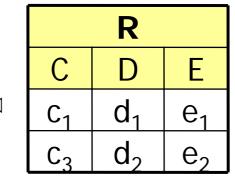
(Studenten ⋈ hören) ⋈ Vorlesungen

	(Studenten ⋈ hören) ⋈ Vorlesungen							
MatrNr	Name	Semester	VorlNr	Titel	SWS	gelesenVon		
26120	Fichte	10	5001	Grundzüge	4	2137		
27550	Jonas	12	5022	Glaube und Wissen	2	2134		
28106	Carnap	3	4052	Wissenschftstheorie	3	2126		
•••	•••	•••	•••	•••	• • •	•••		

Allgemeiner Join (Theta-Join)

- Gegeben seien folgende Relationen(-Schemata)
 - R(A1, ..., An) und
 - S(B1, ..., Bm)

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$


$$R \bowtie_{\theta} S$$

	$R \bowtie_{\theta} S$								
	F	?		S					
A ₁	A ₂		A _n	B ₁	B ₂	• • •	B _m		
i	i	i	i	i	i	i			

Andere Join-Arten

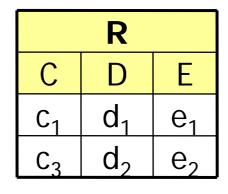
• natürlicher Join

	L	
Α	В	C
a ₁	b_1	C ₁
a_2	b_2	C_2

	Resultat						
Α	В	С	D	Ε			
a_1	b_1	C ₁	d_1	e_1			

• linker äußerer Join

L						
Α	В	С				
a ₁	b_1	C ₁				
a_2	b_2	C_2				

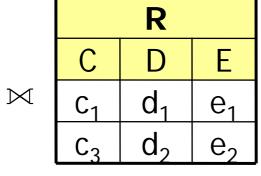

	R	
С	D	Е
C_1	d_1	e_1
C_3	d_2	e_2

Resultat				
Α	В	С	D	Ε
a_1	b_1	C ₁	d_1	e_1
a_2	b_2	C_2	-	-

• rechter äußerer Join

 \bowtie

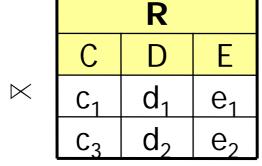
L				
Α	В	С		
a ₁	b_1	C ₁		
a_2	b_2	C_2		



Resultat				
Α	В	С	D	Е
a_1	b_1	C ₁	d_1	e_1
-	-	C_3	d_2	e_2

Andere Join-Arten

• äußerer Join


L				
Α	В	С		
a ₁	b_1	C ₁		
a_2	b_2	C_2		

Resultat				
Α	В	С	D	Е
a_1	b_1	C ₁	d_1	e_1
a_2	b_2	C_2	1	1
-	1	C_3	d_2	e_2

• Semi-Join von L mit R

L				
Α	В	С		
a ₁	b_1	C ₁		
a_2	b_2	C_2		

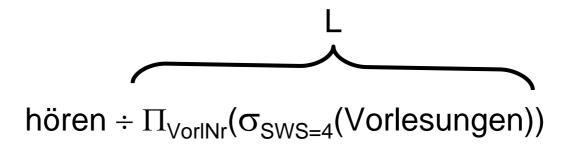


	Resultat		
_	Α	В	С
	a_1	b_1	C ₁

Andere Join-Arten (Forts.)

Semi-Join von R mit L

L				
Α	В	C		
a ₁	b_1	C ₁		
a_2	b_2	C_2		



R	Resultat		
С	D	Е	
C_1	d_1	e_1	

Die relationale Division

Bsp.: Finde MatrNr der Studenten, die **alle** vierstündigen Vorlesungen hören

$$L := \Pi_{VorINr}(\sigma_{SWS=4}(Vorlesungen))$$

Definition der Division

- t ∈ R ÷ S, falls für jedes ts ∈ S ein tr ∈ R existiert, so dass gilt:
 - \bullet tr.S = ts.S
 - \bullet tr.(R-S) = t

R			
M	V	•	
m_1	V ₁	•	
m_1	V_2		
m_1	V_3		
m_2	V ₂		
m_2	V_3		

 $\begin{array}{c|c}
 & S \\
\hline
V \\
V_1 \\
V_2
\end{array} = \begin{array}{c}
R \div S \\
M \\
m_1
\end{array}$

 Die Division R ÷ S kann auch durch Differenz, Kreuzprodukt und Projektion ausgedrückt werden.

$$R \div S = \Pi_{(R-S)}(R) - \Pi_{(R-S)}((\Pi_{(R-S)}(R) \times S) - R)$$

Mengendurchschnitt

Als Beispielanwendung für den Mengendurchschnitt (Operatorsymbol ∩) betrachten wir folgende Anfrage: Finde die *PersNr* aller C4-Professoren, die mindestens eine Vorlesung halten.

$$\Pi_{\mathsf{PersNr}}(\rho_{\mathsf{PersNr}\leftarrow\mathsf{gelesenVon}}(\mathsf{Vorlesungen})) \cap \\ \Pi_{\mathsf{PersNr}}(\sigma_{\mathsf{Rang}=\mathsf{C4}}(\mathsf{Professoren}))$$

- Mengendurchschnitt nur auf zwei Argumentrelationen mit gleichem Schema anwendbar
- Deshalb ist die Umbenennung des Attribute gelesenVon in PersNr in der Relation Vorlesungen notwendig
- Der Mengendurchschnitt zweier Relationen R ∩ S kann durch die Mengendifferenz wie folgt ausgedrückt weden:

$$R \cap S = R - (R - S)$$

Der relationale Tupel-Kalkül

Eine Anfrage im relationalen Tupel-Kalkül hat die Form {t | P(t)} mit P(t) Formel.

Beispiele:

- C4-Professoren{p | p ∈ Professoren ∧ p.Rang = 'C4'}
- Studenten mit mindestens einer Vorlesung von Curie

```
\{s \mid s \in Studenten \\ \land \exists h \in h\"{o}ren(s.MatrNr=h.MatrNr \\ \land \exists v \in Vorlesungen(h.VorlNr=v.VorlNr \\ \land \exists p \in Professoren(p. PersNr=v.gelesenVon \\ \land p.Name = 'Curie')))\}
```

Wer hat alle vierstündigen Vorlesungen gehört

```
\{s \mid s \in Studenten \land \forall v \in Vorlesungen (v.SWS=4 \Rightarrow \exists h \in h\"{o}ren(h.VorlNr=v.VorlNr \land h.MatrNr= s.MatrNr))\}
```

Definition des Tupelkalküls

Atome

- s R, mit s Tupelvariable und R Relationenname
- s.A φt.B, mit s und t Tupelvariablen, A und B Attributnamen und φ Vergleichsperator (=, ≠, ≤, ...)
- s. A \(\phi \) c mit c Konstante

Formeln

- Alle Atome sind Formeln
- Ist P Formel, so auch ¬P und (P)
- Sind P_1 und P_2 Formeln, so auch $P_1 \wedge P_2$, $P_1 \vee P_2$ und $P_1 \Rightarrow P_2$
- Ist P(t) Formel mit freier Variable t, so auch

```
\forall t \in R(P(t)) \text{ und } \exists t \in R(P(t))
```

Sicherheit

- Einschränkung auf Anfragen mit endlichem Ergebnis.
- Die folgende Beispielanfrage

```
\{n \mid \neg \ (n \in Professoren)\} ist nicht sicher, denn das Ergebnis ist unendlich.
```

- Lösung durch Zusatzbedingung: Das Ergebnis des Ausdrucks muss Teilmenge der Domäne der Formel sein.
- Die Domäne einer Formel enthält
 - alle in der Formel vorkommenden Konstanten
 - alle Attributwerte von Relationen, die in der Formel referenziert werden

Der relationale Domänenkalkül

Ein Ausdruck des Domänenkalküls hat die Form $\{[v_1, v_2, ..., v_n] \mid P(v_1, ..., v_n)\}$ mit $v_1, ..., v_n$ Domänenvariablen und P Formel.

Beispiel: MatrNr und Namen der Prüflinge von Curie

```
\{[m, n] \mid \exists s ([m, n, s] \in Studenten \land \exists v, p, g ([m, v, p,g] \in prüfen \land \exists a,r, b([p, a, r, b] \in Professoren \land a = 'Curie')))\}
```

Während im Tupelkalkül Variablen für ganze Tupel stehen, stehen sie hier für einzelne Werte.

Sicherheit des Domänenkalküls

- Sicherheit ist analog zum Tupelkakkül
- zum Beispiel ist
 {[p,n,r,o] | ¬ ([p,n,r,o] ∈ Professoren) }
 nicht sicher.
- Zur Definition der Sicherheit benötigen wir:
 Def.: Die Domäne eines Prädikats P besteht aus der Menge aller in ihm enthaltenen Konstanten sowie aus der Vereinigung der Domänen der in ihr auftretenden Prädikate.

Ein Ausdruck

$$\{[x1, x2, ..., xn] \mid P(x1, x2, ..., xn)\}$$

ist sicher, falls folgende drei Bedingungen gelten:

- 1. Falls Tupel $[c_1, c_2, ..., c_n]$ mit Konstante c_i im Ergebnis enthalten ist, so muss jedes c_i ($1 \le i \le n$) in der Domäne von P enthalten sein.
- Für jede existenz-quantifizierte Teilformel ∃x(P₁(x)) muss gelten, dass P₁ nur für Elemente aus der Domäne von P₁ erfüllbar sein kann oder evtl. für gar keine. Mit anderen Worten, wenn für eine Konstante c das Prädikat P₁(c) erfüllt ist, so muss c in der Domäne von P₁ enthalten sein.
- 3. Für jede universal-quantifizierte Teilformel ∀ x(P₁(x)) muss gelten, dass sie dann und nur dann erfüllt ist, wenn P₁(x) für alle Werte der Domäne von P₁ erfüllt ist. Mit anderen Worten, P₁(d) muss für alle d, die nicht in der Domäne von P₁ enthalten sind, auf jeden Fall erfüllt sein.

Ausdruckskraft

Die drei Sprachen

- relationale Algebra,
- relationaler Tupelkalkül, eingeschränkt auf sichere Ausdrücke und
- 3. relationaler Domänenkalkül, eingeschränkt auf sichere Ausdrücke
- sind **gleich mächtig**. Dies deutet darauf hin, dass man eine kanonische Stufe der Ausdrucksstärke erreicht hat.

(Ähnliches gilt z.B. für die (Turing-)Berechenbarkeit, die unabhängig in verschiedenen Theorien äquivalent definiert wurde.)

Ausdruckskraft

Warum erlaubt man nicht gleich die ganze Prädikatenlogik als Anfragesprache?

- Anfragen würden nicht unbedingt terminieren, denn es kann
 - unendliche Ergebnise geben (unsichere Ausdrücke) und
 - noch schlimmer: die Prädikatenlogik ist nicht entscheidbar.

Ausblick: Manchmal will man eigentlich etwas mehr Ausdrucksstärke als relationale Algebra:

- Datalog bietet Rekursion (z.B.: Welche Metrostationen sind an einem Streiktag erreichbar?)
- F-Logic bietet Objektorientierung, Operatorüberladung, etc...
- OWL DL bietet gerade noch entscheidbare Logik (siehe Vorlesung "Künstliche Intelligenz")

• ...

Relationale Algebra und SQL

SQL ähnelt vom Aussehen her dem relationalen Tupelkalkül.

Die Semantik von SQL wird aber unter Verwendung der relationalen Algebra spezifiziert, wie wir weiter hinten sehen werden.