

Efficient Data Mining

Based on

Formal Concept **Analysis**

Ergänzung zu Kap. 4 der KDD-Vorlesung SS 2005

Gerd Stumme

Institute for Applied Informatics (AIFB) University of Karlsruhe, Germany

Slide 1

0

- **Motivation: Structuring the Frequent Itemset Space**
- Formal Concept Analysis
- Conceptual Clustering with Iceberg Concept Lattices
- 4. FCA-Based Mining of Association Rules
- Other Application(s) of FCA

Association Rules in a Nutshell

Association Rules are a popular data mining technique, e.g. for warehouse basket analysis: "Which items are frequently bought together?"

Toy Example:

Which activities can be frequently performed together in National Parks in California?

 $\{Swimming\} \rightarrow \{Hiking\}$ conf = 100 %, supp = 10/19

#(swimming+hiking parks) / #(swimming parks)

#(swimming+hiking parks) / #(all parks)

Whiskeytown-Shasta-Trinity Natl. Recr. Area

Santa Monica Mts. Natl. Recr. Area

National Parks

in California

Cabrillo Natl. Mon.

Channel Islands Natl. Park Death Valley Natl. Mon.

Devils Postpile Natl. Mon. Fort Point Natl. Historic Site Golden Gate Natl. Recreation Area

Joshua Tree Natl. Mon. Kings Canyon Natl. Park

Lava Beds Natl. Mon.

Pinnacles Natl. Mon. Point Reyes Natl. Seashore Redwood Natl. Park

Seguoia Natl. Park

Yosemite Natl. Park

Muir Woods Natl. Mon

John Muir Natl. Historic Site

Lassen Volcanic Natl. Park

Gerd Stumme 2002 Invited Talk at DEXA '

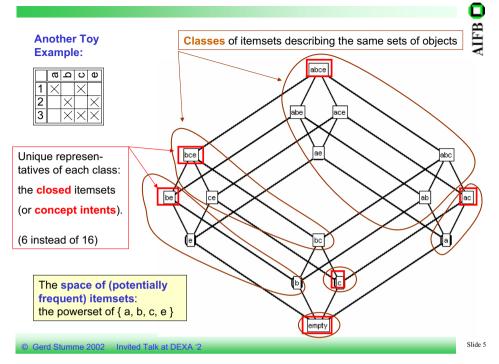
Slide 3

Observation:

The rules

{ Boating } → { Hiking, NPS Guided Tours, Fishing } { Boating, Swimming } → { Hiking, NPS Guided Tours, Fishing }

have the same support and the same confidence, because the two sets


{ Boating } and { Boating, Swimming } describe exactly the same set of parks.

Conclusion:

It is sufficient to look at one of those sets!

- → faster computation
- → no redundant rules

	NPS Guided Tours	Hiking	Horseback Riding	Swimming	Boating	Fishing	Bicycle Trail	Cross Country Trail
Cabrillo Natl. Mon.						×	×	
Channel Islands Natl. Park		×		×		×		
Death Valley Natl. Mon.	×	×	×	×			×	
Devils Postpile Natl. Mon.	×	×	X	×		×		
Fort Point Natl. Historic Site	×					×		
Golden Gate Natl. Recreation Area	X	×	×	×		×	×	
John Muir Natl. Historic Site	×							
Joshua Tree Natl. Mon.	×	×	×					
Kings Canyon Natl. Park	×	×	×			×		×
Lassen Volcanic Natl. Park	×	×	Х	×	×	×		×
Lava Beds Natl. Mon.	×	×				-		
Muir Woods Natl. Mon.		×						
Pinnacles Natl. Mon.		×						
Point Reyes Natl. Seashore	×	×	х	×		×	×	
Redwood Natl. Park	×	х	Х	×		×		
Santa Monica Mts. Natl. Recr. Area	Х	Х	Х	Х	Х	×		
Sequoia Natl. Park	×	×	X			×		×
Whiskeytown-Shasta-Trinity Natl. Recr. Area	Х	Х	Х	Х	Х	×		
Yosemite Natl. Park	×	×	×	×	×	×	×	×

Bases of Association Rules

Classical Data Mining Task:

Find, for given minsupp, minconf \in [0,1], all rules with support and confidence above these thresholds.

Two-Step Approach:

- 1. Compute all frequent itemsets (e.g., Apriori).
- For each frequent itemset X and all its subsets Y:
 check X → Y.

Our task:

Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

Two-Step Approach:

- Compute all frequent closed itemsets.
- For each frequent closed itemset X and all its closed subsets Y: check X → Y.

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis (FCA).

This relationship was discovered independently in 1998/9 at

- · Clermont-Ferrand (Lakhal)
- Darmstadt (Stumme)
- · New York (Zaki)

with Clermont being the fastest group developing algorithms (Close).

Our task:

Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

Two-Step Approach:

- Compute all frequent closed itemsets.
- For each frequent closed itemset X and all its closed subsets Y: check X → Y.

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis (FCA).

This relationship was discovered independently in 1998/9 at

- Clermont-Ferrand (Lakhal)
- Darmstadt (Stumme
- New York (Zaki)

with Clermont being the fastest group developing algorithms (Close).

Structure of the Talk:

- Introduction to FCA
- Conceptual Clustering with FCA
- · Mining Association Rules with FCA-
- Other Applications of FCA

Our task:

Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

Two-Step Approach:

- 1. Compute all frequent closed itemsets.
- For each frequent closed itemset X and all its closed subsets Y:

check $X \rightarrow Y$.

0

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis (FCA).

This relationship was discovered independently in 1998/9 at

- Clermont-Ferrand (Lakhal)
- Darmstadt (Stumme)
- New York (Zaki)

with Clermont being the fastest group developing algorithms (Close).

Structure of the Talk:

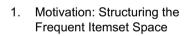
- Introduction to FCA⁻
- Conceptual Clustering with FCA
- Mining Association Rules with FCA—
- Other Applications of FCA

Our task:

Find a **basis** of rules, i.e., a minimal set of rules out of which all other rules can be derived.

Two-Step Approach:

- 1. Compute all frequent closed itemsets.
- For each frequent closed itemset X and all its closed subsets Y: check X → Y.


This is joint work with L. Lakhal, Y. Bastide, N. Pasquier, R. Taouil.

Gerd Stumme 2002 Invited Talk at DEXA '2

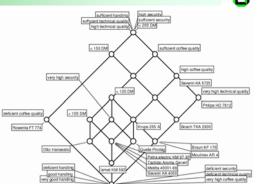
Slide 9

AIFB 🗖

2. Formal Concept Analysis

- 3. Conceptual Clustering with Iceberg Concept Lattices
- 4. FCA-Based Mining of Association Rules
- 5. Other Application(s) of FCA

Formal Concept Analysis


arose around 1980 in Darmstadt as a mathematical theory, which formalizes the concept of ,concept'.

Since then, FCA has found many uses in Informatics, e.g. for

- · Data Analysis,
- · Information Retrieval.
- Knowledge Discovery,
- · Software Engineering.

Based on datasets, FCA derives concept hierarchies.

FCA allows to generate and visualize concept hierarchies.

est KON	/IPAS	Ś	HA	ALTE	KANI		bis 10 Tasse usgabe 12/
	Mittlerer Preis in DM ca.	Preis für Er- satzkanne/ Glaseinsatz in DM ca.	Kaffee- qualität	Tech- nische Prü- fung	Sicherheit	Hand- ha- bung	test- Qualitätsurtei
Gewichtung	770	NIN NE	35 %	30 %	10 %	25 %	10/1/2000
Neckermann BegNr. 8628/409	40	35,-1/0	baugi mit	Otto Hanse	eatic Best -N	4327357	zufriedenst.
Otto Hanseatic Best-Nr 4327357	40	30,-7/0	0	+	++	10	zufriedenst.
Quelle Privileg Best - Nr. 7030720	40	24,50 / 17,50	baugl mit	Otto Harse	eatic BestN	a. 4327357	zufriedenst.
Severin KA 9660	50	35,- / 23,-	beugl mit	Otto Harse	eatic BestN	it. 4327357	zufriedenst.
Severin KA 4050	80	50/0	+	+	1+	10	gut
Tchibo Aroma Garant Art -Nr 48469	80	27.50 / 19.50	+	+	+	0	gut
Ismet KM 582 starlight	84	47,-/14,-	+	+	++	0	gut

Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 11

FCA models concepts as units of thought, consisting of two parts:

- The extension consists of all objects belonging to the concept.
- The intension consists of all attributes common to all those objects.

Some typical applications:

- database marketing
- email management system
- developing qualitative theories in music estethics
- analysis of flight movements at Frankfurt airport

Intent B

Formal Concept Analysis

Def.: A formal context is a triple (G,M,I), where

- G is a set of objects,
- M is a set of attributes
- and *I* is a relation between G and M.
- $(g,m) \in I$ is read as "object *g* has attribute *m*".

National Parks in California	NPS Guided Tours	Hiking	Horseback Riding	Swimming	Boating	Fishing	Bicycle Trail	Cross Country Trail
Cabrillo Natl. Mon.						×	×	
Channel Islands Natl. Park		×		×		×		
Death Valley Natl. Mon.	×	×	×	×			×	
Devils Postpile Natl. Mon.	×	×	×	×		×		
Fort Point Natl. Historic Site	×					×		
Golden Gate Natl. Recreation Area	×	×	×	×		×	×	
John Muir Natl. Historic Site	×							
Joshua Tree Natl. Mon.	×	×	×					
Kings Canyon Natl. Park	×	×	×			×		×
Lassen Volcanic Natl. Park	×	×	×	×	×	×		×
Lava Beds Natl. Mon.	×	×						
Muir Woods Natl. Mon.		×						
Pinnacles Natl. Mon.		×						
Point Reyes Natl. Seashore	×	×	×	×		×	×	
Redwood Natl. Park	×	×	×	×		×		
Santa Monica Mts. Natl. Recr. Area	×	×	X	×	X	×		
Sequoia Natl. Park	×	×	×			×		×
Whiskeytown-Shasta-Trinity Natl. Recr. Area	×	×	×	×	×	×		
Yosemite Natl. Park	×	×	×	×	×	×	×	×

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 13

Slide 14

AIFB 🗖

Def.: A formal concept is a pair (A,B) where

- A is a set of objects (the extent of the concept),
- · B is a set of attributes (the intent of the concept),

• A' \neq B and B' = A.

= closed itemset

Extent A

		/							
	National Parks in California	NPS Guided Tours	Hiking	Horseback Riding	Swimming	Boating	Fishing	Bicycle Trail	Cross Country Trail
	Cabrillo Natl. Mon.						×	×	
	Channel Islands Natl. Park		×		×		×		
_	Death Valley Natl. Mon.	×	×	X	X			×	
	Devils Postpile Natl. Mon.	×	Х	Х	×		×		
	Fort Point Natl. Historic Site	×					×		
	Golden Gate Natl. Recreation Area	×	Х	Х	×		×	×	
	John Muir Natl. Historic Site	×							
	Joshua Tree Natl. Mon.	×	×	×					
	Kings Canyon Natl. Park	×	X	X			×		×
	Lassen Volcanic Natl. Park	×	×	×	×	×	×		×
	Lava Beds Natl. Mon.	×	Х						
	Muir Woods Natl. Mon.		×						
	Pinnacles Natl. Mon.		×						
	Point Reyes Natl. Seashore	×	×	×	Х		×	Х	
	Redwood Natl. Park	×	×	×	Х		×		
1	Santa Monica Mts. Natl. Recr. Area	×	X	Х	X	×	×		П
	Sequoia Natl. Park	×	×	×			×		X
	Whiskeytown-Shasta-Trinity Natl. Recr. Area	×	×	×	×	Х	×		
	Yosemite Natl. Park	×	×	×	×	Х	×	Х	X

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 15

For $A \subseteq G$, we define
$A' := \{ m \in M \mid \forall g \in A : (g,m) \in I \}$

For $B \subseteq M$, we define dually B':= { $g \in G \mid \forall m \in B: (g,m) \in I$ }.

	A'								
National Parks in California	NPS Guided Tours	Hiking	Horseback Riding	Swimming	Boating	Fishing	Bicycle Trail	Cross Country Trail	
Cabrillo Natl. Mon.						×	×		
Channel Islands Natl. Park		×		×		×			
Death Valley Natl. Mon.	×	×	×	×			×		
Devils Postpile Natl. Mon.	×	×	×	×		×			
ort Point Natl. Historic Site	×					×			
Golden Gate Natl. Recreation Area	×	×	X	×		×	×		
ohn Muir Natl. Historic Site	×								
loshua Tree Natl. Mon.	×	×	Х						
(ings Canyon Natl. Park	×	×	×			×		×	
assen Volcanic Natl. Park	×	×	X	×	×	×		×	
ava Beds Natl. Mon.	×	×							
Auir Woods Natl. Mon.		×							
Pinnacles Natl. Mon.		×							
Point Reyes Natl. Seashore	×	X	×	×		×	Х		
Redwood Natl. Park	×	X	×	×		×			
Santa Monica Mts. Natl. Recr. Area	×	X	×	×	Х	×			
equoia Natl. Park	×	X	×			×		×	
Whiskeytown-Shasta-Trinity Natl. Recr. Area	×	×	×	×	Х	×			
Yosemite Natl. Park	×	×	×	×	×	×	×	×	

The blue concept is a subconcept of the yellow one, since its extent is contained in the yellow one.

(⇔ the yellow intent is contained in the blue one.)

National Parks in California	NPS Guided Tours	Hiking	Horseback Riding	Swimming	Boating	Fishing	Bicycle Trail	Cross Country Trail
Cabrillo Natl. Mon.						×	×	
Channel Islands Natl. Park		×		×		×		
Death Valley Natl. Mon.	×	×	×	×			×	
Devils Postpile Natl. Mon.	×	×	×	×		\times		
Fort Point Natl. Historic Site	×					×		
Golden Gate Natl. Recreation Area	×	×	×	×		×	×	
John Muir Natl. Historic Site	×							
Joshua Tree Natl. Mon.	×	×	×					
Kings Canyon Natl. Park	X	X	X			×		×
Lassen Volcanic Natl. Park				Х	Х	×		×
Lava Beds Natl. Mon.	×	×						
Muir Woods Natl. Mon.		×						
Pinnacles Natl. Mon.		×						
Point Reyes Natl. Seashore	×	×	×	×		×	×	
Redwood Natl. Park	×	×	×	×		×		
Santa Monica Mts. Natl. Recr. Area	X	X	X	X	X	×		
Sequoia Natl. Park	×	X	×			×		×
Whiskeytown-Shasta-Trinity Natl. Recr. Area	X	X	X	X	Х	×		
Yosemite Natl. Park				×	×		×	×

Attributes are independent if they span a hyper-cube (i.e., if all 2ⁿ combinations occur).

Example:

- Fishing
- Bicycle Trail
- Swimming

are independent attributes.

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 19

Implications

Gerd Stumme 2002 Invited Talk at DEXA '2

The concept lattice of

the National Parks in

California

National Parks

in California

Bicycle Trail

Fishing.

Cabrillo

Cross Country

Sequoia

Lassen Volcanic

Yosemite

Ski Trail

Kings Canyon

Fort Point


Def.: An implication

 $X \rightarrow Y$ holds in a context, if every object having all attributes in X also has all attributes in Y.

(= Association rule with 100% confidence)

• Examples:

 $\{\, \mathsf{Swimming} \,\} \, \to \, \{\, \mathsf{Hiking} \,\}$

NPS Guided Tours

John Muir

Boatin

Hiking

Lava Beds

Joshuas Tree

Channel

Golden Gate

Santa Monica Mountains

Whiskeytown-Shasta-Trinity

Point Rayes

Islands

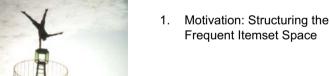
Muir Woods

Horseback Riding

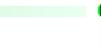
Death Valley

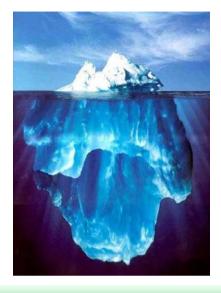
Slide 17

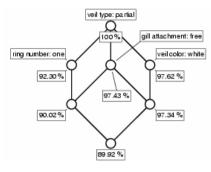
Slide 18


Devils Postpile

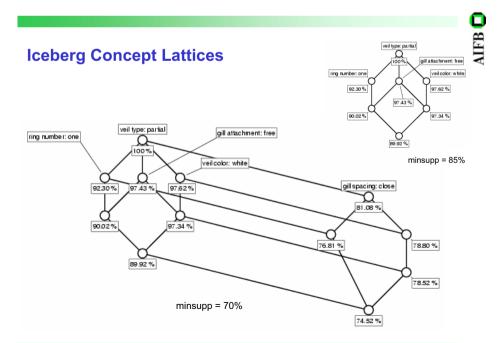
Redwood

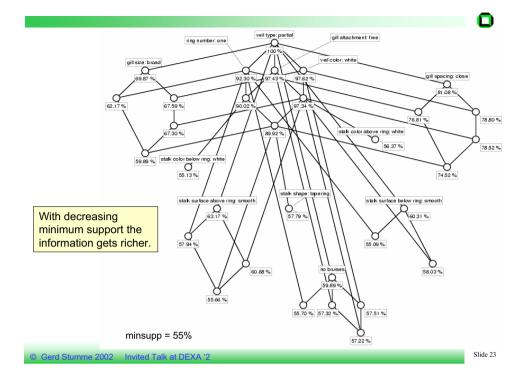

Swimming


Pinnacles


 $\{ \mbox{ Boating } \} \rightarrow \{ \mbox{ Swimming, Hiking, NPS Guided Tours, Fishing }$ $\{ \mbox{ Bicycle Trail, NPS Guided Tours } \} \rightarrow \{ \mbox{ Swimming, Hiking } \}$

- 2. Formal Concept Analysis
- 3. Conceptual Clustering with Iceberg Concept Lattices
- FCA-Based Mining of Association Rules
- 5. Other Application(s) of FCA




minsupp = 85%

For minsupp = 85% the seven most general of the 32.086 concepts of the Mushrooms database http://kdd.ics.uci.edu are shown.

Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 21

Iceberg Concept Lattices and Frequent Itemsets

Iceberg concept lattices are a condensed representation of frequent itemsets:

$$supp(X) = supp(X")$$

minsupp	# frequent closed itemsets	# frequent itemsets
85 %	7	16
70 %	12	32
55 %	32	116
0 %	32.086	2^{80}

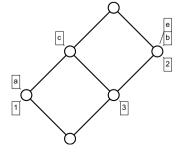
the mushrooms database.

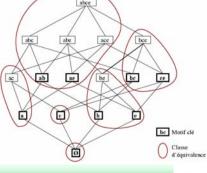
AIFB 🗖

TITANIC

AIFB 🖸

computes the iceberg concept lattice using the support:


Lemma 4. Let $X, Y \subseteq M$.


- 1. $X \subseteq Y \Longrightarrow \operatorname{supp}(X) \ge \operatorname{supp}(Y)$ 2. $X'' = Y'' \Longrightarrow \operatorname{supp}(X) = \operatorname{supp}(Y)$
- 3. $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \Longrightarrow X'' = Y''$

Slide 25

TITANIC

$$X'' = X \cup \{ x \in M \setminus X \mid supp(X) = supp(X \cup x) \}$$

Gerd Stumme 2002 Invited Talk at DEXA '2

0 AIFB

TITANIC

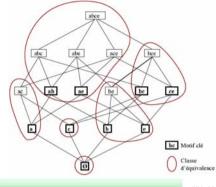
tries to optimize the following three questions:

- 1. How can the closure of an itemset be determined based on supports only?
- 2. How can the closure system be computed with determining as few closures as possible?
- 3. How can as many supports as possible be derived from already known supports?

1. How can the closure of an itemset be determined based on supports only?

$$X'' = X \cup \{ x \in M \setminus X \mid supp(X) = supp(X \cup x) \}$$

Example: $\{b,c\}$ " = $\{b,c,e\}$, since


$$supp({b, c}) = 1/3$$

and

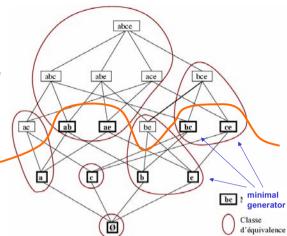
$$supp({a, b, c}) = 0/3$$

$$supp({b, c, e}) = 1/3,$$

	а	q	ပ	Ф
1	X		X	
2		X		\times
3		X	X	X

© Gerd Stumme 2002 Invited Talk at DEXA "

Slide 27


AIFB 🖸

1. How can the closure of an itemset be determined based on supports only?

2. How can the closure system be computed with determining as few closures as possible?

We determine only the closures of the **minimal generators**.

- If a set is not minimal generator, then none of its supersets is either.
- → Apriori like approach

In the example, TITANIC needs two runs (and Apriori four).

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 29

AIFB 🗖

AIFB 🗖

TITANIC

1. How can the closure of an itemset be determined based on supports only?

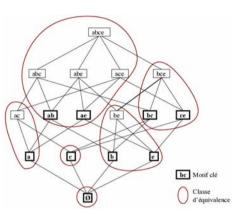
$$X'' = X \cup x \in M \setminus X \mid supp(X) = supp(X \cup x)$$

2. How can the closure system be computed with determining as few closures as possible?

Approach à la Apriori

3. How can as many supports as possible be derived from already known supports?

Theorem: If X is no minimal generator, then


$$\label{eq:supp} \begin{split} \operatorname{supp}(X) = \min \big\{ & \operatorname{supp}(K) \mid K \text{ is minimal} \\ & \operatorname{generator}, \ K \subseteq X \big\} \ . \end{split}$$

Example: supp({a,b,c})

= min { supp({a, b }), supp({ b, c }), supp(a), supp(b), supp(c) }

 $= \min \{ 0/3, 1/3, 1/3, 2/3, 2/3 \} = 0,$

© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 31

AIFB 🖸

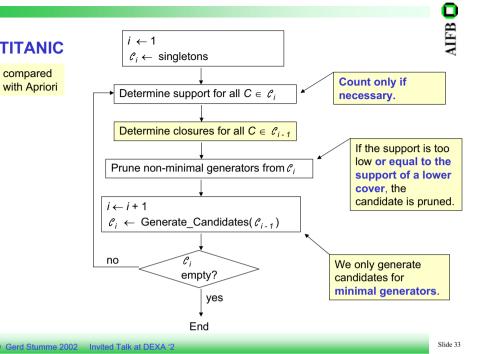
TITANIC

1. How can the closure of an itemset be determined based on supports only?

$$X'' = X \cup \{x \in M \setminus X \mid supp(X) = supp(X \cup x)\}$$

2. How can the closure system be computed with determining as few closures as possible?

Approach à la Apriori


3. How can as many supports as possible be derived from already known supports?

If X is no minimal generator, then

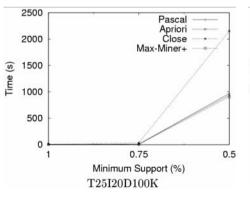
 $supp(X) = min \{ supp(K) \mid K \text{ is minimal generator, } K \subset X \}$.

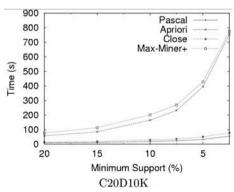
TITANIC

compared with Apriori

Motivation: Structuring the Frequent Itemset Space

2. Formal Concept Analysis

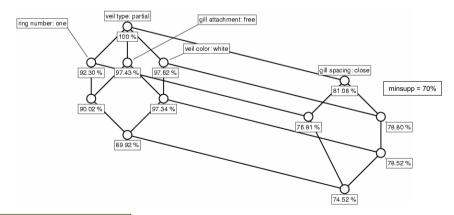

Conceptual Clustering with Iceberg Concept Lattices


4. FCA-Based Mining of Association Rules

Other Application(s) of FCA

Slide 35

Pascal/Titanic compared with Apriori



Weakly correlated data: similar performance of Pascal, Apriori and Max-Miner

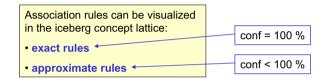
Strongly correlated data: Pascal (and Close) are very efficient

Advantage of the use of iceberg concept lattices (compared to frequent itemsets)

32 frequent itemsets are represented by 12 frequent concept intents

- → more efficient computation (e.g. TITANIC)
- → fewer rules (without information loss!)

Gerd Stumme 2002 Invited Talk at DEXA '2

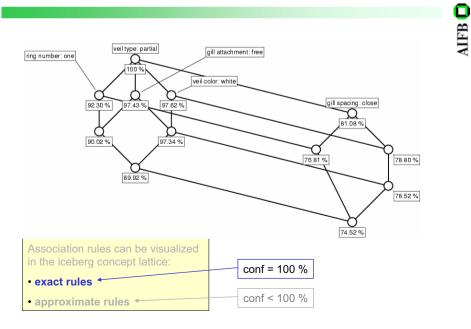

Slide 34

0 AIFB

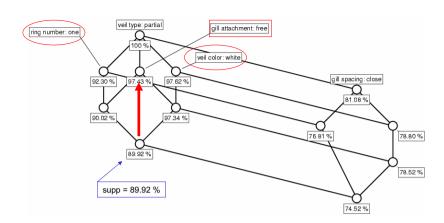
• From supp(B) = supp(B'') follows:

Theorem: $X \to Y$ and $X^{\prime\prime} \to Y^{\prime\prime}$ have the same support and the same confidence.

Hence for computing association rules, it is sufficient to compute the supports of all frequent sets with B = B'' (i.e., the intents of the iceberg concept lattice).



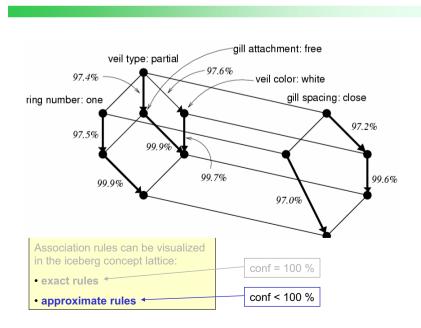
© Gerd Stumme 2002 Invited Talk at DEXA '2


Slide 37

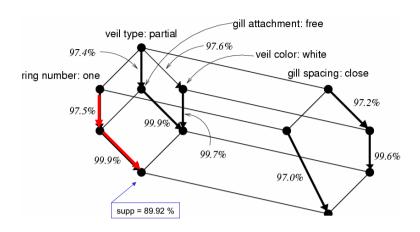
AIFB 🗖

Exact association rules

Exact association rules



{ring number: one, veil color: white} \rightarrow {gill attachment: free} supp = 89.92 % conf = 100 %.


© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 39

Luxenburger Basis for approximate association rules

Luxenburger Basis for approximate association rules

{ring number: one} → {veil color: white} supp = 89.92 % conf = $97.5 \% \times 99.9 \% \approx 97.4 \%$.

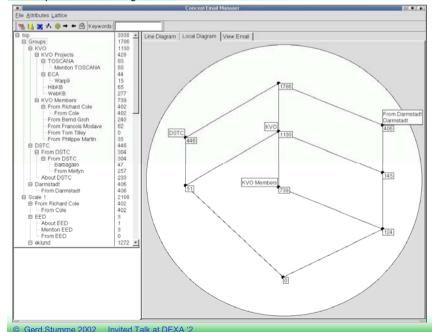
Slide 41

AIFB 🗖

Name	Number of objects	Average size of objects	Number of items
Γ10I4D100K	100,000	10	1,000
Mushrooms	8,416	23	127
C20D10K	10,000	20	386
C73D10K	10,000	73	2,177

Some experimental results

Dataset	Exact	DG.		Approximate	Luxenburger
(Minsupp)	rules	basis	Minconf	rules	basis
			90%	16,269	3,511
T10I4D100K	0	0	70%	20,419	4,004
(0.5%)			50%	21,686	4,191
			30%	22,952	4,519
			90%	12,911	563
Mushrooms	7,476	69	70%	37,671	968
(30%)			50%	56,703	1,169
			30%	71,412	1,260
			90%	36,012	1,379
C20D10K	2,277	11	70%	89,601	1,948
(50%)			50%	116,791	1,948
			30%	116,791	1,948
			95%	1,606,726	4,052
C73D10K	52,035	15	90%	2,053,896	4,089
(90%)			85%	2,053,936	4,089
			80%	2,053,936	4,089


- Motivation: Structuring the Frequent Itemset Space
- 2. Formal Concept Analysis
- 3. Conceptual Clustering with Iceberg Concept Lattices
- 4. FCA-Based Mining of Association Rules
- Other Application(s) of FCA

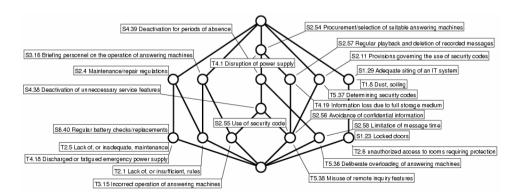
Slide 43

AIFB 🖸

AIFB 🖸

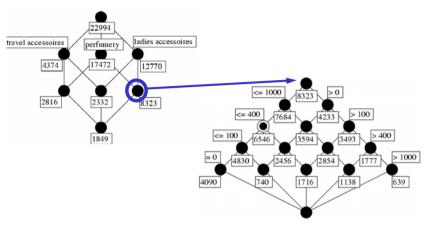
Conceptual Email Manager

- 1. Motivation: Structuring the Frequent Itemset Space
- 2. Formal Concept Analysis
- 3. Conceptual Clustering with Iceberg Concept Lattices
- 4. FCA-Based Mining of Association Rules
- 5. Other Application(s) of FCA


© Gerd Stumme 2002 Invited Talk at DEXA '2

Slide 45

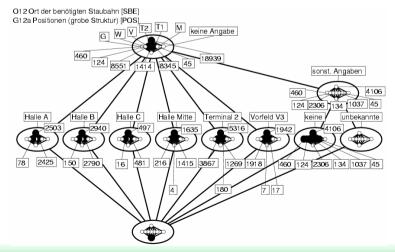
AIFB 🖸


IT-Security Management

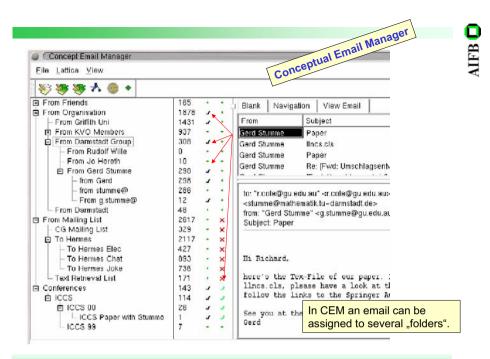
- Supports the analysis of security risks in IT units
- status quo test for establishing guidelines and checklists

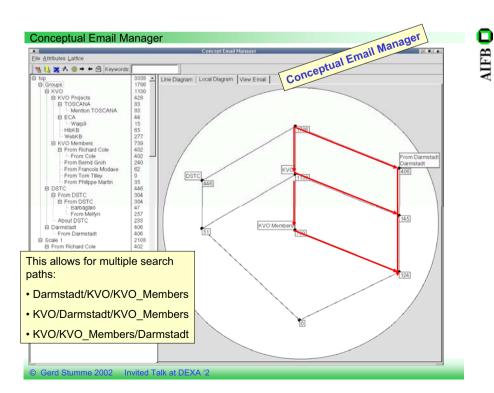
Database Marketing at Jelmoli AG, Zürich

- Analysis of the user behavior of customers using the Shopping Bonus Card
- Supporting of Cross-Selling via Direct Mailing

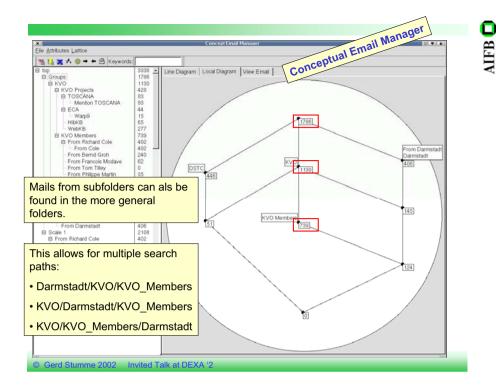


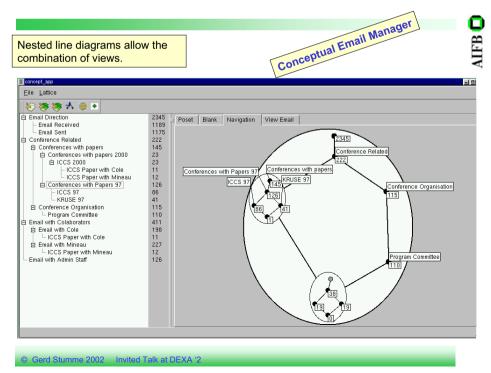
© Gerd Stumme 2002 Invited Talk at DEXA '2


Slide 47


Analysis of flight movements at Frankfurt Airport

- Allowing for ad-hoc queries in the database
- Visualization of dependencies




AIFB 🗖

© Gerd Stumme 2002 Invited Talk at DEXA '2

