## 5. Klassifikation

## Inhalt dieses Kapitels

5.1 Einleitung

Das Klassifikationsproblem, Bewertung von Klassifikatoren

5.2 Bayes-Klassifikatoren

Optimaler Bayes-Klassifikator, Naiver Bayes-Klassifikator, Anwendungen

5.3 Nächste-Nachbarn-Klassifikatoren

Grundbegriffe, Parameterwahl, Anwendungen

5.4 Entscheidungsbaum-Klassifikatoren

Grundbegriffe, Splitstrategien, Overfitting, Pruning von Entscheidungsbäumen

5.5 Skalierung für große Datenbanken

SLIQ, SPRINT, RainForest

# 5.1 Einleitung

### Das Klassifikationsproblem

- Gegeben: eine Menge O von Objekten des Formats  $(o_1, \ldots, o_d)$  mit  $Attributen A_i$ ,  $1 \le i \le d$ , und Klassenzugehörigkeit  $c_i$ ,  $c_i \in C = \{c_1, \ldots, c_k\}$
- Gesucht: die Klassenzugehörigkeit für Objekte aus  $D \setminus O$  ein *Klassifikator*  $K : D \rightarrow C$
- Abgrenzung zum Clustering

Klassifikation: Klassen apriori bekannt Clustering: Klassen werden erst gesucht

• Verwandtes Problem: *Vorhersage* (Prediction)



gesucht ist der Wert für ein numerisches Attribut

Methode z.B. Regression

# 5.1 Einleitung

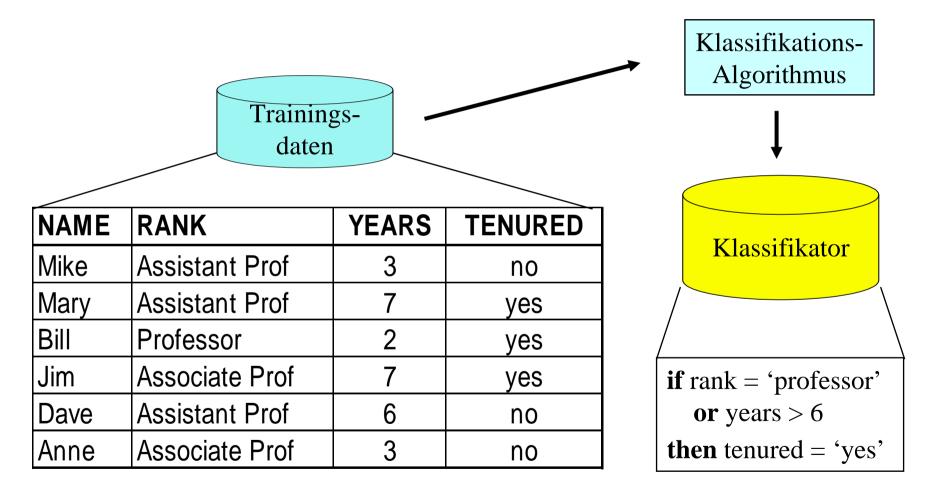
## Beispiel

| ID | Alter | Autotyp | Risiko  |
|----|-------|---------|---------|
| 1  | 23    | Familie | hoch    |
| 2  | 17    | Sport   | hoch    |
| 3  | 43    | Sport   | hoch    |
| 4  | 68    | Familie | niedrig |
| 5  | 32    | LKW     | niedrig |

#### Einfacher Klassifikator

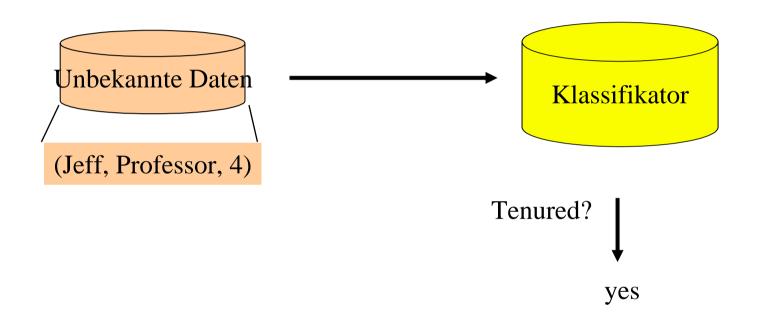
#### 5.1 Der Prozess der Klassifikation

#### Konstruktion des Modells



#### 5.1 Der Prozess der Klassifikation

### Anwendung des Modells





manchmal: keine Klassifikation unbekannter Daten sondern "nur" besseres Verständnis der Daten

## Grundbegriffe

• Klassifikator ist für die Trainingsdaten optimiert, liefert auf der Grundgesamtheit der Daten evtl. schlechtere Ergebnisse



- *Train-and-Test*Aufteilung der Menge *O* in zwei Teilmengen:
  - Trainingsmengezum Lernen des Klassifikators (Konstruktion des Modells)
  - Testmengezum Bewerten des Klassifikators

# Grundbegriffe

- Train-and-Test nicht anwendbar, wenn nur wenige Objekte mit bekannter Klassenzugehörigkeit
- Stattdessen: *m*-fache *Überkreuz-Validierung* (*Cross-Validation*)
- Idee
  - teile die Menge O in m gleich große Teilmengen
  - verwende jeweils *m*−1 Teilmengen zum Training und die verbleibende Teilmenge zur Bewertung
  - kombiniere die erhaltenen *m* Klassifikationsfehler (und die *m* gefundenen Modelle!)

## Gütemaße für Klassifikatoren

- Klassifikationsgenauigkeit
- Kompaktheit des Modells
  - z.B. Größe eines Entscheidungsbaums
- Interpretierbarkeit des Modells wieviel Einsichten vermittelt das Modell dem Benutzer?
- Effizienz
  - der Konstruktion des Modells der Anwendung des Modells
- Skalierbarkeit für große Datenmengen für sekundärspeicherresidente Daten
- Robustheit
  - gegenüber Rauschen und fehlenden Werten

#### Gütemaße für Klassifikatoren

- Sei K ein Klassifikator,  $TR \subseteq O$  die Trainingsmenge,  $TE \subseteq O$  die Testmenge. Bezeichne C(o) die tatsächliche Klasse eines Objekts o.
- *Klassifikationsgenauigkeit* (classification accuracy) von *K* auf *TE*:

$$G_{TE}(K) = \frac{|\{o \in TE \mid K(o) = C(o)\}|}{|TE|}$$

• Tatsächlicher Klassifikationsfehler (true classification error)

$$F_{TE}(K) = \frac{|\{o \in TE \,|\, K(o) \neq C(o)\}|}{|TE|}$$

• Beobachteter Klassifikationsfehler (apparent classification error)

$$F_{TR}(K) = \frac{|\{o \in TR \mid K(o) \neq C(o)\}|}{|TR|}$$

# 5.2 Bayes-Klassifikatoren

#### **Motivation**

- gegeben ein Objekt o und zwei Klassen positiv und negativ
- drei unabhängige Hypothesen  $h_1$ ,  $h_2$ ,  $h_3$
- die A-posteriori-Wahrscheinlichkeiten der Hypothesen für gegebenes o

$$P(h_1|o) = 0,4,$$

$$P(h_2|o) = 0.3,$$

$$P(h_3|o) = 0.3$$

• die A-posteriori-Wahrscheinlichkeiten der Klassen für gegebene Hypothese

$$P(negativ|h_1) = 0$$
,  $P(positiv|h_1) = 1$ 

$$P(negativ|h_2) = 1$$
,  $P(positiv|h_2) = 0$ 

$$P(negativ|h_3) = 1$$
,  $P(positiv|h_3) = 0$ 

o ist mit Wahrscheinlichkeit 0,4 positiv, mit Wahrscheinlichkeit 0,6 negativ

# 5.2 Optimaler Bayes-Klassifikator

## Grundbegriffe

- Sei H =  $\{h_1, \ldots, h_1\}$  eine Menge *unabhängiger* Hypothesen.
- Sei o ein zu klassifizierendes Objekt.
- Der optimale Bayes-Klassifikator ordnet o der folgenden Klasse zu:

$$\underset{c_{j} \in C}{argmax} \sum_{h_{i} \in H} P(c_{j}|h_{i}) \cdot P(h_{i}|o)$$

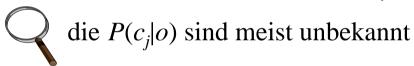
- im obigen Beispiel: o als negativ klassifiziert
- Kein anderer Klassifikator mit demselben A-priori-Wissen erreicht im Durchschnitt eine bessere Klassifikationsgüte.



# 5.2 Optimaler Bayes-Klassifikator

## Grundbegriffe

- Vereinfachung: immer genau eine der Hypothesen  $h_i$  gültig
- vereinfachte Entscheidungsregel  $\underset{c_j \in C}{argmax} P(c_j|o)$



• Umformung mit Hilfe des Satzes von Bayes

$$\underset{c_{j} \in C}{\operatorname{argmax}} \ P(c_{j}|o) = \underset{c_{j} \in C}{\operatorname{argmax}} \ \frac{P(o|c_{j}) \cdot P(c_{j})}{P(o)} = \underset{c_{j} \in C}{\operatorname{argmax}} \ P(o|c_{j}) \cdot P(c_{j})$$

• endgültige Entscheidungsregel des optimalen Bayes-Klassifikators

$$\underset{c_{i} \in C}{argmax} P(o|c_{j}) \cdot P(c_{j})$$

 $\longrightarrow$   $\Lambda$ 

Maximum-Likelihood-Klassifikator

# 5.2 Naiver Bayes-Klassifikator

# Grundbegriffe

- Schätzung der  $P(c_i)$  als beobachtete Häufigkeit der einzelnen Klassen
- Schätzung der  $P(o|c_i)$ ?
- Annahmen des naiven Bayes-Klassifikators

$$-o = (o_1, \ldots, o_d)$$

- die Attributwerte  $o_i$  sind für eine gegebene Klasse bedingt unabhängig
- Entscheidungsregel des naiven Bayes-Klassifikators

$$\underset{c_j \in C}{argmax} \ P(c_j) \cdot \prod_{i=1}^{d} P(o_i | c_j)$$

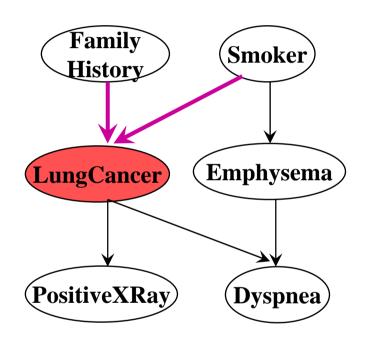
# 5.2 Bayes-Netzwerke

# Grundbegriffe

- Graph mit Knoten = *Zufallsvariable* und Kante = *bedingte Abhängigkeit*
- Jede Zufallsvariable ist bei gegebenen Werten für die Vorgänger-Variablen bedingt unabhängig von allen Zufallsvariablen, die keine Nachfolger sind.
- Für jeden Knoten (Zufallsvariable): Tabelle der bedingten Wahrscheinlichkeiten
- Trainieren eines Bayes-Netzwerkes
  - bei gegebener Netzwerk-Struktur und allen bekannten Zufallsvariablen
  - bei gegebener Netzwerk-Struktur und teilweise unbekannten
     Zufallsvariablen
  - bei apriori unbekannter Netzwerk-Struktur

# 5.2 Bayes-Netzwerke

## Beispiel



|                        | ( <b>FH,~S</b> ) |     | (~] | (~FH,~S) |  |  |  |  |
|------------------------|------------------|-----|-----|----------|--|--|--|--|
| $(FH,S)$ $(\sim FH,S)$ |                  |     |     |          |  |  |  |  |
| LC                     | 0.8              | 0.5 | 0.7 | 0.1      |  |  |  |  |
| ~LC                    | 0.2              | 0.5 | 0.3 | 0.9      |  |  |  |  |

bedingte Wahrscheinlichkeiten für LungCancer

bei gegebenen Werten für FamilyHistory und Smoker liefert der Wert für Emhysema keine zusätzliche Information über LungCancer

## Grundlagen

• Anwendungen (z.B. [Craven et al. 1999], [Chakrabarti, Dom & Indyk 1998])

Filterung von Emails

Klassifikation von Webseiten

- Vokabular  $T = \{t_1, \ldots, t_d\}$  von relevanten Termen
- Repräsentation eines Textdokuments  $o = (o_1, ..., o_d)$
- $o_i$ : Häufigkeit des Auftretens von  $t_i$  in o
- Methode
  - Auswahl der relevanten Terme
  - Berechnung der Termhäufigkeiten
  - Klassifikation neuer Dokumente

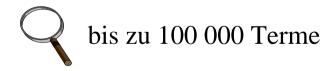
#### Auswahl der Terme

• Reduktion der auftretenden Worte auf Grundformen

Stemming

Abhängigkeit von der Sprache der Texte

- Einwort- oder Mehrwort-Terme?
- Elimination von Stoppwörtern
- weitere Reduktion der Anzahl der Terme



#### Reduktion der Anzahl der Terme

• optimaler Ansatz

O(2<sup>AnzahlTerme</sup>) Teilmengen optimale Teilmenge läßt sich nicht effizient bestimmen

• Greedy-Ansatz

bewerte die "Separationsfähigkeit" jedes Terms einzeln sortiere die Terme nach dieser Maßzahl absteigend wähle die ersten d Terme als Attribute aus

# Klassifikation neuer Dokumente

• Anwendung des naiven Bayes-Klassifikators



aber: Häufigkeiten der verschiedenen Terme typischerweise korreliert

• wichtigste Aufgabe:

Schätzung der  $P(o_i|c)$  aus den Trainingsdokumenten

• Generierung eines Dokuments o der Klasse c mit n Termen

Bernoulli-Experiment:

n mal eine Münze werfen,

die für jeden Term  $t_i$  eine Seite besitzt

# Klassifikation neuer Dokumente

- Wahrscheinlichkeit, daß  $t_i$  nach oben kommt  $f(t_i, c)$ : relative Häufigkeit des Terms  $t_i$  in der Klasse c
- Problem
  - Term  $t_i$  tritt in keinem Trainingsdokument der Klasse  $c_i$  auf
  - $-t_i$  tritt in einem zu klassifizierenden Dokument o auf
  - in o treten ebenfalls "wichtige" Terme der Klasse  $c_i$  auf



vermeide  $P(o_j|c) = 0$ 

Glättung der absoluten Häufigkeiten

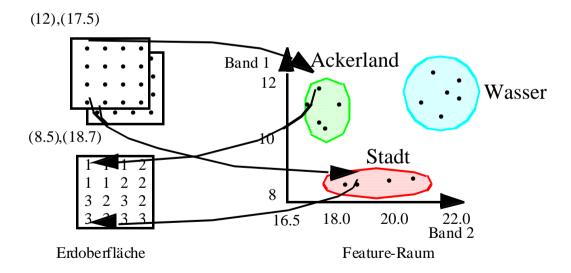
# Experimentelle Untersuchung [Craven et al. 1999]

- Trainingsmenge: 4127 Webseiten von Informatik-Instituten
- Klassen: department, faculty, staff, student, research project, course, other
- 4-fache Überkreuz-Validierung
   drei der Universitäten zum Training, vierte Universität zum Test
- Zusammenfassung der Ergebnisse
  - Klassifikationsgenauigkeit 70% bis 80 % für die meisten Klassen
  - Klassifikationsgenauigkeit 9% für Klasse *staff* aber 80% korrekt in Oberklasse *person*
  - schlechte Klassifikationsgenauigkeit für Klasse *other* große Varianz der Dokumente dieser Klasse

# 5.2 Interpretation von Rasterbildern

#### **Motivation**

- automatische Interpretation von d Rasterbildern eines bestimmten Gebiets für jedes Pixel ein d-dimensionaler Grauwertvektor  $(o_1, \ldots, o_d)$
- verschiedene Oberflächenbeschaffenheiten der Erde besitzen jeweils ein charakteristisches Reflexions- und Emissionsverhalten



# 5.2 Interpretation von Rasterbildern

## Grundlagen

- Anwendung des optimalen Bayes-Klassifikators
- Schätzung der  $P(o \mid c)$  ohne Annahme der bedingten Unabhängigkeit
- Annahme einer *d*-dimensionalen Normalverteilung für die Grauwertvektoren einer Klasse

Wahrscheinlichkeit der Klassenzugehörigkeit

Wasser

Entscheidungsflächen

Stadt

Ackerland

# 5.2 Interpretation von Rasterbildern

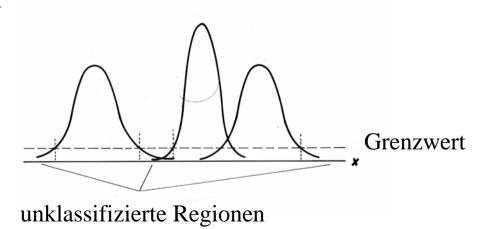
#### Methode

• Zu schätzen aus den Trainingsdaten

 $\mu_i$ : d-dimensionaler Mittelwertvektor aller Feature-Vektoren der Klasse  $c_i$ 

 $\Sigma_i$ :  $d \cdot d$  Kovarianzmatrix der Klasse  $c_i$ 

- Probleme der Entscheidungsregel
  - Likelihood für die gewählte
     Klasse sehr klein
  - Likelihood für mehrereKlassen ähnlich



# 5.2 Bayes-Klassifikatoren

#### Diskussion

- + Optimalitätseigenschaft Standard zum Vergleich für andere Klassifikatoren
- + hohe Klassifikationsgenauigkeit in vielen Anwendungen
- + Inkrementalität Klassifikator kann einfach an neue Trainingsobjekte adaptiert werden
- + Einbezug von Anwendungswissen
- Anwendbarkeit die erforderlichen bedingten Wahrscheinlichkeiten sind oft unbekannt
- Ineffizienz

bei sehr vielen Attributen insbesondere Bayes-Netzwerke

#### **Motivation**

Bayes-Klassifikator zur Interpretation von Rasterbildern
 Annahme der Normalverteilung der Grauwertvektoren einer Klasse

erfordert Schätzung von  $\mu_i$  und  $\Sigma_i$ 

Schätzung von µ, benötigt wesentlich weniger Trainingsdaten

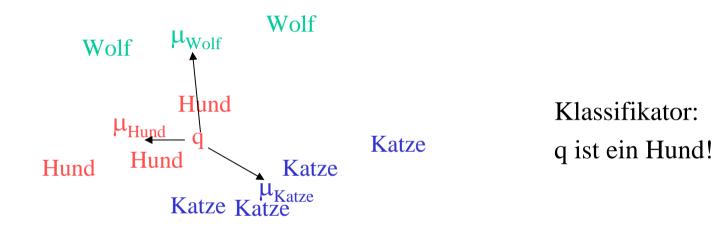
Ziel

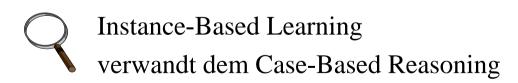
Klassifikator, der lediglich die Mittelwertvektoren für jede Klasse benötigt



Nächste-Nachbarn-Klassifikatoren

# Beispiel





### Grundlagen

#### Basisverfahren

- Trainingsobjekte o als Attributvektoren  $o = (o_1, ..., o_d)$
- Bestimmung des Mittelwertvektors  $\mu_i$  für jede Klasse  $c_i$
- Zuordnung eines zu klassifizierenden Objektes zur Klasse  $c_i$  mit dem nächstgelegenen Mittelwertvektor  $\mu_i$

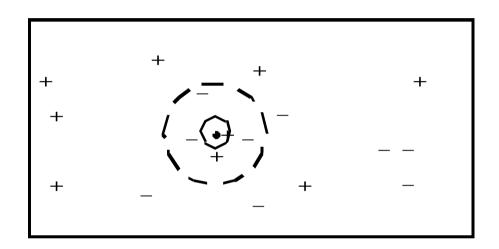
#### Verallgemeinerungen

- benutze mehr als ein Trainingsobjekt pro Klasse
- betrachte k > 1 Nachbarn
- gewichte die Klassen der k nächsten Nachbarn

## Grundbegriffe

- Distanzfunktion definiert die Ähnlichkeit (Unähnlichkeit) für Paare von Objekten
- Anzahl k der betrachteten Nachbarn
- *Entscheidungsmenge* die Menge der zur Klassifikation betrachteten *k*-nächsten Nachbarn
- Entscheidungsregel
  wie bestimmt man aus den Klassen der Entscheidungsmenge die Klasse des
  zu klassifizierenden Objekts?

## Beispiel



Klassen "+" und "-"

Entscheidungsmenge für k = 1

Entscheidungsmenge für k = 5

Gleichgewichtung der Entscheidungsmenge

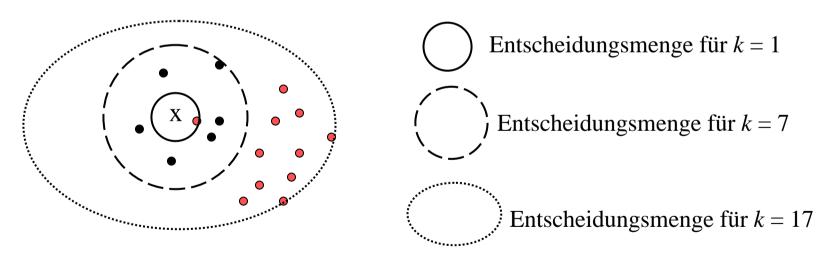
k = 1: Klassifikation als ,,+", k = 5 Klassifikation als ,,-"

Gewichtung der Entscheidungsmenge nach inversem Quadrat der Distanz

k = 1 und k = 5: Klassifikation als "+"

#### Wahl des Parameters k

- "zu kleines" k: hohe Sensitivität gegenüber Ausreißern
- •,,zu großes" k: viele Objekte aus anderen Clustern (Klassen) in der Entscheidungsmenge.
- mittleres k: höchste Klassifikationsgüte, oft 1 << k < 10



## Entscheidungsregel

#### Standardregel

wähle die Mehrheitsklasse der Entscheidungsmenge

### Gewichtete Entscheidungsregel

gewichte die Klassen der Entscheidungsmenge

- nach Distanz
- nach Verteilung der Klassen (oft sehr ungleich!)

```
Klasse A: 95 %, Klasse B 5 %
```

Entscheidungsmenge =  $\{A, A, A, A, B, B, B\}$ 

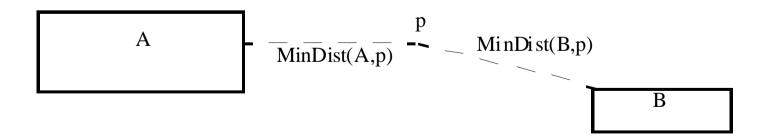
Standardregel  $\Rightarrow$  A, gewichtete Regel  $\Rightarrow$  B

# Indexunterstützung für k-nächste-Nachbarn Anfragen

- balancierte Indexstruktur (z.B. X-Baum oder M-Baum)
- Anfragepunkt p
- PartitionList

MURs, deren referenzierte Teilbäume noch bearbeitet werden müssen, nach MinDist zu p aufsteigend sortiert

• NN der nächste Nachbar von p in den bisher gelesenen Datenseiten



## Indexunterstützung für k-nächste-Nachbarn Anfragen

- alle MURs aus der PartitionList entfernen, die eine größere Distanz zum Anfragepunkt p besitzen als der bisher gefundene nächste Nachbar NN von p
- PartitionList wird aufsteigend nach MinDist zu p sortiert
- es wird jeweils das erste Element dieser Liste zur Bearbeitung ausgewählt es werden keine überflüssigen Seiten gelesen!
- Anfragebearbeitung auf wenige Pfade der Indexstruktur beschränkt

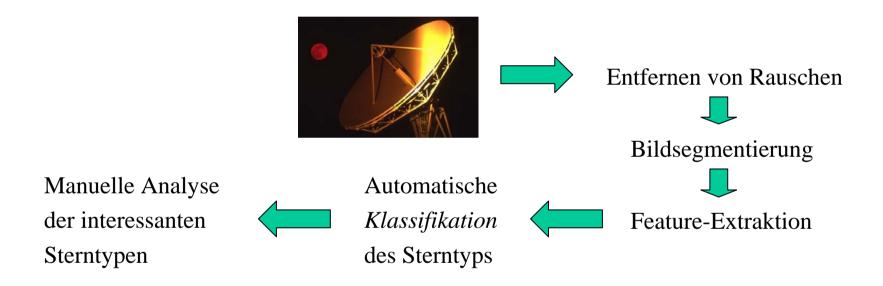


Durschnittliche Laufzeit O(log n) bei "nicht zu vielen" Attributen

bei sehr vielen Attributen O(n)

### 5.3 Klassifikation von Sternen

## Analyse astronomischer Daten



Klassifikation des Sterntyps mit Nächste-Nachbarn-Klassifikator basierend auf dem Hipparcos-Katalog

#### 5.3 Klassifikation von Sternen

## Hipparcos-Katalog [ESA 1998]

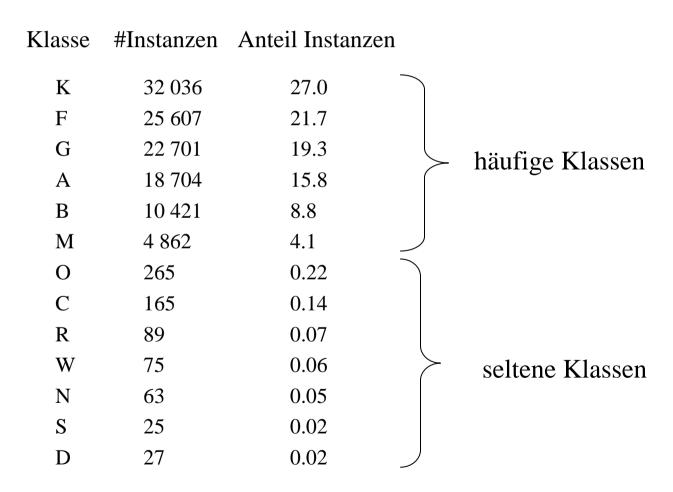
- enthält ca. 118 000 Sterne
- mit 78 Attributen (Helligkeit, Entfernung, Farbe,...)
- Klassenattribut: Spektraltyp (Attribut H76)

z.B. ANY
H76: G0 G K ...
H76: G7.2
H76: KIII/IV G0 G1 G2 ...

- Werte des Spektraltyps sind vage
- Hierarchie von Klassen
  - benutze die erste Ebene der Klassenhierarchie

## 5.3 Klassifikation von Sternen

## Verteilung der Klassen



### 5.3 Klassifikation von Sternen

## Experimentelle Untersuchung [Poschenrieder 1998]

#### Distanzfunktion

- mit 6 Attributen (Farbe, Helligkeit und Entfernung)
- mit 5 Attributen (ohne Entfernung)
  - ⇒ beste Klassifikationsgenauigkeit mit 6 Attributen

#### Anzahl k der Nachbarn

 $\Rightarrow$  beste Klassifikationsgenauigkeit für k = 15

### Entscheidungsregel

- Gewichtung nach Distanz
- Gewichtung nach Klassenverteilung
- ⇒ beste Klassifikationsgenauigkeit bei Gewichtung nach Distanz aber nicht nach Klassenverteilung

## 5.3 Klassifikation von Sternen

| Klasse | Falsch        | Korrekt       | Klassifikations- |
|--------|---------------|---------------|------------------|
|        | klassifiziert | klassifiziert | genauigkeit      |
| K      | 408           | 2338          | 85.1%            |
| F      | 350           | 2110          | 85.8%            |
| G      | 784           | 1405          | 64.2%            |
| A      | 312           | 975           | 75.8%            |
| В      | 308           | 241           | 43.9%            |
| M      | 88            | 349           | 79.9%            |
| C      | 4             | 5             | 55.6%            |
| R      | 5             | 0             | 0%               |
| W      | 4             | 0             | 0%               |
| O      | 9             | 0             | 0%               |
| N      | 4             | 1             | 20%              |
| D      | 3             | 0             | 0%               |
| S      | 1             | 0             | 0%               |
| Total  | 2461          | 7529          | 75.3%            |



hohe Klassifikationsgenauigkeit für die häufigen Klassen, schlechte Genauigkeit für die seltenen Klassen

die meisten seltenen Klassen besitzen weniger als k/2 = 8 Instanzen!

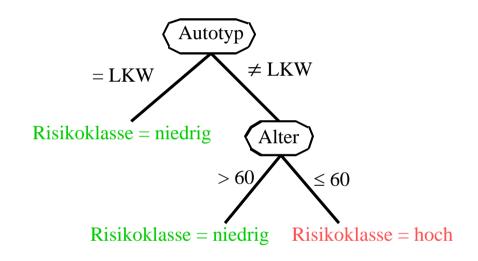
### 5.3 Nächste-Nachbarn-Klassifikatoren

#### Diskussion

- + Anwendbarkeit erfordert als Eingabe nur die Trainingsdaten
- + hohe Klassifikationsgenauigkeit in vielen Anwendungen
- + Inkrementalität Klassifikator kann sehr einfach an neue Trainingsobjekte adaptiert werden
- + auch zur Vorhersage einsetzbar
- Ineffizienz erfordert *k*-nächste-Nachbarn Anfrage an die Datenbank
- liefert kein explizites Wissen über die Klassen

#### **Motivation**

| ID | Alter | Autotyp | Risiko  |
|----|-------|---------|---------|
| 1  | 23    | Familie | hoch    |
| 2  | 17    | Sport   | hoch    |
| 3  | 43    | Sport   | hoch    |
| 4  | 68    | Familie | niedrig |
| 5  | 32    | LKW     | niedrig |





finden explizites Wissen

Entscheidungsbäume sind für die meisten Benutzer verständlich

## Grundbegriffe

- Ein Entscheidungsbaum ist ein Baum mit folgenden Eigenschaften:
  - ein innerer Knoten repräsentiert ein Attribut,
  - eine Kante repräsentiert einen Test auf dem Attribut des Vaterknotens,
  - ein Blatt repräsentiert eine der Klassen.
- Konstruktion eines Entscheidungsbaums
  - anhand der Trainingsmenge
  - Top-Down
- Anwendung eines Entscheidungsbaums

Durchlauf des Entscheidungsbaum von der Wurzel zu einem der Blätter



Zuordnung des Objekts zur Klasse des erreichten Blatts

### Konstruktion eines Entscheidungsbaums

### Basis-Algorithmus

- Anfangs gehören alle Trainingsdatensätze zur Wurzel.
- Das nächste Attribut wird ausgewählt (Splitstrategie).
- Die Trainingsdatensätze werden unter Nutzung des Splitattributs partitioniert.
- Das Verfahren wird rekursiv für die Partitionen fortgesetzt.
  - lokal optimierender Algorithmus

#### Abbruchbedingungen

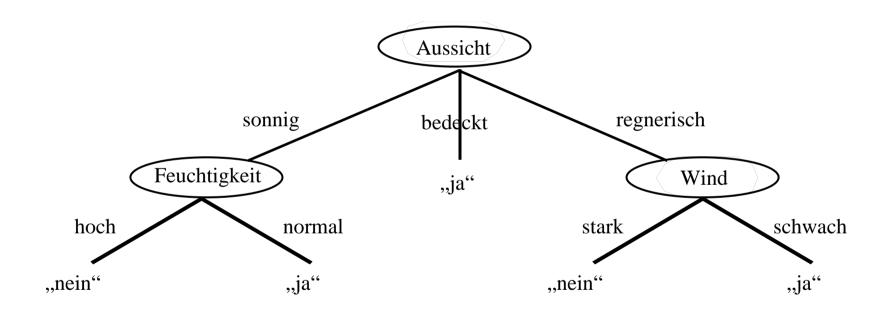
- keine weiteren Splitattribute
- alle Trainingsdatensätze eines Knotens gehören zur selben Klasse

## Beispiel

| Tag | Aussicht   | Temperatur | Feuchtigkeit | Wind    | Tennispielen |
|-----|------------|------------|--------------|---------|--------------|
| 1   | sonnig     | heiß       | hoch         | schwach | nein         |
| 2   | sonnig     | heiß       | hoch         | stark   | nein         |
| 3   | bedeckt    | heiß       | hoch         | schwach | ja           |
| 4   | regnerisch | mild       | hoch         | schwach | ja           |
| 5   | regnerisch | kühl       | normal       | schwach | ja           |
| 6   | regnerisch | kühl       | normal       | stark   | nein         |
| 7   |            |            |              |         |              |

Ist heute ein Tag zum Tennisspielen?

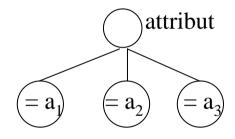
## Beispiel

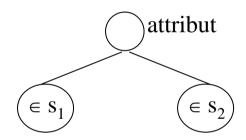


## Typen von Splits

### Kategorische Attribute

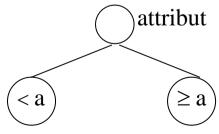
- Splitbedingungen der Form ,,attribut = a" or ,, $attribut \in set$ "
- viele mögliche Teilmengen





#### Numerische Attribute

- Splitbedingungen der Form "attribut < a"
- viele mögliche Splitpunkte



## Qualitätsmaße für Splits

### Gegeben

- eine Menge *T* von Trainingsobjekten
- eine disjunkte, vollständige Partitionierung  $T_1, T_2, \ldots, T_m$  von T
- $p_i$  die relative Häufigkeit der Klasse  $c_i$  in T

#### Gesucht

- ein Maß der *Unreinheit* einer Menge *S* von Traininsgobjekten in Bezug auf die Klassenzugehörigkeit
- ein Split von T in  $T_1, T_2, \ldots, T_m$ , der dieses Maß der Unreinheit minimiert
  - Informationsgewinn, Gini-Index

## Informationsgewinn

- Entropie: minimale Anzahl von Bits zum Codieren der Nachricht, mit der man die Klasse eines zufälligen Trainingsobjekts mitteilen möchte
- Die *Entropie* für eine Menge *T* von Trainingsobjekten ist definiert als

$$entropie(T) = \sum_{i=1}^{k} p_i \cdot \log p_i$$

$$entropie(T) = 0$$
, falls  $p_i = 1$  für ein  $i$   
 $entropie(T) = 1$  für  $k = 2$  Klassen mit  $p_i = 1/2$ 

- Das Attribut A habe die Partitionierung  $T_1, T_2, \ldots, T_m$  erzeugt.
- Der *Informationsgewinn* des Attributs A in Bezug auf T ist definiert als

$$informationsgewinn(T, A) = entropie(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropie(T_i)$$

#### Gini-Index

• Gini-Index für eine Menge T von Trainingsobjekten

$$gini(T) = 1 - \sum_{j=1}^{k} p_j^2$$

kleiner Gini-Index ⇔ geringe Unreinheit, großer Gini-Index ⇔ hohe Unreinheit

- Das Attribut A habe die Partitionierung  $T_1, T_2, \ldots, T_m$  erzeugt.
- Gini-Index des Attributs A in Bezug auf T ist definiert als

$$gini_A(T) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot gini(T_i)$$

### Beispiel



$$informationsgewinn(T, Feuchtigkeit) = 0.94 - \frac{7}{14} \cdot 0.985 - \frac{7}{14} \cdot 0.592 = 0.151$$
 
$$informationsgewinn(T, Feuchtigkeit) = 0.94 - \frac{8}{14} \cdot 0.811 - \frac{6}{14} \cdot 1.0 = 0.048$$

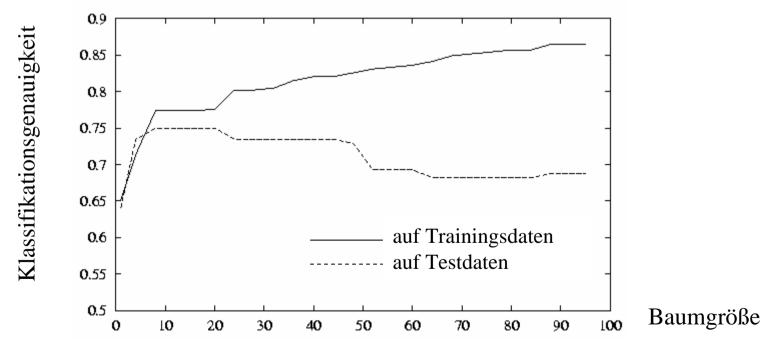


Feuchtigkeit liefert den höheren Informatiuonsgewinn

## Einführung

Overfitting bei der Konstruktion eines Entscheidungsbaums, wenn es zwei Entscheidungsbäume E und E' gibt mit

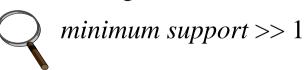
- E hat auf der Trainingsmenge eine kleinere Fehlerrate als E',
- E' hat auf der Grundgesamtheit der Daten eine kleinere Fehlerrate als E.



## Ansätze zum Vermeiden von Overfitting

- Entfernen von fehlerhaften Trainingsdaten insbesondere widersprüchliche Trainingsdaten
- Wahl einer geeigneten Größe der Trainingsmenge nicht zu klein, nicht zu groß
- Wahl einer geeigneten Größe des minimum support minimum support:

Anzahl der Datensätze, die mindestens zu einem Blattknoten des Baums gehören müssen



## Ansätze zum Vermeiden von Overfitting

• Wahl einer geeigneten Größe der minimum confidence

minimum confidence: Anteil, den die Mehrheitsklasse eines Blattknotens mindestens besitzen muß



 $minimum\ confidence << 100\%$ 

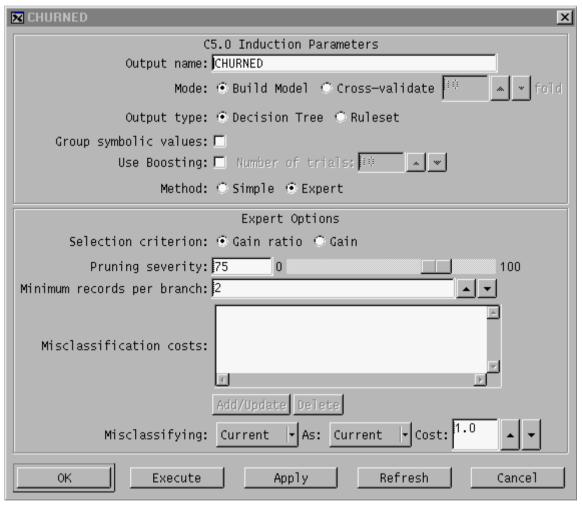
Blätter können auch fehlerhafte Datensätze oder Rauschen "absorbieren"

• nachträgliches Pruning des Entscheidungsbaums

Abschneiden der überspezialisierten Äste



nächster Abschnitt



Typische Parameter der Konstruktion eines Entscheidungsbaums (Clementine)

## Fehlerreduktions-Pruning [Mitchell 1997]

- Aufteilung der klassifizierten Daten in Trainingsmenge und Testmenge
- Konstruktion eines Entscheidungsbaums E für die Trainingsmenge
- Pruning von E mit Hilfe der Testmenge T
  - bestimme denjenigen Teilbaum von E, dessen Abschneiden den Klassifikationsfehler auf T am stärksten reduziert
  - entfernte diesen Teilbaum
  - fertig, falls kein solcher Teilbaum mehr existiert



nur anwendbar, wenn genügend viele klassifizierte Daten

## Minimales Kostenkomplexitäts-Pruning

[Breiman, Friedman, Olshen & Stone 1984]

- benötigt keine separate Testmenge
   auch anwendbar für kleine Trainingsmengen
- Pruning des Entscheidungsbaums mit Hilfe der Trainingsmenge Klassifikationsfehler ungeeignet als Qualitätskriterium



kleinere Entscheidungsbäume generalisieren typischerweise besser

## Grundbegriffe

- $Gr\ddot{o}\beta e$  | E| des Entscheidungsbaums E: Anzahl seiner Blätter
- *Kostenkomplexität* von E in Bezug auf die Trainingsmenge T und den Komplexitätsparameter  $\alpha \ge 0$ :

$$KK_T(E,\alpha) = F_T(E) + \alpha \cdot |E|$$

- Der *kleinste minimierende Teilbaum E*( $\alpha$ ) von *E* in Bezug auf  $\alpha$  erfüllt:
  - (1) es gibt keinen Teilbaum von E mit kleinerer Kostenkomplexität
  - (2) falls  $E(\alpha)$  und B die Bedingung (1) erfüllen, ist  $E(\alpha)$  Teilbaum von B
- $\alpha = 0$ :  $E(\alpha) = E$
- $\alpha = \infty$ :  $E(\alpha) = \text{Wurzel von } E$
- $0 < \alpha < \infty$ :  $E(\alpha) = \text{ein echter Teilbaum von } E$ , mehr als die Wurzel Vorlesung Knowledge Discovery

## Grundbegriffe

- $E_{\rm e}$ : Teilbaum mit der Wurzel e,  $\{e\}$ : Baum, der nur aus dem Knoten e besteht.
- Für kleine Werte von  $\alpha$  gilt:  $KK_T(E_e, \alpha) < KK_T(\{e\}, \alpha)$ , für große Werte von  $\alpha$  gilt:  $KK_T(E_e, \alpha) > KK_T(\{e\}, \alpha)$ .
- kritischer Wert von a für e

$$\alpha_{crit}$$
:  $KK_{T}(E_{e}, \alpha_{crit}) = KK_{T}(\{e\}, \alpha_{crit})$ 

für  $\alpha \ge \alpha_{crit}$  lohnt sich das Prunen beim Knoten e

• schwächster Link: Knoten mit dem minimalen Wert für  $\alpha_{crit}$ 

#### Methode

- Beginne mit dem vollständigen Baum E.
- Entferne iterativ immer den schwächsten Link aus dem aktuellen Baum.
- Falls mehrere schwächste Links existieren: alle miteinander im gleichen Schritt entfernen.

Folge geprunter Bäume 
$$E(\alpha_1) > E(\alpha_2) > \ldots > E(\alpha_m)$$
  
mit  $\alpha_1 < \alpha_2 < \ldots < \alpha_m$ 

• Auswahl des besten  $E(\alpha_i)$ Schätzung des Klassifikationsfehlers auf der Grundgesamtheit durch l-fache Überkreuz-Validierung auf der Trainingsmenge

## Beispiel

| i  | Ei | beobachteter Fehler | geschätzter Fehler | tatsächlicher Fehler |
|----|----|---------------------|--------------------|----------------------|
| 1  | 71 | 0,0                 | 0,46               | 0,42                 |
| 2  | 63 | 0,0                 | 0,45               | 0,40                 |
| 3  | 58 | 0,04                | 0,43               | 0,39                 |
| 4  | 40 | 0,10                | 0,38               | 0,32                 |
| 5  | 34 | 0,12                | 0,38               | 0,32                 |
| 6  | 19 | 0,2                 | 0,32               | 0,31                 |
| 7  | 10 | 0,29                | 0,31               | 0,30                 |
| 8  | 9  | 0,32                | 0,39               | 0,34                 |
| 9  | 7  | 0,41                | 0,47               | 0,47                 |
| 10 |    |                     |                    |                      |
|    |    |                     |                    |                      |



 $E_7$  besitzt den geringsten geschätzten Fehler und den niedrigsten tatsächlichen Fehler

# 5.5 Skalierung für große Datenbanken

#### **Motivation**

Konstruktion von Entscheidungsbäumen eine der wichtigsten Methoden der Klassifikation

#### Bisher

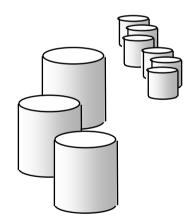
- kleine Datenmengen
- hauptspeicherresident

#### Jetzt

- immer größere kommerzielle Datenbanken
- Algorithmen für sekundärspeicherresidente Daten



skalieren für Datenbanken beliebiger Größe



# 5.5 Skalierung für große Datenbanken

## Ansätze zur Skalierung

### Sampling

- Stichprobe der Daten als Trainingsmenge paßt in den Hauptspeicher
- Stichprobe aller potentiellen Splits evaluieren (bei numerischen Attributen)



Verminderung der Qualität der entstehenden Entscheidungsbäume

### Unterstützung durch spezielle Daten- und Indexstrukturen

- alle Daten als Trainingsmenge
- Verwaltung auf dem Sekundärspeicher durch ein Datenbanksystem
- Einsatz spezieller Daten- und Indexstrukturen zur effizienten Unterstützung



kein Verlust an Qualität der Entscheidungsbäume

## 5.5 Skalierung für große Datenbanken

## Unterstützung durch spezielle Daten- und Indexstrukturen

### Teure Operationen

• Evaluation der potentiellen Splits und Selektion des besten Splits bei numerischen Attributen:

Sortierung der Attributwerte

Evaluation jedes Attributwerts als potentieller Splitpunkt bei kategorischen Attributen:

 $O(2^m)$  mögliche binäre Splits für m verschiedene Attributwerte

- Partitionierung der Trainingsdaten entsprechend dem gewählten Split Lesen und Schreiben aller Trainingsdaten
  - Growth Phase hat dominanten Anteil am Gesamtaufwand

## Einführung [Mehta, Agrawal & Rissanen 1996]

- skalierbarer Entscheidungsbaum-Klassifikator
- binäre Splits
- Evaluierung der Splits mit Hilfe des Gini-Index
- spezielle Datenstrukturen

vermeiden das Sortieren der Trainingsdaten

für jeden Knoten des Entscheidungsbaums

und für jedes numerische Attribut

#### Datenstrukturen

• Attributlisten

Werte eines Attributs in aufsteigender Sortierreihenfolge zusammen mit Referenz auf den zugehörigen Eintrag in der Klassenliste

sequentiell zugegriffen sekundärspeicherresident

• Klassenliste

für jeden Trainingsdatensatz die Klasse sowie einen Verweis auf das zugehörige Blatt des Entscheidungsbaums wahlfrei zugegriffen hauptspeicherresident

• Histogramme

für jedes Blatt des Entscheidungsbaums Häufigkeiten der einzelnen Klassen in der Partition

# Beispiel

#### Trainingsdaten

| ld |   | Alter | Gehalt | Klasse |
|----|---|-------|--------|--------|
|    | 1 | 30    | 65     | G      |
|    | 2 | 23    | 15     | В      |
|    | 3 | 40    | 75     | G      |
|    | 4 | 55    | 40     | В      |
|    | 5 | 55    | 100    | G      |
|    | 6 | 45    | 60     | G      |



#### Klassenliste

| ld | Klasse | Blatt |
|----|--------|-------|
| 1  | G      | N1    |
| 2  | В      | N1    |
| 3  | G      | N1    |
| 4  | В      | N1    |
| 5  | G      | N1    |
| 6  | G      | N1    |

#### Attributlisten

| Alter | ld |
|-------|----|
| 23    | 2  |
| 30    | 1  |
| 40    | 3  |
| 45    | 6  |
| 55    | 5  |
| 55    | 4  |

| Gehalt | ld |
|--------|----|
| 15     | 2  |
| 40     | 4  |
| 60     | 6  |
| 65     | 1  |
| 75     | 3  |
| 100    | 5  |

## Algorithmus

• Breadth-First-Strategie

für alle Blätter des Entscheidungsbaums auf derselben Ebene werden alle potentiellen Splits für alle Attribute evaluiert



klassische Entscheidungsbaumklassifikatoren: Depth-First-Strategie

• Split numerischer Attribute

für jeden Wert W der Attributsliste von A (sequentieller Durchlauf)

- bestimme den zugehörigen Eintrag E der Klassenliste;
- − sei *K* der Wert des Attributs "Blatt" von *E*;
- aktualisiere das Histogramm von K
  basierend auf dem Wert des Attributs "Klasse" von E;

### Einführung [Shafer, Agrawal & Mehta 1996]

### **SLIQ**

- Größe der Klassenliste wächst linear mit der Größe der Datenbank.
- SLIQ skaliert nur gut, wenn genügend Hauptspeicher für die ganze Klassenliste verfügbar ist.

#### Ziele von SPRINT

- Skalierung für beliebig große Datenbanken
- einfache Parallelisierbarkeit des Verfahrens

#### Datenstrukturen

#### • Klassenliste

keine Klassenliste mehr

zusätzliches Attribut "Klasse" für die Attributlisten (sekundärspeicherresident)

keine Hauptspeicher-Datenstrukturen mehr skalierbar für beliebig große DB

#### • Attributlisten

getrennte Attributlisten pro Knoten des Entscheidungsbaums nicht eine Attributliste für die ganze Trainingsmenge

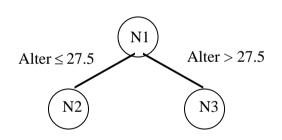


keine zentralen Datenstrukturen mehr einfache Parallelisierung von SPRINT

## Beispiel

| Alter | Klasse  | ld |
|-------|---------|----|
| 17    | Hoch    | 1  |
| 20    | Hoch    | 5  |
| 23    | Hoch    | 0  |
| 32    | Niedrig | 4  |
| 43    | Hoch    | 2  |
| 68    | Niedrig | 3  |

Attributlisten für Knoten N1



| Alter | Klasse | ld |
|-------|--------|----|
| 17    | Hoch   | 1  |
| 20    | Hoch   | 5  |
| 23    | Hoch   | 0  |

| Autotyp | Klasse | ld |
|---------|--------|----|
| Familie | Hoch   | 0  |
| Sport   | Hoch   | 1  |
| Familie | Hoch   | 5  |

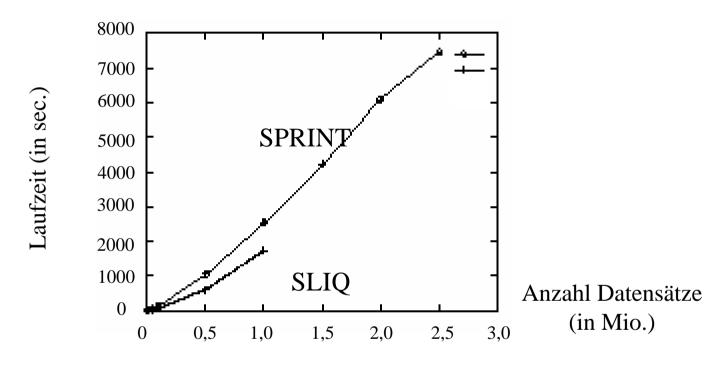
Attributlisten für listen für Knoten N2 Knoten N3

| Klasse  | ld                                         |
|---------|--------------------------------------------|
| Hoch    | 0                                          |
| Hoch    | 1                                          |
| Hoch    | 2                                          |
| Niedrig | 3                                          |
| Niedrig | 4                                          |
| Hoch    | 5                                          |
|         | Hoch<br>Hoch<br>Hoch<br>Niedrig<br>Niedrig |

| Alter | Klasse  | ld |
|-------|---------|----|
| 32    | Niedrig | 4  |
| 43    | Hoch    | 2  |
| 68    | Niedrig | 3  |

| Autotyp | Klasse  | ld |
|---------|---------|----|
| Sport   | Hoch    | 2  |
| Familie | Niedrig | 3  |
| LKW     | Niedrig | 4  |

## Experimentelle Untersuchung





SLIQ ist effizienter, solange die Klassenliste in den Hauptspeicher paßt für mehr als 1.000.000 Datensätze ist SLIQ nicht mehr anwendbar (Thrashing)

### Einführung [Gehrke, Ramakrishnan & Ganti 1998]

#### **SPRINT**

- nutzt den vorhandenen Hauptspeicherplatz nicht aus
- ist anwendbar nur für Entscheidungsbaum-Konstruktion mit Breitensuche

#### RainForest

- nutzt den verfügbaren Hauptspeicher zur Effizienzverbesserung
- für praktisch alle bekannten Algorithmen anwendbar



Trennung der Aspekte der Skalierung

von den Aspekten der Qualität eines Entscheidungsbaum-Klassifikators

#### Datenstrukturen

- AVC-Menge für das Attribut A und den Knoten K
  enthält für jeden Wert von A ein Klassenhistogramm
  für die Teilmenge aller Trainingsdaten, die zur Partition von K gehören
  Einträge der Form (a<sub>i</sub>,c<sub>j</sub>,zaehler)
- *AVC-Gruppe* für das Attribut *A* und den Knoten *K*Menge der AVC-Mengen von *K* für alle Attribute
- bei kategorischen Attributen: AVC-Menge wesentlich kleiner als Attributliste mindestens eine AVC-Menge paßt in den Hauptspeicher evtl. sogar die gesamte AVC-Gruppe

## Beispiel

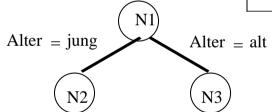
#### Trainingsdaten

| ld | Alter | Gehalt | Klasse |
|----|-------|--------|--------|
| 1  | jung  | 65     | G      |
| 2  | jung  | 15     | В      |
| 3  | jung  | 75     | G      |
| 4  | alt   | 40     | В      |
| 5  | alt   | 100    | G      |
| 6  | alt   | 60     | G      |

#### AVC-Menge Alter für N1 AVC-Menge Gehalt für N1

| Wert | Klasse | Zähler |
|------|--------|--------|
| jung | В      | 1      |
| jung | G      | 2      |
| alt  | В      | 1      |
| alt  | G      | 2      |

| Wert | Klasse | Zähler |
|------|--------|--------|
| 15   | В      | 1      |
| 40   | В      | 1      |
| 60   | G      | 1      |
| 65   | G      | 1      |
| 75   | G      | 1      |
| 100  | G      | 1      |



#### AVC-Menge Gehalt für N2

| Wert | Klasse | Zähler |
|------|--------|--------|
| 15   | В      | 1      |
| 65   | G      | 1      |
| 75   | G      | 1      |

AVC-Menge Alter für N2

| Wert | Klasse | Zähler |
|------|--------|--------|
| jung | В      | 1      |
| jung | G      | 2      |

## Algorithmen

#### Annahme

- die gesamte AVC-Gruppe des Wurzelknotens paßt in den Hauptspeicher
- dann passen die AVC-Gruppen jedes Knotens in den Hauptspeicher

Algorithmus *RF\_Write* 

- Aufbau der AVC-Gruppe des Knotens *K* im Hauptspeicher sequentieller Scan über die Trainingsmenge
- Bestimmung des optimalen Splits des Knotens *K* mit Hilfe seiner AVC-Gruppe
- Lesen der Trainingsmenge und Verteilen (Schreiben) auf die Partitionen
  - Trainingsmenge wird zweimal gelesen und einmal geschrieben

## Algorithmen

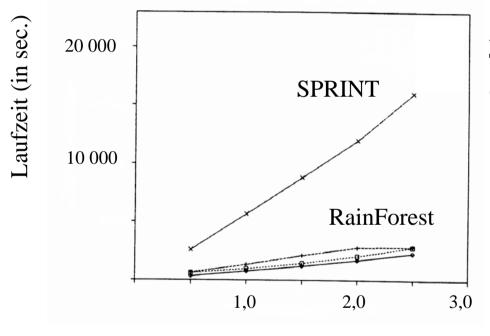
#### Algorithmus *RF\_Read*

- vermeidet das explizite Schreiben der Partitionen auf den Sekundärspeicher
- Lesen der gewünschten Partition aus der gesamten Trainingsdatenbank
- gleichzeitiger Aufbau der AVC-Gruppen für möglichst viele Partitionen
- Trainingsdatenbank wird für jede Ebene des Baums mehrfach gelesen

#### Algorithmus *RF\_Hybrid*

- Nutzung von RF\_Read, solange die AVC-Gruppen aller Knoten der aktuellen Ebene des Entscheidungsbaums in den Hauptspeicher passen
- Dann Materialisierung der Partitionen mit RF\_Write

## Experimentelle Untersuchung



Anzahl der Trainingsdatensätze (in Mio.)



für alle RainForest-Algorithmen wächst die Laufzeit linear mit *n* RainForest ist wesentlich effizienter als SPRINT