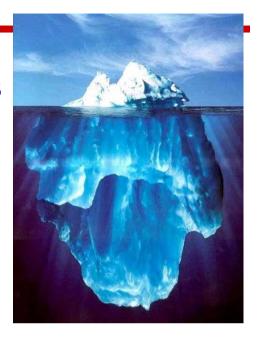
# Formal Concept Analysis

2 Closure Systems and Implications

4 Closure Systems



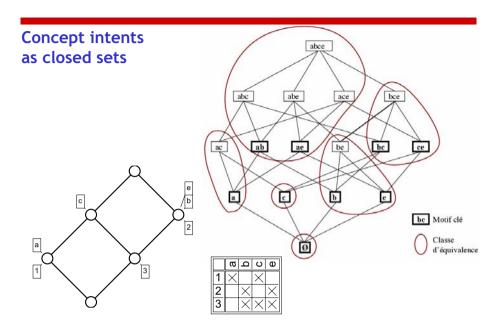
# **Next-Closure**

was developed by B. Ganter (1984).

It can be used

- to determine the concept lattice or
- to determine the concept lattice together with the stem basis or
- for interactive knowledge acquisition.

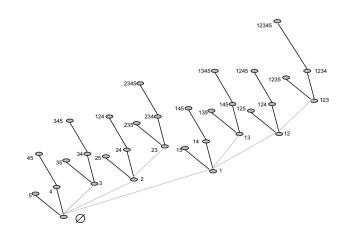
It determines the concept intents in lectical order.



20.06.2005

Let  $M = \{1, ..., n\}$ .  $A \subseteq M$  is **lectically smaller** than  $B \subseteq M$ , if  $B \ne A$  if the smallest element where A and B differ belongs to B:

 $A < B :\Leftrightarrow \exists i \in B \setminus A: A \cap \{1, 2, ..., i-1\} = B \cap \{1, 2, ..., i-1\}$ 



We need the following:

$$A \le B : \Leftrightarrow i \in B \setminus A \land A \cap \{1, 2, ..., i-1\} = B \cap \{1, 2, ..., i-1\}$$

$$A \bullet i := (A \cap \{1, 2, ..., i-1\}) \cup \{i\}$$

Theorem: The smallest concept intent, which according to the lectical order is larger as a given set  $A \subset M$ , is

$$A \oplus i := (A \bullet i)^{\circ},$$

where *i* is the largest element of M with  $A <_i A \oplus i$ .

20.06.2005

20.06.2005

Sinus 44

4 Telefon (2) Fax (3) Fax w. r

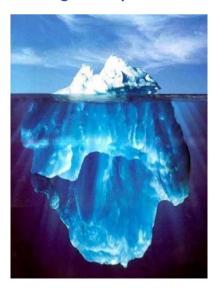
| Example: on blackboard |   |     |                                 | T-F                      | xia 6110   X   X   X   X   X   X   X   X   X |
|------------------------|---|-----|---------------------------------|--------------------------|----------------------------------------------|
| Α                      | i | A•i | $A \oplus i := (A \bullet i)$ " | A < <sub>i</sub> A ⊕ i ? | new concept intent                           |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |
|                        |   |     |                                 |                          |                                              |

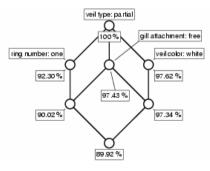
#### Algorithm Next-Closure for determining all concept intents:

- 1) The lectically smallest concept intent is  $\emptyset$ ".
- 2) Is A a concept intent, then we find the lectically next intent, by checking all attributes  $i \in M \setminus A$ , starting with the largest, und then in decreasing order, until  $A <_i (A \oplus i)$ " holds. Then  $A \oplus i$  is the lectically next concept intent.
- 3) If  $A \oplus i = M$ , then stop, else  $A \leftarrow A \oplus i$  and goto 2).

20.06.2005

# **Iceberg Concept Lattices**

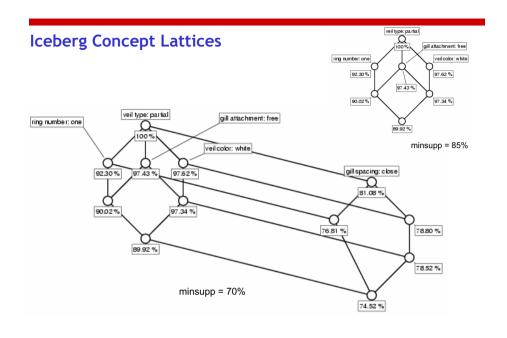


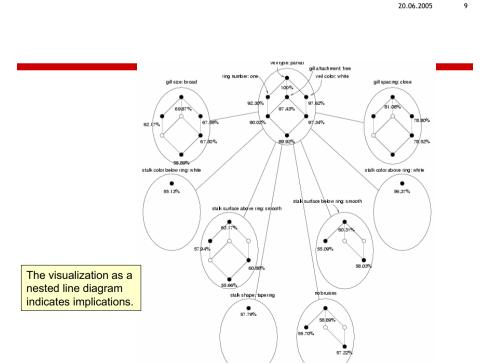


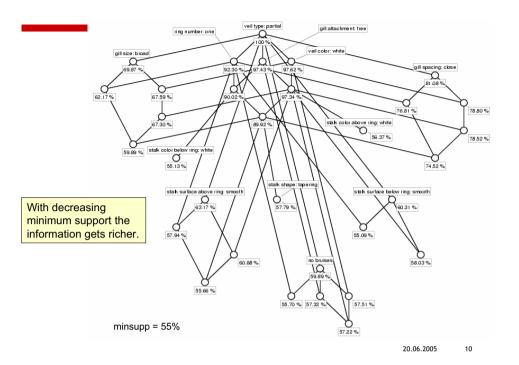
minsupp = 85%

For minsupp = 85% the seven most general of the 32.086 concepts of the Mushrooms database http:\\kdd.ics.uci.edu are shown.

20.06.2005







The support of a set  $X \subseteq M$  of attributes is given by

$$\operatorname{supp}(X) = \frac{|X'|}{|G|}$$

ullet Def.: The **iceberg concept lattice** of a formal context (G,M,I) for a given minimal support minsupp is the set

$$\{ (A,B) \in \underline{\mathbf{B}}(G,M,I) \mid \text{supp}(B) \geq \text{minsupp} \}$$

• It can be computed with **TITANIC**. [Stumme et al 2001]

20.06.2005 11 20.06.2005 12

# **TITANIC**

computes the closure system of all (frequent) concept intents using the support function:

**Def.:** The support of an attribute set (itemset)  $X \subseteq M$  is given by

Only concepts with a support above a threshold minsupp  $\in$  [0,1].

20.06.2005

20.06.2005

13

TITANIC makes use of some simple facts about the support function:

**Lemma 4.** Let  $X, Y \subseteq M$ .

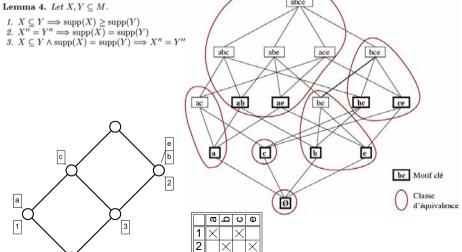
1. 
$$X \subseteq Y \Longrightarrow \operatorname{supp}(X) \ge \operatorname{supp}(Y)$$

2. 
$$X'' = Y'' \Longrightarrow \operatorname{supp}(X) = \operatorname{supp}(Y)$$

1.  $X \subseteq Y \Longrightarrow \operatorname{supp}(X) \ge \operatorname{supp}(Y)$ 2.  $X'' = Y'' \Longrightarrow \operatorname{supp}(X) = \operatorname{supp}(Y)$ 3.  $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \Longrightarrow X'' = Y''$ 

20.06.2005

20.06.2005



# **TITANIC**

tries to optimize the following three questions:

- 1. How can the closure of an itemset be determined based on supports only?
- 2. How can the closure system be computed with determining as few closures as possible?
- 3. How can as many supports as possible be derived from already known supports?

# **TITANIC**

1. How can the closure of an itemset be determined based on supports only?

$$X'' = X \cup \{ x \in M \setminus X \mid supp(X) = supp(X \cup \{ x \}) \}$$

Example:  $\{b,c\}$ " =  $\{b,c,e\}$ , since

 $supp( \{ b, c \} ) = 1/3$ 

and

supp( { a, b, c } ) = 0/3

 $supp({b, c, e}) = 1/3,$ 



abc

a

ab

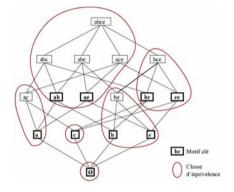
abe

ae

c

be

ь



bce

ce

bc Motif clé

Classe

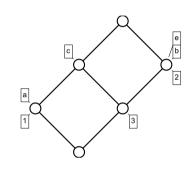
bc

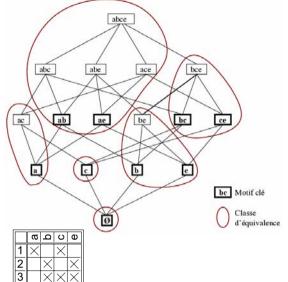
20.06.2005

17

#### **TITANIC**

- 2. How can the closure system be computed with determining as few closures as possible?
- We determine only the closures of the minimal generators.





20.06.2005

18

# **TITANIC**

2. How can the closure system be computed with determining as few closures as possible?

We determine only the closures of the minimal generators.

- A set is minimal generator iff its support is different of the supports of all its lower covers.
- The minimal generators are an order ideal (i.e., if a set is not minimal generator, then none of its supersets is either.)
- → Apriori like approach

In the example, TITANIC needs two runs (and Apriori four).

# **TITANIC**

1. How can the closure of an itemset be determined based on supports only?

$$X``=X\cup x\in M\setminus X\mid supp(X)=supp(X\cup x)$$

2. How can the closure system be computed with determining as few closures as possible?

Approach à la Apriori

 $\ensuremath{\mathtt{3}}.$  How can as many supports as possible be derived from already known supports?

# 3. How can as many supports as possible be derived from already known supports?

**Theorem:** If X is no minimal generator, then

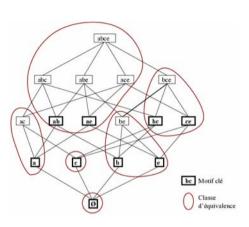
$$\label{eq:supp} \begin{split} \operatorname{supp}(X) = \min \big\{ & \operatorname{supp}(K) \mid K \text{ is minimal} \\ & \operatorname{generator}, \ K \subseteq X \big\} \,. \end{split}$$

**Example:** supp( $\{a, b, c\}$ ) = min  $\{0/3, 1/3, 1/3, 2/3, 2/3\}$  = 0, since the set is no minimal generator, and since

 $\begin{aligned} & \text{supp}(\{\,a,\,b\,\}\,) = 0/3, & \text{supp}(\{\,b,\,c\,\}\,) = 1/3 \\ & \text{supp}(\{\,a\,\}\,) = 1/3, & \text{supp}(\{\,b\,\}\,) = 2/3 \\ & \text{supp}(\{\,c\,\}\,) = 2/3 \end{aligned}$ 

**Remark:** It is sufficient to check the largest generators K with  $K \subseteq X$ , i.e. here  $\{a, b\}$  and  $\{b, c\}$ .

|   | a | P | ပ | Ф |
|---|---|---|---|---|
| 1 | X |   | X |   |
| 2 |   | X |   | X |
| 3 |   | X | X | X |



20.06.2005

21

#### **TITANIC**

1. How can the closure of an itemset be determined based on supports only?

$$X'' = X \cup \{x \in M \setminus X \mid supp(X) = supp(X \cup x)\}$$

2. How can the closure system be computed with determining as few closures as possible?

Approach à la Apriori

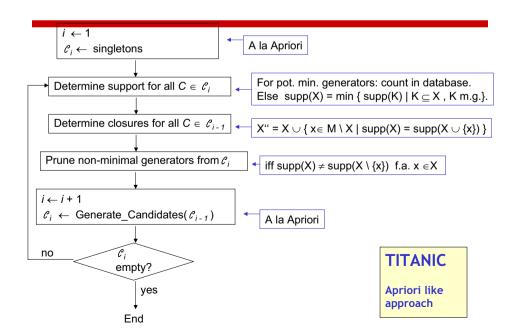
3. How can as many supports as possible be derived from already known supports?

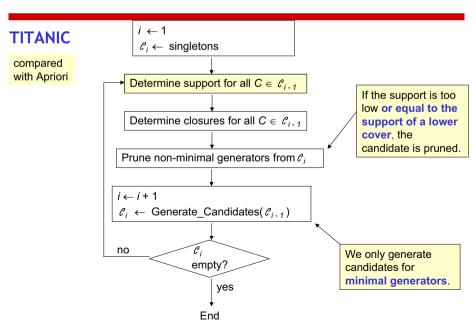
If X is no minimal generator, then

 $supp(X) = min \{ supp(K) \mid K \text{ is minimal generator, } K \subseteq X \}.$ 

20.06.2005

22





#### **TITANIC**

```
Algorithm 1 TITANIC

 Weigh({∅});

 2) \mathcal{K}_0 \leftarrow \{\emptyset\};
 3) k ← 1:
  4) forall m \in M do \{m\}.p\_s \leftarrow \emptyset.s;
 5) \mathcal{C} \leftarrow \{\{m\} \mid m \in M\};
 6) loop begin
 7)
        Weigh(C):
         forall X \in \mathcal{K}_{k-1} do X.closure \leftarrow CLOSURE(X);
         \mathcal{K}_k \leftarrow \{X \in \mathcal{C} \mid X.s \neq X.p\_s\};
       if K_k = \emptyset then exit loop:
11)
      k + +:
12) C \leftarrow \text{Titanic-Gen}(\mathcal{K}_{k-1});
13) end loop;
14) return \bigcup_{i=0}^{k-1} \{X.\text{closure} \mid X \in \mathcal{K}_i\}.
```

- k is the counter which indicates the current iteration. In the kth iteration, all key k-sets are determined.
- $K_k$  contains after the kth iteration all key k-sets K together with their weight K.s and their closure K.closure.
- $\mathcal{C}$  stores the candidate k-sets C together with a counter C.p.s which stores the minimum of the weights of all (k-1)-subsets of C. The counter is used in step 9 to prune all non-key sets.

20.06.2005

25

# **TITANIC**

### **Algorithm 3** CLOSURE(X) for $X \in \mathcal{K}_{k-1}$

- 1)  $Y \leftarrow X$ ;
- 2) forall  $m \in X$  do  $Y \leftarrow Y \cup (X \setminus \{m\})$ .closure;
- 3) for all  $m \in M \setminus Y$  do begin
- if  $X \cup \{m\} \in \mathcal{C}$  then  $s \leftarrow (X \cup \{m\}).s$
- else  $s \leftarrow \min\{K.s \mid K \in \mathcal{K}, K \subseteq X \cup \{m\}\};$ 5)
- 6) if s = X.s then  $Y \leftarrow Y \cup \{m\}$
- 7) end;
- 8) return Y.

#### **TITANIC**

#### Algorithm 2 TITANIC-GEN

Input:  $K_{k-1}$ , the set of key (k-1)-sets K with their weight K.s.

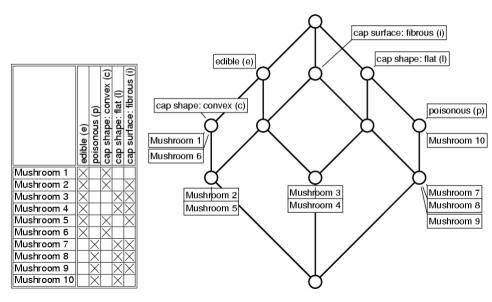
Output: C, the set of candidate k-sets Cwith the values  $C.p.s := \min\{s(C \setminus \{m\} \mid m \in C\}.$ 

The variables  $p_s$  assigned to the sets  $\{m_1, \ldots, m_k\}$  which are generated in step 1 are initialized by  $\{m_1, \ldots, m_k\}.p\_s \leftarrow s_{\max}$ .

- 1)  $C \leftarrow \{\{m_1 < m_2 < \ldots < m_k\} \mid \{m_1, \ldots, m_{k-2}, m_{k-1}\}, \{m_1, \ldots, m_{k-2}, m_k\} \in \mathcal{K}_{k-1}\};$
- 2) forall  $X \in \mathcal{C}$  do begin
- 3) forall (k-1)-subsets S of X do begin
- if  $S \notin \mathcal{K}_{k-1}$  then begin  $\mathcal{C} \leftarrow \mathcal{C} \setminus \{X\}$ ; exit forall; end;
- $X.p\_s \leftarrow \min(X.p\_s, S.s);$
- 6) end;
- 7) **end**:
- 8) return  $\mathcal{C}$ .

20.06.2005 26

# **Example of TITANIC**



27

#### k = 0:

| $\operatorname{st}$ | ep 1 | s | te    | p 2               |
|---------------------|------|---|-------|-------------------|
| X                   | X.s  | X | $\in$ | $\mathcal{K}_k$ ? |
| Ø                   | 1    |   | y     | es                |

#### k = 1:

| step      | s 4+5    | step 7 | step 9                  |  |  |
|-----------|----------|--------|-------------------------|--|--|
| X         | $X.p\_s$ | X.s    | $X \in \mathcal{K}_k$ ? |  |  |
| $\{e\}$   | 1        | 6/10   | yes                     |  |  |
| $ \{p\} $ | 1        | 4/10   | yes                     |  |  |
| $\{c\}$   | 1        | 4/10   | yes                     |  |  |
| $ \{l\} $ | 1        | 6/10   | yes                     |  |  |
| $\{i\}$   | 1        | 7/10   | yes                     |  |  |

Step 8 returns:  $\emptyset$ .closure  $\leftarrow \emptyset$ 

|             | edible (e) | (d) snousiod | cap shape: convex (c) | cap shape: flat (I) | cap surface: fibrous (i) |
|-------------|------------|--------------|-----------------------|---------------------|--------------------------|
| Mushroom 1  | X          |              | X                     |                     |                          |
| Mushroom 2  | X          |              | X                     |                     | X                        |
| Mushroom 3  | X          |              |                       | X                   | X                        |
| Mushroom 4  | X          |              |                       | X                   | X                        |
| Mushroom 5  | X          |              | X                     |                     | X                        |
| Mushroom 6  | X          |              | X                     |                     |                          |
| Mushroom 7  |            | X            |                       | X                   | X                        |
| Mushroom 8  |            | X            |                       | X                   | X                        |
| Mushroom 9  |            | X            |                       | X                   | X                        |
| Mushroom 10 |            | X            |                       | X                   |                          |

Then the algorithm repeats the loop for k = 2, 3, and 4:

20.06.2005

29

#### k = 2:

| step         | 12       | step 7 | step 9                  |
|--------------|----------|--------|-------------------------|
| X            | $X.p\_s$ | X.s    | $X \in \mathcal{K}_k$ ? |
| $\{e, p\}$   | 4/10     | 0      | yes                     |
| $ \{e,c\} $  | 4/10     | 4/10   | no                      |
| $ \{e, l\} $ | 6/10     | 2/10   | yes                     |
| $ \{e,i\} $  | 6/10     | 4/10   | yes                     |
| $ \{p,c\} $  | 4/10     | 0      | yes                     |
| $ \{p,l\} $  | 4/10     | 4/10   | no                      |
| $ \{p,i\} $  | 4/10     | 3/10   | yes                     |
| $\{c,l\}$    | 4/10     | 0      | yes                     |
| $ \{c,i\} $  | 4/10     | 2/10   | yes                     |
| $\{l,i\}$    | 6/10     | 5/10   | yes                     |

Step 8 returns:  $\{e\}$ .closure  $\leftarrow$   $\{e\}$ 

 $\{p\}$ .closure  $\leftarrow \{p, l\}$  $\{c\}$ .closure  $\leftarrow \{c, e\}$  $\{l\}$ .closure  $\leftarrow \{l\}$ 

 $\{i\}$ .closure  $\leftarrow \{i\}$ 

k = 3:

| step          | 12       | step 7 | step 9                |
|---------------|----------|--------|-----------------------|
|               | $X.p\_s$ |        | $X \in \mathcal{K}_k$ |
| $\{e,l,i\}$   | 2/10     | 2/10   | no                    |
| $\{p, c, i\}$ | 4/10     | 0      | yes                   |
| $\{c,l,i\}$   | 4/10     | 0      | yes                   |

Step 8 returns:  $\{e, p\}$ .closure  $\leftarrow \{e, p, c, l, i\}$  $\{e, l\}$ .closure  $\leftarrow \{e, l, i\}$ 

 $\{e, i\}$ .closure  $\leftarrow \{e, i\}$  $\{p, c\}$ .closure  $\leftarrow \{e, p, c, l, i\}$ 

 $\begin{aligned} &\{p,i\}. \text{closure} \leftarrow \{p,l,i\} \\ &\{c,l\}. \text{closure} \leftarrow \{e,p,c,l,i\} \end{aligned}$ 

 $\{c, i\}$ .closure  $\leftarrow \{e, c, i\}$  $\{l, i\}$ .closure  $\leftarrow \{l, i\}$  Mushroom 1
Mushroom 2
Mushroom 3
Mushroom 4
Mushroom 6
Mushroom 7
Mushroom 7
Mushroom 8
Mushroom 9
Mushroom 10

20.06.2005 30

#### $\underline{k=4}$ :

Step 12 returns the empty set. Hence there is nothing to weigh in step 7. Step 9 sets  $\mathcal{K}_4$  equal to the empty set; and in step 10, the loop is exited.

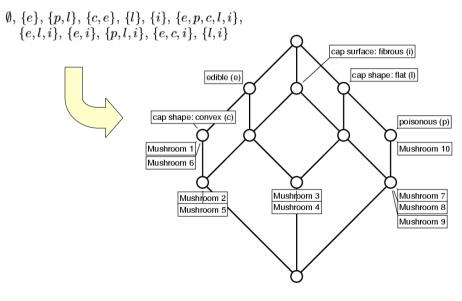
Step 8 returns:  $\{p, c, i\}$ .closure  $\leftarrow \{e, p, c, l, i\}$  $\{c, l, i\}$ .closure  $\leftarrow \{e, p, c, l, i\}$ 

Finally the algorithm collects all concept intents (step 14):

$$\begin{array}{c} \emptyset, \, \{e\}, \, \{p,l\}, \, \{c,e\}, \, \{l\}, \, \{i\}, \, \{e,p,c,l,i\}, \\ \{e,l,i\}, \, \{e,i\}, \, \{p,l,i\}, \, \{e,c,i\}, \, \{l,i\} \end{array}$$

(which are exactly the intents of the concepts of the concept lattice in Figure 8). The algorithm determined the support of 5+10+3=18 attribute sets in three passes of the database.

|             | edible (e) | poisonous (p) | cap shape: convex (c) | cap shape: flat (I) | cap surface: fibrous (i) |
|-------------|------------|---------------|-----------------------|---------------------|--------------------------|
| Mushroom 1  | X          |               | X                     |                     |                          |
| Mushroom 2  | $\times$   |               | X                     |                     | $\times$                 |
| Mushroom 3  | X          |               |                       | X                   | $\times$                 |
| Mushroom 4  | X          |               |                       | X                   | $\times$                 |
| Mushroom 5  | $\times$   |               | X                     |                     | $\boxtimes$              |
| Mushroom 6  | X          |               | X                     |                     |                          |
| Mushroom 7  |            | X             |                       | X                   | $\times$                 |
| Mushroom 8  |            | X             |                       | X                   | X                        |
| Mushroom 9  |            | X             |                       | X                   | $\times$                 |
| Mushroom 10 |            | X             |                       | X                   |                          |



# **TITANIC vs. Next-Closure**

- Next-Closure needs almost no memory.
- Next-Closure can exploit known symmetries between attributes.
- Next-Closure can be used for knowledge acquisition.
- TITANIC has far better performance, especially on large data sets.

20.06.2005