
Part III

Knowledge Acquisition

99

Chapter 6

Attribute exploration

An imaginary example shall serve as an introduction to the problem: imagine a
manufacturer of computer hardware, whose different products can be combined in
various ways but not arbitrarily. In order to obtain a conceptual structuring of
the (reasonable) configurations, we would have to examine a context the objects
of which are the combinations and the attributes of which are the components. If
a list of these combinations is not available, we have to draw it up. This can be
done on the basis of our knowledge about the existing possibilities of combining the
elements.

In this case, the starting point of concept analysis is not an explicitly stated
context. Rather, we infer the context and at the same time the concept system from
the attribute logic, i.e., from the rules concerning the combination of attributes.

This method does not only suggest itself in the example discussed above. It
often becomes necessary to classify a large number of objects with respect to a
relatively small number of attributes, and it is frequently useless or impracticable
to write down the whole context and to apply the procedures for the determination
of the concept system which were described in the previous section. In such cases,
the concept lattices can be inferred from the implications between the attributes.

The question is thus: how can we determine the concept intents by means of the
implications? We have seen that in order to do so, we do not need all the implica-
tions, but that a small subset of them is sufficient. So far we have only explained
how these implications can be obtained from an available context. By means of the
tools now on hand, however, we can also develop a method of generating sets of
implications which are free of redundancies, even if the context is not or only partly
available. This procedure, which is called attribute exploration, has proved suc-
cessful in many applications. In practice, we use a computer which administers the
sets of implications and is able to compute which information is still lacking. The
implications are then determined interactively, i.e., in cooperation with the user.

The algorithm for the determination of the pseudo-intents permits a modifica-
tion resulting in an interactive program: it is possible to modify the context by
adding new objects, even while the generation of the list L of the implications is
in progress. If the intents of these objects respect all implications determined so
far, the computation for the new context can be continued with the results so far
obtained. This is the content of the following proposition:

Corollary 42 Let K be a context and let P1, P2, . . . , Pn be the first n pseudo-intents
of K with respect to the lectic order. If K is extended by an object g the object intent
g′ of which respects the implications Pi → P ′′i , i ∈ {1, . . . , n}, then P1, P2, . . . , Pn

are also the lectically first n pseudo-intents of the extended context.

This can be proved for example by induction on n. 2

101

102 CHAPTER 6. ATTRIBUTE EXPLORATION

Therefore, if we have found a new pseudo-intent P , we can stop the algorithm
and ask, whether the implication P → P ′′ should be added to L. The user can
answer this question in the affirmative or add a counter-example, which must not
contradict the implications he has confirmed so far. In the extreme case, the pro-
cedure can be started with a context the object set of which is empty. In this case,
the user will have to enter all counter-examples, thereby creating a concept system
with a given “attribute logic”.

Instead of describing this program in detail, we shall demonstrate its functioning
by means of an example.

6.1 The exploration algorithm

Have another look at the stem base computed in Figure 5.5 (p. 86). Some of the
implications state that certain attribute combinations imply all other attributes.
This occurs often when a certain attribute combination is contradictory, i.e., when
these attributes do not hold together for any object. It is sometimes more suggestive
to use the symbol ⊥ for the set M of all attributes, but only if there is no object g
with g′ = M . Thus we define

⊥ := M provided M ′ = Ø.

With this abbreviation the stem base for the triangles is given in Figure 6.1.

{obtuse angled, right angled} → ⊥
{acute angled, right angled} → ⊥

{acute angled, obtuse angled} → ⊥
{equilateral} → {isoceles, acute angled}

Figure 6.1: The stem base for the triangles.

The implications in this set are obviously true, because they hold for all tri-
angles, not only for the objects of the triangles–context on page 27. This is an
important information, because it shows that the concept lattice will not change if
more examples are added. The triangles in the formal context are representative
for the entire theory. The stem base generates the implicational theory of these five
attributes for all triangles. Each implication which holds for all triangles follows
from the stem base. For each implication that does not hold in general, there is
already a counter example among the seven triangles of the formal context.

6.1.1 The idea

The exploration algorithm is based on this idea. We want to explore the possible
combinations of a given attribute set. The objects under consideration however are
many, or difficult to enumerate. Some examples (possibly zero) are known, they
make up the context of examples. The stem base of this formal context is computed
and we ask if the implications in this stem base hold in general. If so, then no
further examples are necessary and the context of examples is representative for
the entire implicational theory. Otherwise, there are counter examples to stem base
implications (outside the context of examples). The context of counter examples
then is extended and the computation is repeated.

6.1. THE EXPLORATION ALGORITHM 103

Algorithm Attribute exploration
Input: A formal context (G,M, I), M finite,

and a subcontext (E, M, J := I ∩ E ×M).
Output: The stem base L of (G,M, I) and a possibly enlarged

subcontext (E, M, J := E ×M) with the same stem base.
begin
L := Ø;
A := Ø;
while A 6= M do
begin

unregistered := true;
while A 6= AJJ and unregistered do

if AJJ = AII then
begin
L := L ∪ {A → AII};
unregistered := false;

end
else extend E by some object g ∈ G with g ∈ AI \AJ ;

A := next L• closure(A);
end;

end.

Figure 6.2: The attribute exploration algorithm.

6.1.2 The algorithm

One of the oldest implementations of this algorithm is P. Burmeister’s program
ConImp, freely available under http://www.mathematik.tu-darmstadt.de....

6.1.3 Examples

We apply the technique to the data from Figure 2.1 (p. 21). The formal context for
this diagram is given in Figure 6.3.

Do the given examples cover all possible cases? In order to find out, we apply
Attribute Exploration. The formal context in Figure 6.3 is the initial context of
examples, that is, the context (E, M, J) of the algorithm in Figure 6.2. The formal
context (G,M, I) is infinite: its object set G is the set of all possible combinations of
two squares (of equal size). This infinite context is the one we are interested in, and
we would like to compute its stem base. Since we cannot access this infinite formal
context directly, we start with the finite subcontext given in Figure 6.3 and extend
it when necessary. The steps of the exploration algorithm are given in Figure 6.4.

At start, our list L of implications is empty. The first quasi closed set to consider
is the empty set Ø. This set is closed in the context of examples, and is therefore
ignored. We compute the next quasi closed set, using the (still empty) list L.
The result is {ce}. This set is not closed in the example context, its closure is
{ce, pa, cv, cs}. In other words, the implication ce → pa, cv, cs holds for all examples
considered so far. Obviously, this implication holds in general, because two squares
that share a common edge must always be parallel, must share a vertex and a line
segment. We therefore include this implication in L.

The next quasi closed set is {cs} and again, this set is not closed in the context
of examples. Its closure is {cs, pa}. We observe that this is necessarily so for all
possible examples and include the implication cs → pa in L.

104 CHAPTER 6. ATTRIBUTE EXPLORATION

di ov pa cv cs ce

disjoint overlap parallel common
vertex

common
segment

common
edge

×
×

×
× ×

× ×
× ×
× ×

× × × ×
× × × × ×

Figure 6.3: The formal context for Figure 2.1

The next four quasi closed sets are all closed. They are ignored. Then we
discover that we should include the implication pa, cv, cs → ce in the list L. This
implication holds in general, because two squares of equal size that have a common
vertex and a common line segment must share an edge. It is somewhat irritating that
the premise of this implication contains the assumption pa, which is unnecessary
because it follows from cs. This is a typical feature of pseudo closed sets, they tend
to be “large”.

After two more closed sets we obtain the quasi closed set {ov, cv}, the closure of
which in the context of examples is {ov, pa, cv, cs, ce}. This suggests the implication
ov, cv → pa, cs, ce, which does not hold in general. Here is a counter example: ,
with attributes ov, cv only. It seems that this possibility had been overlooked when
the data was collected. We extend the formal context of examples by this new
object and continue our work with this extended context. Now, the quasi closed set
{ov, cv} is closed, and we may continue.

The next situation that requires some action is when we meet the quasi closed
set {ov, pa, cs}, the closure of which in the (extended) context of examples contains
cv. Again we find that this is not an instance of a generally valid implication,
because we can give another new example: . In the extended context, the set
{ov, pa, cs} is closed.

The next quasi closed set leads to a new entry in L: If two squares (of equal
size) overlap, are parallel, and have a common vertex, then they must be equal.

Continuing with the algorithm, we find some more generally vaild implications,
all of which express that two squares cannot simultaneously be disjoint and have
a vertex, a segment, or an edge in common. Adding these to L, the algorithm
terminates.

The stem base is the set of the seven implications given in the last column of fig-
ure 6.4. The context of examples now has 11 objects, because we have added the two
examples in Figure 6.5. Three of these examples are, however, dispensable, because
the are reducible and therefore can be omitted without effect on the implications.

These are (which was reducible from the beginning), and (which
became reducible when the new examples were added). These dispensable objects

6.1. THE EXPLORATION ALGORITHM 105

are omitted in the concept lattice in displayed in Figure 6.6. This lattice is our final
result: its implicational theory is the same as the general implicational theory, i.e.,
the theory for all possible placements of two squares of equal size. In other words:
this concept lattice has the same stem base as the infinite context (G,M, I).

Quasi intent closed? general? action new object
A A = AJJ? AJJ = AII? or implication
Ø yes next q
{ce} no yes new imp ce→ pa, cv, cs
{cs} no yes new imp cs→ pa
{cv} yes next q
{pa} yes next q
{pa, cs} yes next q
{pa, cv} yes next q
{pa, cv, cs} no yes new imp pa, cv, cs→ ce
{pa, cv, cs, ce} yes next q

{ov} yes next q
{ov, cv} no no new obj
{ov, cv} yes next q
{ov,pa} yes next q

{ov,pa, cs} no no new obj
{ov,pa, cs} yes
{ov, pa, cv} no yes new imp ov, pa, cv→ cs, ce

{ov, pa, cv, cs, ce} yes next q
{di} yes next q

{di, cv} no yes new imp di, cv→ ⊥
{di,pa, cs} no yes new imp di, pa, cs→ ⊥
{di, ov} no yes new imp di, ov→ ⊥

M yes end.

Figure 6.4: Steps in the exploration algorithm

di ov pa cv cs ce

disjoint overlap parallel common
vertex

common
segment

common
edge

× ×
× × ×

Figure 6.5: Additional objects for Figure 6.3

6.1.4 Refined queries

The interactive part of the Attribute Exploration algorithm suggests an implication
and asks for either a confirmation or a counter example. In a concrete application,
such a question may be difficult to answer. It is possible to give more detailed
information supporting the user’s decision.

We have already discussed in Subsection 5.3.4 (p. 83) how to shorten implica-
tions. Moreover, not all attribute combinations are possible for counter examples,

106 CHAPTER 6. ATTRIBUTE EXPLORATION

disjoint overlapparallel comm.
vertex

comm.
segment

common
edge

Figure 6.6: The implications of this concept lattice are valid in general.

because each counter example of course has to respect the implications already
given.

Thus as a service for the interactive user, we might offer informations about short
premises, short conclusions and possible counter examples, whenever a question is
asked. In fact, Burmeister’s implementation within ConImp offers aspects of all
three possibilities, and these are often helpful.

