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Chapter 1

Formal Concept Analysis in

a nutshell

This section is meant to be an `appetizer'. It provides a brief overview over Formal

Concept Analysis, in order to allow for a better understanding of the overall pic-

ture. This section introduces the most basic notions of Formal Concept Analysis,

namely formal contexts, formal concepts, concept lattices, many-valued contexts

and conceptual scaling. These de�nitions are repeated and discussed in more detail

in the remainder of the book.

1.1 Formal contexts, concepts, and concept lat-

tices

Formal Concept Analysis (FCA) was introduced as a mathematical theory model-

ing the concept of `concepts' in terms of lattice theory. To allow a mathematical

description of extensions and intensions, FCA starts with a (formal) context.

De�nition 1 A (formal) context is a triple K := (G;M; I), where G is a set whose

elements are called objects, M is a set whose elements are called attributes, and I

is a binary relation between G and M (i. e. I � G�M). (g;m) 2 I is read \object

g has attribute m". �

Figure 1.1 shows a formal context where the object set G comprises all airlines of

the Star Alliance group and the attribute set M lists their destinations. The binary

relation I is given by the cross table and describes which destinations are served by

which Star Alliance member.

De�nition 2 For A � G, let

A0 := fm 2M j 8g 2 A: (g;m) 2 Ig
and, for B �M , let

B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig :

A (formal) concept of a formal context (G;M; I) is a pair (A;B) with A � G,

B �M , A0 = B and B0 = A. The sets A and B are called the extent and the intent
of the formal concept (A;B), respectively. The subconcept{superconcept relation is

formalized by

(A1; B1) � (A2; B2) :() A1 � A2 (() B1 � B2) :

7
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Figure 1.1: A formal context about the destinations of the Star Alliance members

The set of all formal concepts of a context K together with the order relation � is

always a complete lattice,1 called the concept lattice of K and denoted by B(K ). �

United StatesAsia Pacific

Canada

Europe

Africa

Middle East

Latin America

Caribbean

Mexico

Ansett Australia

British Midland

All Nippon Airways

Air New Zealand

The Austrian Airlines Group
Singapore Airlines

Mexicana

Thai Airways International

Scandinavian Airlines

VARIG

United Airlines

Air Canada

Lufthansa

Figure 1.2: The concept lattice of the context in Figure 1.1

1I. e., for each subset of concepts, there is always a unique greatest common subconcept and a

unique least common superconcept.
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Figure 1.2 shows the concept lattice of the context in Figure 1.1 by a line dia-
gram. In a line diagram, each node represents a formal concept. A concept c1 is a

subconcept of a concept c2 if and only if there is a path of descending edges from

the node representing c2 to the node representing c1. The name of an object g is

always attached to the node representing the smallest concept with g in its extent;

dually, the name of an attribute m is always attached to the node representing the

largest concept with m in its intent. We can read the context relation from the

diagram because an object g has an attribute m if and only if the concept labeled

by g is a subconcept of the one labeled by m. The extent of a concept consists of all

objects whose labels are attached to subconcepts, and, dually, the intent consists

of all attributes attached to superconcepts. For example, the concept labeled by

`Middle East' has fSingapore Airlines, The Austrian Airlines Group, Lufthansa,

Air Canadag as extent, and fMiddle East, Canada, United States, Europe, Asia

Paci�cg as intent.
In the top of the diagram, we �nd the destinations which are served by most

of the members: Europe, Asia Paci�c, and the United States. For instance, beside

British Midland and Ansett Australia, all airlines are serving the United States.

Those two airlines are located at the top of the diagram, as they serve the fewest

destinations | they operate only in Europe and Asia Paci�c, respectively.

The further we go down in the concept lattice, the more globally operating are

the airlines. The most destinations are served by the airlines at the bottom of the

diagram: Lufthansa (serving all destinations beside the Caribbean) and Air Canada

(serving all destinations beside Africa). Also, the further we go down in the lattice,

the fewer served are the destinations. For instance, Africa, the Middle East, and

the Caribbean are served by relatively few Star Alliance members.

Dependencies between the attributes can be described by implications. For

X;Y �M , we say that the implication X ! Y holds in the context, if each object

having all attributes in X also has all attributes in Y . For instance, the implication

fEurope, United Statesg ! fAsia Paci�cg holds in the Star Alliance context. It can
be read directly in the line diagram: the largest concept having both `Europe' and

`United States' in its intent (i. e., the concept labeled by `All Nippon Airways' and

`Air New Zealand') also has `Asia Paci�c' in its intent. Similarly, one can detect

that the destinations `Africa' and `Canada' together imply the destination `Middle

East' (and also `Europe', `Asia Paci�c', and `United States').

Concept lattices can also be visualized in nested line diagrams. For obtaining a
nested line diagram, one splits the set of attributes in two parts, and obtains thus

two formal contexts. For each formal context, one computes its concept lattice and

a line diagram. The nested line diagram is obtained by enlarging the nodes of the

�rst line diagram and by drawing the second diagram inside. The second lattice is

used to further di�erentiate each of the extents of the concepts of the �rst lattice.

Figure 1.3 shows a nested line diagram for the Star Alliance context. It is obtained

by splitting the attribute set as follows: M = fEurope, Asia Paci�c, Africa, Middle

East g [ fUnited States, Canada, Latin America, Mexico, Caribbean g. The order
relation can be read by replacing each of the lines of the large diagram by eight

parallel lines linking corresponding nodes in the inner diagrams. The concept lattice

given in Figure 1.2 is embedded (as a join{semilattice) in this diagram, it consists

of the bold nodes. The concept mentioned above (labeled by `Middle East') is for

instance represented by the left-most bold node in the lower right part.

The bold concepts are referred to as `realized concepts', as, for each of them,

the set of all attributes labeled above is an intent of the formal context. The non-

realized concepts are not only displayed to indicate the structure of the inner scale,

but also because they indicate implications: Each non-realized concept indicates

that the attributes in its intent imply the attributes contained in the largest real-

ized concept below. For instance, the �rst implication discussed above is indicated
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Non-American Destinations

American Destinations

Europe
Asia Pacific

Africa Middle East

United States

Canada Latin America

Mexico

Caribbean

Mexicana

Ansett AustraliaBritish Midland

Air New Zealand

All Nippon Airways

Thai Airways International

United Airlines

Air Canada

Scandinavian Airlines

VARIG

Singapore Airlines
The Austrian Airlines Group

Lufthansa

Figure 1.3: A nested diagram of the concept lattice in Figure 1.2

by the non-realized concept having as intent `Europe' and `United States', it is rep-

resented by the empty node below the concept labeled by `British Midland'. The
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largest realized sub-concept below is the one labeled by `All Nippon Airways' and

`Air New Zealand' | which additionally has `Asia Paci�c' in its intent. Hence

the implication f Europe, United States g ! f Asia Paci�c g holds. The second

implication from above is indicated by the non-realized concept left of the concept

labeled by `Scandinavian Airlines', and the largest realized concept below, which is

the one labeled by `Singapore Airlines' and `The Austrian Airlines Group'.

1.2 Many-valued contexts and conceptual scaling

In most applications, there are not only Boolean attributes in the databases. The

conceptual model we use for this is a many-valued context. In database terms, a

many-valued context is a relation of a relational database with one key attribute

whose domain is the set G of objects. Here, we consider only one (denormalized)

database relation at a time.

In order to obtain a concept lattice from a many-valued context, it has to be

translated into a one-valued (formal) context. The translation process is described

by conceptual scales:

De�nition 3 A many-valued context is a tuple (G;M; (Wm)m2M ; I) where G and

M are sets of objects and attributes, resp.,Wm is a set of values for eachm 2M , and

I � G�S
m2M

(fmg�Wm) is a relation such that (g;m;w1) 2 I and (g;m;w2) 2 I

imply w1 = w2.

A conceptual scale for an attribute m 2 M is a one-valued context Sm :=

(Gm;Mm; Im) with Wm � Gm. The context Rm := (G;Mm; Jm) with gJmn :

() 9w2Wm: (g;m;w)2I ^ (w; n)2Im is called the realized scale for the attribute

m 2M .

A Conceptual Information System consists of a many-valued context together

with a set of conceptual scales. �

The set M consists of all attributes of the database scheme, while the sets Mm

contain the attributes which are shown to the user by the Conceptual Information

System.

Example 1 The information system INFO-80 supports planning, realization, and

control of business transactions related to 
ight movements at Frankfurt Airport.

A Conceptual Information System has been established, based on the TOSCANA

software, in order to facilitate access to the data of INFO-80 ([?]).

Here we consider 18389 outbound 
ight movements e�ectuated at Frankfurt

Airport during one month. For each of these 
ight movements 110 attributes are

registered automatically and stored in a database (e. g., destination, estimated time

of departure, actual time of departure, number of passengers, terminal position,

. . . ). 77 conceptual scales have been designed (some of the 110 database attributes

were of minor importance for data analysis). By combining the scales and zooming

into them with other scales, the analyst can explore dependencies and irregularities.

Figure 1.4 shows the realized scale Destination Southern Europe/Mediterranean
Sea. Because of the large number of 
ight movements, TOSCANA displays only

the number of 
ight movements assigned to each concept. If desired, the user can

drill-down to the 
ight number and to more detailed information. For instance,

the concept labeled by `Marokko' (Morocco) has 53 objects (i. e., 
ight numbers) in

its extent, and the attributes `Marokko' and `Nordafrika' (Northern Africa) in its

intent. Its upper neighbor (which is labeled by `Nordafrika') has 53+14+111 = 178

objects in its extent, and `Nordafrika' in its intent.
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Figure 1.4: Realized scale Destination Southern Europe/Mediterranean Sea
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Figure 1.5: Nested line diagram of the scales Position of Baggage Conveyor and

Position of Aircraft

For analyzing how objects are distributed over two di�erent scales, one can

combine the two conceptual scales. The result of combining the two conceptual

scales Position of Baggage Conveyor and Position of Aircraft is displayed in the

nested line diagram in Figure 1.5.

Each of the 17 lines of the outer scale represents seven parallel lines linking

corresponding concepts of the inner scale. The concept lattice we are interested in

is embedded in this direct product. The embedding is indicated by the bold circles.
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Again, each non-realized concept (i. e., the empty circles) indicates an implication.

For example, the leftmost circle in the leftmost ellipse has the attribute `Halle A'

(hall A) and `G' (general aviation, i. e., private airplanes) in its intent. These two

attributes form the premise of the implication. The conclusion of the implication

is given by the intent of the largest realized concept below. In this case, it is the

bottom concept which has all attributes in its extent. Hence hall A as position

of the baggage conveyor and the general aviation apron as position of the aircraft

implies everything else. This means that the premise is not realized by any object.

There are no general aviation aircraft with a baggage conveyor assigned at hall A.

There are concepts in the nested line diagram which are expected to be non-realized

as well. For instance, an aircraft at Terminal 1 should not have a baggage conveyor

assigned at Terminal 2. But in the diagram, we see that the concept with these

two attributes is realized. There are 180 
ight movements having the attribute

`Terminal 2' of the outer scale and the attribute `T1' of the inner scale.

We can detect some more unnormal combinations. There are four aircraft that

docked at Terminal 2, while their assigned baggage conveyors are at Terminal 1. To

seven aircraft at Terminal 2 and 17 aircraft at Terminal 1, conveyors on the `Vorfeld

V3' (Apron V3) were assigned. In all these cases, one can drill down to the original

data by clicking on the number to obtain the 
ight movement numbers, which in

turn lead to the data sets stored in the INFO-80 system.

The knowledge that the combinations are unnormal, is not coded explicitly in

INFO-80, but is only implicitly present as expert knowledge. Since these combina-

tions happen at the airport, they cannot be forbidden by database constraints. But

once such con
icts are discovered, one can implement an alarm which informs the

operator of the baggage transportation system about such cases.

If there are too many scales involved in the knowledge discovery process, then

zooming into the outer scale reduces the size of the displayed diagram. For instance,

by zooming into the concept labeled by `Terminal 2' in Fig. 1.5, we obtain the

diagram of the conceptual scale Position of Aircraft, but with the objects being

restricted to those 
ight movements where the assigned baggage conveyor is at

Terminal 2. Then one can continue the exploration by adding a new conceptual scale

on the inner level. This interactive human-centered knowledge discovery process is

described in detail in [?].

This section gave a short introduction to the core notions of FCA. We will discuss

them (and more advanced topics) in more detail in the remainder of this book.
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Chapter 2

Concept lattices

Formal Concept Analysis studies how objects can be hierarchically grouped together
according to their common attributes. One of the aspects of FCA thus is attribute
logic, the study of possible attribute combinations. Most of the time, this will be

very elementary. Those with a background in Mathematical Logic might say that

attribute logic is just Propositional Calculus, and thus Boolean Logic, or even a

fragment of this. Historically, the name Propositional Logic is misleading: Boole

himself used the intuition of attributes (\signs") rather than of propositions. So in

fact, attribute logic goes back to Boole.

But our style is di�erent from that of logicians. Our logic is contextual, which
means that we are interested in the logical structure of concrete data (of the context).
Of course, the general rules of mathematical logic are important for this and will

be utilized.

2.1 Basic notions

2.1.1 Formal contexts and cross tables

De�nition 4 A Formal Context (G;M; I) consists of two sets G and M and of

a binary relation I � G �M . The elements of G are called the objects, those of

M the attributes of (G;M; I). If g 2 G and m 2 M are in relation I , we write

(g;m) 2I or g I M and read this as \object g has attribute M". �

The simplest format for writing down a formal context is a cross table: we write

a rectangular table with one row for each object and one column for each attribute,

having a cross in the intersection of row g with column m i� (g;m) 2 I . The

simplest data type for computer storage is that of a bit matrix1.

Note that the de�nition of a formal context is very general. There are no restric-

tions about the nature of objects and attributes. We may consider physical objects,

or persons, numbers, processes, structures, etc., etc., virtually everything. Any-

thing that is a set in the mathematical sense may be taken as the set of objects or

of attributes of some formal context. We may interchange the rôle of objects and at-

tributes: if (G;M; I) is a formal context, then so is the dual context (M;G; I�1)

(with (m; g) 2I�1: () (g;m) 2I). It is also not necessary that G and M are

disjoint, they need not even be di�erent.

On the other hand, the de�nition is rather restrictive when applied to real world

phenomena. Language phrases like \all human beings" or \all chairs" do not denote

1It is not easy to say which is the most eÆcient data type for formal contexts. This depends,

of course, on the operations we want to perform with formal contexts. The most important ones

are the derivation operators, to be de�ned in the next subsection.

17
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sets in our sense. There is no \set of all chairs", because the decision if something is

a chair is not a matter of fact but a matter of subjective interpretation. The notion

of \formal concept" which we shall base on the de�nition of \formal context" is

much, much narrower than what is commonly understood as a concept of human

cognition. The step from \context" to \formal context" is quite an incisive one.

It is the step from \real world" to \data". Later on, when we get tired of saying

\formal concepts of a formal context", we will sometimes omit the word \formal".

But we should keep in mind that it makes a big di�erence.

2.1.2 The derivation operators

Given a selection A � G of objects from a formal context (G;M; I), we may ask

which attributes from M are common to all these objects. This de�nes an operator

that produces for every set A � G of objects the set A" of their common attributes.

De�nition 5 For A � G, we let

A" := fm 2M j g I m for all g 2 Ag :

Dually, we introduce for a set B �M of attributes

B# := fg 2 G j g I m for all m 2 Bg :

These two operators are the derivation operators for (G;M; I). �

Then set B# denotes thus the set consisting of those objects in G that have all the

attributes from B.

Usually, we do not distinguish the derivation operators in writing and use the

notationA0, B0 instead. This is convenient, as long as the distinction is not explicitly

needed.

If A is a set of objects, then A0 is a set of attributes, to which we can apply the

second derivation operator to obtain A00 (more precisely: (A")# ), a set of objects.

Dually, starting with a set B of attributes, we may form the set B00, which is again

a set of attributes. We have the following simple facts:

Proposition 1 For subsets A;A1; A2 � G we have

1. A1 � A2 ) A0
2 � A0

1,

2. A � A00,

3. A = A000.

Dually, for subsets B;B1; B2 �M we have

1'. B1 � B2 ) B0
2 � B0

1,

2'. B � B00,

3'. B = B000.

The elementary proof is omitted here. The reader may confer to [?] for details.

The mathematically interested reader may notice that the derivation operators con-

stitute a Galois connection between the (power sets of the) sets G and M .

The not so mathematically oriented reader should try to express the statements

of the Proposition in comman language. We give an example: Statement 1.) says

that if a selection of objects is enlarged, then the attributes which are common to
all objects of the larger selection are among the common attributes of the smaller
selection. Try to formulate 2.) and 3.) in a similar manner!
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2.1.3 Formal concepts, extent and intent

In what follows, (G;M; I) always denotes a formal context.

De�nition 6 (A;B) is a formal concept of (G;M; I) i�

A � G; B �M; A0 = B; and A = B0:

The set A is called the extent of the formal concept (A;B), and the set B is called

its intent. �

According to this de�nition, a formal concept has two parts: its extent and its

intent. This follows an old tradition in philosophical concept logic, as expressed

in the Logic of Port Royal, 1654 [?], and in the International Standard ISO704

(translation of the German Standard DIN 2330).

The description of a concept by extent and intent is redundant, because each

of the two parts determines the other (since B = A0 and A = B0). But for many

reasons this redundant description is very convenient.

When a formal context is written as a cross table, then every formal concept

(A;B) corresponds to a (�lled) rectangular subtable, with row set A and column

set B. To make this more precise, note that in the de�nition of a formal context

there is no order on the sets G or M . Permuting the rows or the columns of a cross

table therefore does not change the formal context it represents. A rectangular
subtable may, in this sense, omit some rows or columns; it must be rectangular

after an appropriate rearrangement of the rows and the columns. It is then easy to

characterize the rectangular subtables that correspond to formal contexts: they are

full of crosses and maximal with respect to this property:

Lemma 1 (A;B) is a formal concept of (G,M,I)i� A � G, B �M , and A and B
are each maximal (with respect to set inclusion) with the property A�B � I.

A formal context may have many formal concepts. In fact, it is not diÆcult to

come up with examples where the number of formal concepts is exponential in the

size of the formal context. The set of all formal concepts of (G;M; I) is denoted

B(G;M; I):

Later on we shall discuss an algorithm to compute all formal concepts of a given

formal context.

2.1.4 Conceptual hierarchy

Formal concepts can be (partially) ordered in a natural way. Again, the de�ni-

tion is inspired by the way we usually order concepts in a subconcept{superconcept
hierarchy: \Pig" is a subconcept of \mammal", because every pig is a mammal.

Transferring this to formal concepts, the natural de�nition is as follows:

De�nition 7 Let (A1; B1) and (A2; B2) be formal concepts of (G;M; I). We say

that (A1; B1) is a subconcept of (A2; B2) (and, equivalently, that (A2; B2) is a

superconcept of (A1; B1) i� A1 � A2. We use the �-sign to express this relation

and thus have

(A1; B1) � (A2; B2) :() A1 � A2:

The set of all formal concepts of (G;M; I), ordered by this relation, is denoted

B(G;M; I)

and is called the concept lattice of the formal context (G;M; I). �
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This de�nition is natural, but irritatingly asymmetric. What about the intents?

Well, a look at Proposition 1 shows that for concepts (A1; B1) and (A2; B2)

A1 � A2 is equivalent to B2 � B1:

Therefore

(A1; B1) � (A2; B2) :() A1 � A2 (() B2 � B1):

The concept lattice of a formal context is a partially ordered set:

De�nition 8 A partially ordered set is a pair (P;�) where P is a set, and � is a

binary relation on P (i. e.,� is a subset of P � P ) which is

1. re
exive (x � x for all x 2 P ),

2. anti-symmetric (x � y ^ x 6= y ) :y � x for all x 2 P ),

3. and transitive (x � y ^ y � z ) x � z for all x; y; z 2 P ),

x � y stands for y �, and x < y for x � y with x 6= y. �

Beside concept lattices, partially ordered sets appear frequently in Mathematics

and Computer Science. We provide some examples.

Example 2 � Every tree is a partially ordered set.

� The set R of all reel numbers together with the ordinary �{relation.
� On any set M , the equality = is also a (trivial) order relation.

� For a setM , the powersetP(M) with set inclusion� is also a partially ordered

set.

� The set N of all natural numbers with the divides{relation j.
Observe that we do not assume a total order, which would require the additional

condition x � y or y � x for x; y 2 P . Observe also that partially ordered sets

allow for `multiple inheritance', as the two last examples show.

Concept lattices have additional properties beside being partially ordered sets,

that it why we call them `lattices'. This will be the topic of the next section.

2.2 The algebra of concepts

2.2.1 Reading a concept lattice diagram

The concept lattice of (G;M; I) is the set of all formal concepts of (G;M; I), or-

dered by the subconcept{superconcept order. Ordered sets of moderate size can

conveniently be displayed as order diagrams. We explain how to read a concept

lattice diagram by means of an example given in Figure 2.1. Later on we will discuss

how to draw such diagrams.

Figure 2.1 refers to the following situation: Think of two squares, of equal size,

that are drawn on paper. There are di�erent ways to arrange two squares: they

may be disjoint (= have no point in common), may overlap (= have a common

interior point), may share a vertex, an edge or a line segment of the boundary (of

length > 0), they may be parallel or not.

Figure 2.1 shows a concept lattice unfolding these possibilities. It consists of

twelve formal concepts, these being represented by the twelve small circles in the
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common vertexparallel

common
segment

common edge

overlap

disjoint

Figure 2.1: A concept lattice diagram. The objects are pairs of unit squares. The

attributes describe their mutual position. See also Figure 6.6 (p. 107).

diagram. The names of the six attributes are given. Each name is attached to one

of the formal concepts and is written slightly above the respective circle. The ten

objects are represented by little pictures; each showing a pair of unit squares. Again,

each object is attached to exactly one formal concept; the picture representing the

object is drawn slightly below the circle representing the object concept.

Some of the circles are connected by edges. These express the concept order.

With the help of the edges we can read from the diagram which concepts are sub-

concepts of which other concepts, and which objects have which attributes. To do

so, one has to follow ascending paths in the diagram.

For example, consider the object . From the corresponding circle we can

reach, via ascending paths, four attributes: \common edge", \common segment",

\common vertex", and \parallel". does in fact have these properties, and

does not have the other ones: the two squares are neither \disjoint" nor do they

\overlap".

Similarly, we can �nd those objects that have a given attribute by following all

descending paths starting at the attribute concept. For example, to �nd all objects

which \overlap", we start at the attribute concept labeled \overlap" and follow the

edges downward. We can reach three objects (namely , , and , the

latter symbolizing two squares at the same position). Note that we cannot reach

, because only at concept nodes it is allows to make a turn.

With the same method, we can read the intent and the extent of every formal

concept in the diagram. For example, consider the concept circle labeled . Its

extent consists of all objects that can be reached from that circle on an descending

path. The extent therefore is f ; g. Similarly, we �nd by an inspection of

the ascending paths that the intent of this formal concept is foverlap; parallelg.
The diagram contains all necessary information. We can read o� the objects,
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the attributes, and the incidence relation I . Thus we can perfectly reconstruct the

formal context from the diagram (\the original data").2 Moreover, for each formal

concept we can easily determine its extent and intent from the diagram.

So in a certain sense, concept lattice diagrams are perfect. But there are, of

course, limitations. Take another look at Figure 2.1. Is it correct? Is it complete?
The answer is that, since a concept lattice faithfully unfolds the formal context, the

information displayed in the lattice diagram can be only as correct and complete

as the formal context is. In our speci�c example it is easy to check that the given

examples in fact do have the properties as indicated. But a more diÆcult problem

is if our selection of objects is representative. Are there possibilities to combine two

squares, that lead to an attribute combination not occurring in our sample?

We shall come back to that question later.

2.2.2 Supremum and in�mum

Can we compute with formal concepts? Yes, we can. The concept operations are

however quite di�erent from addition and multiplication of numbers. They resemble

more of the operations greatest common divisor and least common multiple, that we
know from integers.

De�nition 9 Let (M;�) be a partially ordered set, and A be a subset of M . A

lower bound of A is an element s of M with s � a, for all a 2 A. An upper

bound of A is de�ned dually. If there exists a largest element in the set of all

lower bounds of A, then it is called the in�mum (or join) of A. It is denoted

inf A or
V
A. The supremum (or meet) of A (sup A,

W
A) is de�ned dually. For

A = fx; yg, we write also x ^ y for their in�mun, and x _ y for their supremum. �

Similarly as for arbitrary sums we use the symbol
P

instead of +, we use the

large symbols
W

and
V

for arbitrary suprema and in�ma.

Lemma 2 For any two formal concepts (A1; B1) and (A2; B2) of some formal con-
text we obtain

� the in�mum (greatest common subconcept) of (A1; B1) and (A2; B2) as

(A1; B1) ^ (A2; B2) := (A1 \ A2; (B1 [B2)
00);

� the supremum (least common superconcept) of (A1; B1) and (A2; B2) as

(A1; B1) _ (A2; B2) := ((A1 [ A2)
00; B1 \ B2):

It is not diÆcult to prove (Exercise 3) that what is suggested by this de�nition

is in fact true: (A1; B1)^ (A2; B2) is in fact a formal concept (of the same context),

(A1; B1) ^ (A2; B2) is a subconcept of both (A1; B1) and (A2; B2), and any other

common subconcept of (A1; B1) and (A2; B2) is also a subconcept of (A1; B1) ^
(A2; B2). Similarly, (A1; B1) _ (A2; B2) is a formal concept, it is a superconcept of

(A1; B1) and of (A2; B2), and it is a subconcept of any common superconcept of

these two formal concepts.

With some practice, one can read o� in�ma and suprema from the lattice dia-

gram. Choose any two concepts from Figure 2.1 and follow the descending paths

from the corresponding nodes in the diagram. There is always a highest point where

these paths meet, that is, a highest concept that is below both, namely, the in�-

mum. Any other concept below both can be reached from the highest one on a

2This reconstruction is assured by the Basic Theorem given below.
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descending path. Similarly, for any two formal concepts there is always a lowest

node (the supremum of the two), that can be reached from both concepts via as-

cending paths. And any common superconcept of the two is on an ascending path

from their supremum.

2.2.3 Complete lattices

The operations for computing with formal concepts, in�mum and supremum, are

not as weird as one might suspect. In fact, we obtain with each concept lattice

an algebraic structure called a \lattice", and such structures occur frequently in

mathematics and computer science. \Lattice theory" is an active �eld of research in

mathematics. A lattice is an algebraic structure with two operations (called \meet"

and \join" or \in�mum" and \supremum") that satisfy certain natural conditions:3

De�nition 10 A partially ordered set V := (V;�) is a lattice, if their exists, for
every pair of elements x; y 2 V , their in�mum x ^ y and their supremum x _ y. �

We shall not discuss the algebraic theory of lattices in this lecture. Many uni-

versities o�er courses in lattice theory, and there are excellent textbooks.4

Concept lattices have an additional nice property: they are complete lattices.

This means that the operations of in�mum and supremum do not only work for

an input consisting of two elements, but for arbitrary many. In other words: each

collection of formal concepts has a greatest common subconcept and a least com-

mon superconcept. This is even true for in�nite sets of concepts. The operations

\in�mum" and \supremum" are not necessarily binary, they work for any input

size.

De�nition 11 A partially ordered set V := (V;�) is a complete lattice, if for

every set A � V exist its in�mum
V
V and its supremum

W
A. �

The de�nition requests the existence of in�mum and supremum for every set A,

hence also for the empty set A := ;. Following the de�nition, we obtain that
V ;

has to be the (unique) largest element of the lattice. It is denoted by 1V. Dually,W ; has to be the smallest element of the lattice; it is denoted by 0V.

The arbitrary arity of in�mum and supremum is very useful, but will make

essentially no di�erence for our considerations, because we shall mainly be concerned

with �nite formal contexts and �nite concept lattices. Well, this is not completely

true. In fact, although the concept lattice in Figure 2.1 is �nite, its ten objects are

representatives for all possibilities to combine two unit squares. Of course, there

are in�nitely many such possibilities. It is true that we shall consider �nite concept

lattices, but our examples may be taken from an in�nite reservoir.

2.2.4 The Basic Theorem

We give now a mathematically precise formulation of the algebraic properties of

concept lattices. The theorem below is not diÆcult, but basic for many other

results. Its formulation contains some technical terms that we have not mentioned

so far.

To understand the notion of a \supremum-dense" set, think of the positive

integers with the least common multiple (LCM) in the rôle of the supremum op-

eration. Some numbers can be written as a LCM of other integers. For example,

3Unfortunately, the word \lattice" is used with di�erent meanings in mathematics. It also

refers to generalized grids.
4
An introduction to lattices and order by B. Davey and H. Priestley is particularly popular

among CS students.
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12 = LCMf3; 4g. Therefore, 12 is called LCM-reducible. Prime numbers cannot

be written as an LCM of other numbers. Therefore, prime numbers are LCM-

irreducible. But prime numbers are not the only LCM-irreducible numbers. For

example, 25 is not the least common multiple of other numbers, and thus is LCM-

irreducible. It is easy to see that the LCM-irreducible integers are precisely the

prime powers5. The set of prime powers is LCM-dense, which means that every

positive integer can be written as a LCM of prime powers. Any larger set, that is,

any set containing all prime powers, is also LCM-dense, of course.

There are no GCD-irreducible numbers. Every positive integer can be written

as the GCD of other numbers. But there are GCD-dense sets of numbers. For

example, the set of all integers greater than 1000 is GCD-dense.

In a complete lattice, an element is called supremum-irreducible if it cannot

be written as an supremum of other elements, and in�mum-irreducible if it can

not be expressed as an in�mum of other elements. It is very easy to locate the

irreducible elements in a diagram of a �nite lattice: the supremum-irreducible el-

ements are precisely those from which there is exactly one edge going downward.

An element is in�mum-irreducible if and only if it is the start of exactly one up-

ward edge. In Figure 2.1 there are precisely nine supremum-irreducible concepts

and precisely �ve in�mum-irreducible concepts. Exactly four concepts have both

properties, they are doubly irreducible.

A set of elements of a complete lattice is called supremum-dense, if every

lattice element is a supremum of elements from this set. Dually, a set is called

in�mum-dense, if the in�ma that can be computed from this set exhaust all

lattice elements.

De�nition 12 Two complete lattices V and W are isomorphic (V �= W ), if there

exists a bijective mapping ':V ! W with x � y () '(x) � '(y). The mapping

' is then called lattice isomorphism between V and W . �

Example 3 The lattice (f1; 2; 3; 5; 6; 10; 12; 15; 30g; j) is isomorphic to the powerset

(P(f2; 3; 5g);�) with the isomorphism ': f1; 2; 3; 5; 6; 10; 12; 15; 30g ! P(f2; 3; 5g)
with '(x) := fy 2 f2; 3; 5g j y divides xg.

Now we have de�ned all the terminology necessary for stating the main theorem

of Formal Concept Analysis.

Theorem 1 (The basic theorem of Formal Concept Analysis.) The concept
lattice of any formal context (G;M; I) is a complete lattice. For an arbitrary set
f(Ai; Bi) j i 2 Ig � B(G;M; I) of formal concepts, the supremum is given by

_
i2I

(Ai; Bi) =

 
(
[
i2I

Ai)
00;
\
i2I

Bi

!

and the in�mum is given by

^
i2I

(Ai; Bi) =

 \
i2I

Ai; (
[
i2I

Bi)
00

!
:

A complete lattice L is isomorphic to B(G;M; I) i� there are mappings ~
 : G! L

and ~� : M ! L such that ~
(G) is supremum-dense and ~�(M) is in�mum-dense in
L, and

g I m () ~
(g) � ~�(m):

In particular, L �= B(L;L;�):
5The number 1 requires special treatment. We shall not go into this.
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The theorem is less complicated as it �rst may seem. We give some explanations

below. Readers in a hurry may skip these and continue with the next section.

The �rst part of the theorem gives the precise formulation for in�mum and

supremum of arbitrary sets of formal concepts. The second part of the theorem

gives (among other information) an answer to the question if concept lattices have

any special properties. The answer is \no": every complete lattice is (isomorphic

to) a concept lattice. This means that for every complete lattice we must be able

to �nd a set G of objects, a set M of attributes and a suitable relation I , such that

the given lattice is isomorphic to B(G;M; I). The theorem does not only say how

this can be done, it describes in fact all possibilities to achieve this.

In Figure 2.1, every object is attached to a unique concept, the corresponding

object concept. Similarly for each attribute there corresponds an attribute concept.
These can be de�ned as follows:

De�nition 13 Let (G;M; I) be some formal context. Then

� for each object g 2 G the corresponding object concept is


g := (fgg00; fgg0);

� and for each attribute m 2M the attribute concept is given by

�m := (fmg0; fmg00):

The set of all object concepts of (G;M; I) is denoted 
G, the set of all attribute

concepts is �M . �

Using De�nition 6 and Proposition 1 it is easy to check that these expressions in

fact de�ne formal concepts of (G;M; I).

We have that 
g � (A;B) () g 2 A. A look at the �rst part of the Basic

Theorem shows that each formal concept is the supremum of all the object concepts

below it (Exercise 4). Therefore, the set 
G of all object concepts is supremum-

dense. Dually, the attribute concepts form am in�mum dense set in B(G;M; I).

The Basic Theorem says that, conversely, any supremum-dense set in a complete

lattice L can be taken as the set of objects and any in�mum-dense set be taken as

a set of attributes for a formal context with concept lattice isomorphic to L.

We conclude with a simple observation that often helps to �nd errors in con-

cept lattice diagrams. The fact that the object concepts form an supremum-dense

set implies that every supremum-irreducible concept must be an object concept

(the converse is not true). Dually, every in�mum-irreducible concept must be an

attribute concept. This yields the following rule for concept lattice diagrams:

Proposition 2 Given a formal context (G;M; I) and a �nite order diagram, labeled
by the objects from G and the attributes from M . For g 2 G let ~
(g) denote the
element of the diagram that is labeled with g, and let ~�(m) denote the element labeled
with m. Then the given diagram is a correctly labeled diagram of B(G;M; I) if and
only if it ful�lls the following conditions:

1. The diagram is a correct lattice diagram,

2. every supremum-irreducible element is labeled by some object,

3. every in�mum-irreducible element is labeled by some attribute,

4. g I m () ~
(g) � ~�(m).
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2.2.5 The duality principle

The de�nitions of lattices and complete lattices are self-dual: If (V;�) is a (com-

plete) lattice, then (V;�)d := (V;�) is also a (complete) lattice. If a theorem holds

for a (complete) lattice, then the `dual theorem' also holds, i. e., the theorem where

all occurences of �;_;^;W;V;0V;1V etc. are replaced by �;^;_;V;W;1V;0V,
resp.

For concept lattices, their dual can be obtained by \permuting" the formal

context:

Lemma 3 Let (G;M; I) be a formal context. Then (B((G;M; I)))d �= B(M;G; I�1),
where I�1 := f(m; g) 2M �G j (g:m) 2 Ig.

2.3 Computing and drawing concept lattices

2.3.1 Computing all concepts

There are several algorithms that help drawing concept lattices. We shall discuss

some of them below. But we �nd it instructive to start by some small examples

that can be drawn by hand. For computing concept lattices, we will investigate a

fast algorithm later. We start with a naive method, and proceed then to a method

which is suitable for manual computation.

In principle, it is not diÆcult to �nd all the concepts of a formal context. The

following proposition summarizes the naive possibilities of generating all concepts:

Lemma 4 Each concept of a context (G;M; I) has the form (X 00; X 0) for some
subset X � G and the form (Y 0; Y 00) for some subset Y �M . Conversely, all such
pairs are concepts.

Every extent is the intersection of attribute extents and every intent is the in-
tersection of object intents.

The �rst part of the lemma suggests the following, �rst algorithm for computing

all concepts:

1. B(G;M; I) := ;;

2. For all subsets X of G, add (X 00; X 0) to B(G;M; I);

However, this is rather ineÆcient, and not practicable even for relatively small

contexts. The second part of the proposition at least yields the possibility to cal-

culate the concepts of a small context by hand.

The following method is more eÆcient, and is recommended for computations

by hand. It is based on the following observations:

1. It suÆces to determine all concept extents [or all concept intents] of (G;M; I),

since we can always determine the other part of a formal concept with the help of the

derivation operators.

2. The intersection of arbitrary many extents is an extent [and the intersection

of arbitrary intents is an intent].

This follows easily from the formulae given in the Basic Theorem. By the way: a convention

that may seem absurd on the �rst glance allows to include in \arbitrary many" also the

case \zero". The convention says that the intersection of zero intents equals M and the

intersection of zero extents equals G.
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3. One can determine all concept extents from knowing all attribute extents

fmg0, m 2 M [and all concept intents from all object intents fgg0, g 2 G]

because

� every extent is an intersection of attribute extents,

� [and every intent is the intersection of object intents].

This is a consequence of the fact that the attribute concepts are in�mum-dense and the

object concepts are supremum-dense.

This leads to the following

Instruction how to determine all formal concepts

of a small formal context

1. Initialize a list of concept extents. To begin with, write for each attribute

m 2M the attribute extent fmg0 to this list (if not already present).

2. For any two sets in this list, compute their intersection. If the result is a

set that is not yet in the list, then extend the list by this set. With the

extended list, continue to build all pairwise intersections.

3. If for any two sets of the list their intersection is also in the list, then

extend the list by the set G (provided it is not yet contained in the list).

The list then contains all concept extents (and nothing else).

4. For every concept extent A in the list compute the corresponding intent

A0 to obtain a list of all formal concepts (A;A0) of (G;M; I).

An example We illustrate the method by means of an example from elementary

geometry. The objects of our example are seven triangles. The attributes are �ve

standard properties that triangles may or may not have:

Triangles

abbreviation coordinates diagram

T1 (0,0) (6,0) (3,1)

T2 (0,0) (1,0) (1,1)

T3 (0,0) (4,0) (1,2)

T4 (0,0) (2,0) (1,
p
3)

T5 (0,0) (2,0) (5,1)

T6 (0,0) (2,0) (1,3)

T7 (0,0) (2,0) (0,1)

Attributes

symbol property

a equilateral

b isoceles

c acute angled

d obtuse angled

e right angled

We obtain the following formal context

a b c d e

T1 � �
T2 � �
T3 �
T4 � � �
T5 �
T6 � �
T7 �

Following the above instruction, we proceed:
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1. Write the attribute extents to a list.

No. extent found as

e1 := fT4g fag0
e2 := fT1; T2; T4; T6g fbg0
e3 := fT3; T4; T6g fcg0
e4 := fT1; T5g fdg0
e5 := fT2; T7g feg0

2. Compute all pairwise intersections, and

3. add G
No. extent found as

e1 := fT4g fag0
e2 := fT1; T2; T4; T6g fbg0
e3 := fT3; T4; T6g fcg0
e4 := fT1; T5g fdg0
e5 := fT2; T7g feg0
e6 := � e1 \ e4
e7 := fT4; T6g e2 \ e3
e8 := fT1g e2 \ e4
e9 := fT2g e2 \ e5
e10 := fT1; T2; T3; T4; T5; T6; T7g step 3

4. Compute the intents

Concept No. (extent ; intent)

1 (fT4g ; fa; b; cg)
2 (fT1; T2; T4; T6g ; fbg)
3 (fT3; T4; T6g ; fcg)
4 (fT1; T5g ; fdg)
5 (fT2; T7g ; feg)
6 (� ; fa; b; c; d; eg)
7 (fT4; T6g ; fb; cg)
8 (fT1g ; fb; dg)
9 (fT2g ; fb; eg)
10 (fT1; T2; T3; T4; T5; T6; T7g ; �)

We have now computed all ten formal concepts of the triangles{context. The last

step can be skipped if we are not interested in an explicit list of all concepts, but

just in computing a line diagram.

2.3.2 Drawing concept lattices

Based on one of the lists 3. or 4., we can start to draw a diagram. Before doing so,

we give two simple de�nitions.

De�nition 14 Let (A1; B1) and (A2; B2) be formal concepts of (G;M; I).

We say that (A1; B1) is a proper subconcept of (A2; B2), if (A1; B1) �
(A2; B2) and, in addition, (A1; B1) 6= (A2; B2) holds. As an abbreviation, we write

(A1; B1) < (A2; B2).

We say that (A1; B1) is a lower neighbour of (A2; B2), if (A1; B1) < (A2; B2),

but no formal concept (A;B) of (G;M; I) exists with (A1; B1) < (A;B) < (A2; B2).

The abbreviation for this is (A1; B1) � (A2; B2). �
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Instruction how to draw a line diagram of a small concept lattice

5. Take a sheet of paper and draw a small circle for every formal concept, in

the following manner: a circle for a concept is always positioned higher

than the all circles for its proper subconcepts.

6. Connect each circle with the circles of its lower neighbors.

7. Label with attribute names: attach the attribute m to the circle repre-

senting the concept (fmg0; fmg00).
8. Label with object names: attach each object g to the circle representing

the concept (fgg00; fgg0).
We follow these instructions.

5. Draw a circle for each of the formal concepts:

6

1

9 8 7

5 2 4 3

10

6. Connect circles with their lower neighbours:

7. Add the attribute names:
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a

b cde

8. Determine the object concepts

Object g object intent fgg0 No. of concept

T1 fb; dg 8

T2 fb; eg 9

T3 fcg 3

T4 fa; b; cg 1

T5 fdg 4

T6 fb; cg 7

T7 feg 5

and add the object names to the diagram:

a

b cde

T1T2

T3

T4

T5

T6

T7

Ready! Usually it takes some tries before a nice, readable diagram is achieved.

Finally we can make the e�ort to avoid abbreviations and to increase the readability.

The result is shown in Figure 2.2.

2.3.3 Clarifying and reducing a formal context

There are context manipulations that simplify a formal context without changing

the diagram, except for the labellig. It is usually advisable to do these manipulations

�rst, before starting computations.

The simplest operation is clari�cation, which refers to indentifying \equal

rows" of a formal context, and \equal columns" as well. What is meant is that
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equilateral

isoceles

acute angled

obtuse angled

right angled

Figure 2.2: A diagram of the concept lattice of the triangle context.

if a context contains objects g1; g2; : : : with fgig0 = fgjg0 for all i; j, that is, objects
which have exactly the same attributes, then these can be replaced by a single ob-

ject, the name of which is just the list of names of these objects. The same can be

done for attributes with identical attribute extent.

De�nition 15 We say that a formal context is clari�ed if no two of its object

intents are equal and no two of its attribute extents are equal. �

A stronger operation is reduction, which refers to omitting attributes that are

equivalent to combinations of other attributes (and dually for objects). For de�ning

reduction it is convenient to work with a clari�ed context.

De�nition 16 An attribute m of a clari�ed context is called reducible if there is

a set S � M of attributes with fmg0 = S0, otherwise it is irreducible. Reduced

objects are de�ned dually. A formal context is called reduced, if all objects and

all attribues are irreducible. �

fmg0 = S0 means that an object g has the attribute m if and only if it has all the

attributes from S. If we delete the column m from our cross table, no essential

information is lost because we can reconstruct this column from the data contained

in other columns (those of S). Moreover, deleting that column does not change the

number of concepts, nor the concept hierarchy, because fmg0 = S0 implies that m

is in the intent of a concept if and only if S is contained in that intent. The same

is true for reducible objects and concept extents. Deleting a reducible object from

a formal context does not change the structure of the concept lattice.

It is even possible to remove several reducible objects and attributes simultane-

ously from a formal context without any e�ect on the lattice structure, as long as

the number of removed elements is �nite.

De�nition 17 Let (G;M; I) be a �nite context, and let Girr be the set of irre-

ducible objects and Mirr be the set of irreducible attributes of (G;M; I). The

context (Girr ;Mirr; I \ Girr � Mirr) is the reduced context corresponding to

(G;M; I).

For a �nite lattice L let J(L) denote the set of its supremum-irreducible el-

ements and let M(L) denote the set of its in�mum-irreducible elements. Then

(J(L);M(L);�) is the standard context for the lattice L. �
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Proposition 3 A �nite context and its reduced context have isomorphic concept
lattices. For every �nite lattice L there is (up to isomorphism) exactly one reduced
context, the concept lattice of which is isomorphic to L, namely its standard context.

2.3.4 Other algorithms for computing concept lattices

The algorithm which we shall use in what follows to generate all formal concepts of a

given formal context can be formulated without referring to concept lattices. It will

be an algorithm to generate all closed sets of a closure system, calledNextclosure.

It can be applied to concept lattices because for each formal context (G;M; I), the

set Ext(G;M; I) of all concept extents is a closure system, as well as the set

Int(G;M; I) of all the concept intents of (G;M; I).

||{(to be written)||{

� Titanic

� Nourine

� . . .

2.3.5 Computer programs for concept generation and lattice

drawing

There are several free or conditionally free programs available for concept lat-

tice generation and/or drawing. A well known one, old fashioned but reliable, is

CONIMP (for DOS), available under www.mathematik.tu-darmstadt.de. S. Yev-

tushenko provides the Concept Explorer, which allows for editing formal contexts

and computing their concept lattices. It can be downloaded from http://sourceforge.

net/projects/conexp/. A rather advanced package, invented for applications in

data analysis, is theNavicon Decision Suite byNaviconGmbH. A demo version

is available under www.navicon.de.

2.4 Additive and Nested Line Diagrams

In this section, we discuss possibilities to generate line diagrams both automatically

or by hand. A list of some dozens of concepts may already be quite diÆcult to

survey, and it requires practice to draw good line diagrams of concept lattices with

more than 20 elements.

The best and most versatile form of representation for a concept lattice is a

well drawn line diagram. It is however tedious to draw such a diagram by hand

and one would wish an automatic generation by means of a computer. We know

quite a few algorithms to do this, but none which provides a general satisfactory

solution. It is by no means clear which qualities make up a good diagram. It should

be transparent, easily readable and should facilitate the interpretation of the data

represented. How this can be achieved in each individual case depends however on

the aim of the interpretation and on the structure of the lattice. Simple optimization

criteria (minimization of the number of edge crossings, drawing in layers, etc.) often

bring about results that are unsatisfactory. Nevertheless, automatically generated

diagrams are a great help: they can serve as the starting point for drawing by

hand. Therefore, we will describe simple methods of generating and manipulating

line diagrams by means of a computer.
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2.4.1 Additive line diagrams

We will now explain a method where a computer generates a diagram and o�ers the

possibility of improving it interactively. Programming details are irrelevant in this

context. We will therefore only give a positioning rule which assigns points in

the plane to the elements of a given ordered set (P;�). If a and b are elements of P

with a < b, the point assigned to a must be lower than the point assigned to b (i.e.,

it must have a smaller y-coordinate). This is guaranteed by our method. We will

leave the computation of the edges and the checking for undesired coincidences of

vertices and edges to the program. We do not even guarantee that our positioning

is injective (which of course is necessary for a correct line diagram). This must also

be checked if necessary.

De�nition 18 A set representation of an ordered set (P;�) is an order embed-

ding of (P;�) in the power-set of a set X , i.e., a map

rep : P ! P(X)

with the property

x � y () repx � rep y:

�

An example of a set representation for an arbitrary ordered set (P;�) is the

assignment

X := P; a 7! (a]:

In the case of a concept lattice,

X := G; (A;B) 7! A

is a set representation.

X :=M; (A;B) 7!M nB
is another set representation, and both can be combined to

X := G _[M; (A;B) 7! A [ (M nB):

It is suÆcient to limit oneself to the irreducible objects and attributes.

For an additive line diagram of an ordered set (P;�) we need a set represen-

tation rep : P ! P(X) as well as a grid projection

vec : X ! R
2 ;

assigning a real vector with a positive y-coordinate to each element of X . By

pos p := n+
X

x2repp

vecx

we obtain positioning of the elements of P in the plane. Here, n is a vector which

can be chosen arbitrarily in order to shift the entire diagram. By only allowing

positive y-coordinates for the grid projection we make sure that no element p is

positioned below an element q with q < p.

Every �nite line diagram can be interpreted as an additive diagram with respect

to an appropriate set representation. For concept lattices we usually use the rep-

resentation by means of the irreducible objects and/or attributes. The resulting

diagrams are characterized by a great number of parallel edges, which improves

their readability. Experience shows that the set representation by means of the
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irreducible attributes is most likely to result in an easily interpretable diagram.

Figure 2.2 for instance was obtaining by selecting the irreducible attributes for the

set representation.

It is particularly easy to manipulate these diagrams: If we change {the set

representation being �xed{ the grid projection for an element x 2 X , this means

that all images of the order �lter fp 2 P j x 2 rep pg are shifted by the same

distance and that all other points remain in the same position. In the case of the set

representation by means of the irreducibles these order �lters are precisely principal

�lters or complements of principal ideals, respectively. This means that we can

manipulate the diagram by shifting principal �lters or principal ideals, respectively,

and leaving all other elements in position.

Even carefully constructed line diagrams loose their readability from a certain

size up, as a rule from around 50 elements up. One gets considerably further with

nested line diagrams which will be introduced next. However, these diagrams do

not only serve to represent larger concept lattices. They o�er the possibility to

visualize how the concept lattice changes if we add further attributes.

2.4.2 Nested line diagrams

Nested line diagrams permit a satisfactory graphical representation of somewhat

larger concept lattices. The basic idea of the nested line diagram consists of clus-

tering parts of an ordinary diagram and replacing bundles of parallel lines between

these parts by one line each. Thus, a nested line diagram consists of ovals, which

contain clusters of the ordinary line diagram and which are connected by lines.

In the simplest case two ovals which are connected by a simple line are congru-

ent. Here, the line indicates that corresponding circles within the ovals are direct

neighbors, resp.

Furthermore, we allow that two ovals connected by a single line do not neces-

sarily have to be congruent, but they may each contain a part of two congruent

�gures. In this case, the two congruent �gures are drawn in the ovals as a \back-

ground structure", and the elements are drawn as bold circles if they are part of the

respective substructures. The line connecting the two boxes then indicates that the

respective pairs of elements of the background shall be connected with each other.

An example is given in Figure 2.3. It is a screenshot of a library information sys-

tem which was set up for the library of the Center on Interdisciplinary Technology

Research of Darmstadt University of Technology.

Nested line diagrams originate from partitions of the set of attributes. The basis

is the following theorem:

Theorem 2 Let (G;M; I) be a context and M =M1 [M2. The map

(A;B) 7! (((B \M1)
0; B \M1) ; ((B \M2)

0; B \M2))

is a
W
-preserving order embedding of B(G;M; I) in the direct product of B(G;M1; I\

G�M1) and B(G;M2; I \G�M2). The component maps

(A;B) 7! ((B \Mi)
0; B \Mi)

are surjective on B(G;Mi; I \G�Mi).

Proof If (A;B) is a concept of (G;M; I), then B \Mi is the set of all attributes

common to the objects of A in the context (G;Mi; I \G�Mi), i.e., it is an intent

of this context. Hence the above-mentioned assignment is really a map into the

product. The union of the intents B \M1 and B \M2 again yields B, i.e., the

map is injective. The fact that it is furthermore
W
-preserving (and thus an order-

embedding) can again be seen from the concept intents. It remains to be shown
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Geographie
Deutschland

America

G e r m a n y
Important Industrial Countries

Europe

Federal Republic*

GDR*

G e r m a n y *
Eastern Germany*

834

106

9

9 2

32
1

4

71

32 2

27

2
51

5
6

Forschen für die Zukunft : Wissenschaft 
Jahrbuch Arbeit und Technik 1991 : Schwe

3

8

145

64

20

36

1

John von Neumann and Norbert Wiener : Fr33

1

68

1
5

Figure 2.3: Nested line diagram of a library information system

that the component maps are surjective. Let C be an intent of (G;Mi; I \G�Mi).

Then B := CII is an intent of (G;M; I) with B \Mi = C, i.e., the image of the

concept (B0; B) of (G;M; I) under the ith component map is the concept with the

intent C. �

In order to sketch a nested line diagram, we proceed as follows: First of all we

split up the attribute set: M = M1 [M2. This splitting up does not have to be

disjoint. More important for interpretation purposes is the idea that the sets Mi

bear meaning. Now, we draw line diagrams of the subcontexts K i := (G;Mi; I \
G�Mi), i 2 f1; 2g and label them with the names of the objects and attributes, as

usual. Then we sketch a nested diagram of the product of the concept latticesB(K i )

as an auxiliary structure. For this purpose we draw a large copy of the diagram

of B(K 1 ), representing the lattice elements not by small circles but by congruent

ovals, which contain each a diagram of B(K 2 ).

By Theorem 2 the concept lattice B(G;M; I) is embedded in this product as aW
-semilattice. If a list of the elements of B(G;M; I) is available, we can enter them
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into the product according to their intents. If not, we enter the object concepts the

intents of which can be read o� directly from the context, and form all suprema.

This at the same time provides us with a further, quite practicable method of

determining a concept lattice by hand: split up the attribute set as appropriate,

determine the (small) concept lattices of the subcontexts, draw their product in form

of a nested line diagram, enter the object concepts and close it against suprema.

This method is particularly advisable in order to arrive at a useful diagram quickly.

2.5 Examples

||{(to be written)||{

2.6 Exercises

1. Give the formal context for the concept lattice shown in Figure 2.1.

2. Give a proof of Proposition 1.

3. Let (A1; B1) and (A2; B2) be formal concepts of a formal context (G;M; I).

Show that the expression `greatest common subconcept' in Lemma 2 is justi-

�ed by showing

(a) (A1; B1) ^ (A2; B2) is a formal concept (of the same context).

(b) (A1; B1) ^ (A2; B2) is a subconcept of both (A1; B1) and (A2; B2).

(c) Any other common subconcept of (A1; B1) and (A2; B2) is also a sub-

concept of (A1; B1) ^ (A2; B2).

4. Show that, in a concept lattice, the set of all object concepts is supremum-

dense. Hint: Show that each formal concept is the supremum of the set of all

its subconcepts which are also object concepts.

5. Let (V;�) be a partially ordered set where every subset A of V has an in�mum.

Show that (V;�) is a complete lattice.

6. Show that every non-empty �nite lattice is a complete lattice.

7. Show that in every lattice the following equivalences hold:

x � y () x ^ y = x () x _ y = y

Remark: From the knowledge about in�ma and suprema of a lattice, we are

thus able to reconstruct its order relation.

8. Prove Lemma 3: For any formal context (G;M; I), the concept lattices (B((G;M; I)))d

and B(M;G; I�1) are isomorphic.

9. Let V and V be two complete lattices, and ':V ! W be a bijective mapping.

Show that ' is an isomorphism of complete lattices if and only if, for all

subsets X of V ,

'
�_

X
�
=
_
f'(x) j x 2 Xg

and

'
�^

X
�
=
^
f'(x) j x 2 Xg :


