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Association Rules are a 
popular data mining
technique, e.g. for warehouse
basket analysis: „Which items
are frequently bought
together?“

Association Rules in a Nutshell

#(swimming+hiking parks) / 
#(swimming parks)

#(swimming+hiking parks) / 
#(all parks)

Toy Example:
Which activities can be
frequently performed together
in National Parks in California?

National Parks 
in California

{Swimming}   → {Hiking}                       

conf = 100 %,   supp = 10/19 



Slide 4

Observation:

The rules

{ Boating }  → { Hiking, NPS Guided Tours, Fishing }

{ Boating, Swimming }  → { Hiking, NPS Guided Tours, Fishing }

have the same support and the same confidence,

because the two sets

{ Boating }  and  { Boating, Swimming }

describe exactly the same set of parks.

Conclusion:

It is sufficient to look at one of those sets!

→ faster computation

→ no redundant rules
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1
2
3

a b c e

Another Toy
Example:

Unique represen-
tatives of each class:

the closed itemsets

(or concept intents).

(6 instead of 16)

The space of (potentially
frequent) itemsets:          
the powerset of { a, b, c, e }

Classes of itemsets describing the same sets of objects
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Our task:
Find a basis of rules, i.e., a 
minimal set of rules out of which all 
other rules can be derived.

Classical Data Mining Task:
Find, for given minsupp, minconf ∈
[0,1], all rules with support and 
confidence above these thresholds.

Bases of Association Rules

Two-Step Approach:

1. Compute all frequent itemsets
(e.g., Apriori).

2. For each frequent itemset X
and all its subsets Y:

check  X → Y.

Two-Step Approach:

1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:

check  X → Y.



Slide 7

Our task:
Find a basis of rules, i.e., a 
minimal set of rules out of which all 
other rules can be derived.

Two-Step Approach:

1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:

check  X → Y.

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis 
(FCA).

This relationship was discovered
independently in 1998/9 at

• Clermont-Ferrand (Lakhal)

• Darmstadt (Stumme)

• New York (Zaki)

with Clermont being the fastest group
developing algorithms (Close).
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Our task:
Find a basis of rules, i.e., a 
minimal set of rules out of which all 
other rules can be derived.

Two-Step Approach:

1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:

check  X → Y.

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis 
(FCA).

This relationship was discovered
independently in 1998/9 at

• Clermont-Ferrand (Lakhal)

• Darmstadt (Stumme)

• New York (Zaki)

with Clermont being the fastest group
developing algorithms (Close).

Structure
of the Talk:

• Introduction to FCA

• Conceptual Clustering with FCA

• Mining Association Rules with FCA

• Frequent (Closed) Datalog Queries
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Formal Concept Analysis

arose around 1980 in Darmstadt as a 
mathematical theory, which formalizes the
concept of ‚concept‘.

Since then, FCA has found many uses in 
Informatics, e.g. for

• Data Analysis, 

• Information Retrieval,

• Knowledge Discovery, 

• Software Engineering.

Based on datasets, FCA derives concept
hierarchies.

FCA allows to generate and visualize
concept hierarchies.
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Some typical applications:

• database marketing

• email management system

• developing qualitative theories in music estethics

• analysis of flight movements at Frankfurt airport

FCA models concepts as units of thought, consisting of two parts:

• The extension consists of all objects belonging to the concept.

• The intension consists of all attributes common to all those objects.
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National Parks 
in California

Formal Concept
Analysis

Def.:  A formal context
is a  triple (G,M,I), where

• G is a set of objects, 

• M is a set of attributes

• and I is a relation
between G and M.

• (g,m)∈I is read as 
„object g has attribute m“.
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National Parks 
in California

For A ⊆ G, we define

A´:=  { m∈M | ∀g∈A: (g,m)∈I }.

For B ⊆ M, we define dually

B´:=  { g∈G | ∀m∈B: (g,m)∈I }.

A

A´
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Intent B

National Parks 
in California

E
xt

en
t A

Def.:  A formal concept

is a pair (A,B) where

• A is a set of objects
(the extent of the concept), 

• B is a set of attributes
(the intent of the concept),

• A‘ = B and B‘ = A. 

= closed itemset
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National Parks 
in California

The blue concept is
a subconcept of 
the yellow one, 
since its extent is
contained in the
yellow one.

( ⇔ the yellow intent
is contained in the
blue one.)
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National Parks 
in California

The concept lattice of 
the National Parks in 
California



Slide 17

Def.: An implication
X → Y holds in a context, if
every object having all 
attributes in X also has all 
attributes in Y.

(= Association rule with 100% 
confidence)

• Examples:

{ Swimming }  → { Hiking }

Implications

{ Boating }  → { Swimming, Hiking, NPS Guided Tours, Fishing }

{ Bicycle Trail, NPS Guided Tours }  → { Swimming, Hiking }
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Attributes are
independent if they
span a hyper-cube
(i.e., if all 2n combi-
nations occur).

Example:

• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency
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Iceberg Concept Lattices

For minsupp = 85% the seven most general
of the 32.086 concepts of the Mushrooms
database http:\\kdd.ics.uci.edu are shown.

minsupp = 85%
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Iceberg Concept Lattices

minsupp = 85%

minsupp = 70%
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minsupp = 55%

With decreasing
minimum support the
information gets richer.
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Iceberg Concept Lattices and Frequent Itemsets

Iceberg concept lattices are a condensed representation of frequent itemsets:

supp(X) = supp(X‘‘)

Difference between frequent concepts and frequent itemsets in 
the mushrooms database.
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→ more efficient computation (e.g. TITANIC)

→ fewer rules (without information loss!)

32 frequent itemsets are
represented by 12 
frequent concept intents

minsupp = 70%

Advantage of the use of iceberg concept lattices
(compared to frequent itemsets)
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• From supp(B) = supp (B´´ )  follows:

Theorem: X → Y and   X ´´ → Y ´´ have the same support and the same
confidence.

Hence for computing association rules, it is sufficient to compute the supports of all 
frequent sets with B = B´´ (i.e., the intents of the iceberg concept lattice).

Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %
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Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Exact association rules
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Exact association rules

supp = 89.92 %

{ring number: one, veil color: white} → {gill attachment: free} 

supp = 89.92 %        conf =  100 %.
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Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Luxenburger Basis for approximate association rules
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Luxenburger Basis for approximate association rules

supp = 89.92 %

{ring number: one} → {veil color: white} 

supp = 89.92 %        conf =  97.5 % × 99.9 % ≈ 97.4 %.
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Some experimental results
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Joint work with L. Lakhal, 
Y. Bastide, N. Pasquier, 
R. Taouil.

Joint work of A. Hotho + 
G. Stumme
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(Begriffliches) Clustern

Clusterberechnung

Dokumente

Cluster  (mit
Beschreibungen)



Slide 34

Clusterberechnung

Clustern von Texten mit Hintergrundwissen

Aufgabe beim Clustern: 
Zusammenfassen von ähnlichen

Objekten zu Gruppen (Clustern).

Test-Daten: 
(Eine Teilmenge von) 21578 Reuters-

Nachrichtentexten

Problem: 
1. Überlappende Cluster sollen

erlaubt sein.
2. Beschreibung der Cluster 

erwünscht.
3. Verfahren soll effizient sein.

Zusatzfrage: 
Kann Hintergrundwissen das Ergebnis

verbessern?
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Formale Begriffsanalyse

+ bietet intensionale Beschreibung
+ Dokumente können zu mehreren Clustern gehören
— Berechnung ist teuer
— evtl. „Overfitting“

Partitionierendes Clustern (z.B. k-Means)

+ clustert große Datenmengen schnell
— die Ergebnisse sind für Menschen schwer verständlich

Verschiedene Ansätze
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Begriffliches Clustern

• Kombination von FBA und Standard Text-
Clustering

• Vorverarbeitung der Dokumente
• Anreicherung mit Hintergrundwissen (Wordnet)
• Bestimmen einer geeigneten Zahl k von Clustern mit k-

Means
• Extraktion von Beschreibungen der Cluster
• Weitere Clusterung mit Begriffsanalyse
• Visualisierung der Cluster im Begriffsverband
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Text Clustering mit Hintergrundwissen

- choose a representation
- similarity measure
- clustering algorithm

Bi-Section is a 
version of KMeans

cosine as 
similarity measure

bag of terms
(details on the
next slide)

Reuters data set
for our studies
(min15 max100)

Conceptual 
clustering with FCA
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Preprocessing steps

docid term1 term2 term3 ...
doc1 0 0 1
doc2 2 3 1
doc3 10 0 0
doc4 2 23 0

...

– build a bag of words model

– extract word counts (term frequencies)
– remove stopwords
– pruning: drop words with less than e.g. 30 occurrences 
– weighting of document vectors with tfidf

(term frequency - inverted document frequency)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

)(
log))(log()(

tdf
D

  * d,ttf  d,ttfidf
|D| no. of documents d
df(t) no. of documents d which

contain term t
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The Bag-of-Words-Model – the Classical Approach

• The bag-of-words-model is the standard feature
representation for content-based text mining.
– Hypothesis: patterns in terminology reflect

patterns in conceptualizations.
– Steps: chunking, stemming, stop words, 

weighting… go !
– Good statistical properties.

[Salton 1989] 

• Some known deficiencies:
– collocations (multi word expressions),
– synonymous terminology,
– polysemous terminology, and
– varying degrees of specificity / generalization.
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Limitations of the Bag-Of-Words Model

•Thus, algorithms can only detect patterns in terminology --
conceptual patterns are ignored.

•Specifically, such systems fail to cope with:

1. Multi Word Expressions: European Union vs. 
Union‚

2. Synonymous Terminology: Tungsten vs. 
Wolfram‚

3. Polysemous Terminology: nut
4. Generalizations: beef vs. pork
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Our Approach

• If we enhance the bag-of-words document 
representation with appropriate ontology concepts, 
this should improve classification by addressing 
issues 1-3.

• If we carefully generalize these concepts, this should 
improve classification even more by addressing 
issue 4.

Conceptual Document Representation
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Vorverarbeitung

• Vorverarbeitung
• “Bag of words” Modell
• Stopworte entfernen
• Seltene Worte (<5) entfernen
• Hinzufügen genereller Terme mit WordNet

Test-Daten: Reuters-21578 Corpus
• 1015 Documente ausgewählt, so dass jede Klasse min. 25 

und max. 30 Dokumente enthält



Slide 43

WordNet

Root
entity

something

physical object

artifact

substance

chemical
compound

organic
compound

lipid

oil

EN:oil

covering

coating

paint

oil paint

cover

cover with oil

bless

oil, anoint

EN:anoint EN:inunct

oil colorcrude oil

WordNet
• besteht aus ‘Synsets’, die 
Synonyme zusammenfassen.
• die Synsets sind hierarchisch
angeordnet.
• ist online unter
http://wordnet.princeton.edu
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109377 Concepts
(synsets)

Hinzufügen von Oberbegriffen aus WordNet

144684 lexical
entries

Root
entity

something

physical object

artifact

substance

chemical
compound

organic
compound

lipid

oil

EN:oil

covering

coating

paint

oil paint

cover

cover with oil

bless

oil, anoint

EN:anoint EN:inunct

oil colorcrude oil

144684 lexical
entries

Use of superconcepts
(Hypernyms in Wordnet)

• Exploit more generalized concepts
• e.g.: chemical compound is the 
3rd superconcept of oil

Strategies:
all, first, context
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Oman
has 
granted
term
crude
oil
customers
retroactive
discounts
...

2
1
1
1
1
2
1
1
1
...

Bag of Words
Dok 17892 crude 
============= 
Oman has granted term crude oil 
customers retroactive discounts from 
official prices of 30 to 38 cents per barrel 
on liftings made during February, March 
and April, the weekly newsletter Middle 
East Economic Survey (MEES) said. 
MEES said the price adjustments, arrived 
at through negotiations between the 
Omani oil ministry and companies 
concerned, are designed to compensate 
for the difference between market-
related prices and the official price of 
17.63 dlrs per barrel adopted by non-
OPEC Oman since February. 
REUTER 

Clustern von Texten mit Hintergrundwissen
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Oman
has 
granted
term
crude
oil
customers
retroactive
discounts
...
chem. comp.   2

2
1
1
1
1
2
1
1
1
...

Bag of Words
Dok 17892 crude 
============= 
Oman has granted term crude oil 
customers retroactive discounts from 
official prices of 30 to 38 cents per barrel 
on liftings made during February, March 
and April, the weekly newsletter Middle 
East Economic Survey (MEES) said. 
MEES said the price adjustments, arrived 
at through negotiations between the 
Omani oil ministry and companies 
concerned, are designed to compensate 
for the difference between market-
related prices and the official price of 
17.63 dlrs per barrel adopted by non-
OPEC Oman since February. 
REUTER 

Clustern von Texten mit Hintergrundwissen

Hinzufügen von 
Oberbegriffen 
aus WordNet
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Clustern von Texten mit Hintergrundwissen

• Zweistufiger Cluster-Ansatz:

– Erster Cluster-Schritt:
• mit Standard-Algorithmus “Bisection k-Means”
• reduziert effizient die Anzahl der Objekte

– Zweiter Cluster-Schritt:
• mit Formaler Begriffsanalyse
• liefert intensionale Beschreibungen der Cluster 
• und erlaubt Mehrfachvererbung



Slide 48

1. Schritt: Partitionierendes Clustern

Partitionierender Cluster-Algorithmus
• Bi-Section Version von k-Means 
• Kosinus als Ähnlichkeitsmaß
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Bi-Partitioning K-Means
• Input: Set of documents D, number of clusters k
• Output: k cluster that exhaustively partition D

• Initialize: P* = {D}

• Outer Loop: 
Repeat k-1 times: Bi-Partition the largest cluster E∈P*

•
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Bi-Partitioning K-Means
• Input: Set of documents D, number of clusters k
• Output: k cluster that exhaustively partition D

• Initialize: P* = {D}

• Outer loop: 
Repeat k-1 times: Bi-Partition the largest cluster E∈P*

• Inner loop:  
– Randomly initialize two documents from E to become e1,e2
– Repeat until convergence is reached

• Assign each document from E to the nearest of the two ei ; 
thus split E into E1,E2

• Re-compute e1,e2 to become the centroids of the document
representations assigned to them

– P* := (P* \ E ) ∪ {E1,E2 }
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2. Schritt Begriffliches Clustern

• Extraktion von Cluster-Beschreibungen
• die Verwendung aller Synsets erzeugt einen zu großen

Verband
• Auswahl jeweils der Synsets, die für das Cluster über

einem gegebenen Schwellwert θ liegen

Partitionierender Cluster-Algorithmus
• wie oben beschrieben

Begriffliches Clustern mit Begriffsanalyse
• Berechnung des Begriffsverbandes erzeugt intensionale

Beschreibungen der Cluster
• Visualisierung
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Extracted Word description
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Ergebnisse

compound, chemical compound

oil

refiner

Begriffskette mit
zunehmender Spezifität
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Ergebnisse

Crude oil
barrel
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Ergebnisse

resin 
palm
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