Relationale Entwurfstheorie

- Funktionale Abhängigkeiten
- Normalformen
- Normalisierung durch Dekomposition

Ziele der relationalen Entwurfstheorie

- Bewertung der Qualität eines Relationenschemas
 - Redundanz
 - Einhaltung von Konsistenzbedingungen
 - Funktionale Abhängigkeiten
- Normalformen als Gütekriterium
- Ggf. Verbesserung eines Relationenschemas
 - durch den Synthesealgorithmus
 - durch Dekomposition

Funktionale Abhängigkeiten

- Def.: Sei \mathcal{R} ein Schema, und α , $\beta \subseteq \mathcal{R}$. Die funktionale Abhängigkeit $\alpha \to \beta$ gilt, wenn für alle möglichen Ausprägungen R von \mathcal{R} und alle $r, s \in \mathcal{R}$ R mit $r.\alpha = s.\alpha$ gilt, dass $r.\beta = s.\beta$.
- "Funktionale Abhängigkeit" wird i.w. mit FD (functional dependency) abgekürzt.
- Bsp.: Schema $\mathcal{R} = \{A, B, C, D\}$ mit einer Ausprägung R:

R			
A	В	C	D
a4	b2	c4	d3
a1	b1	c1	d1
a1	b1	c1	d2
a2	b2	с3	d2
a3	b2	с4	d3

$$\{A\} \rightarrow \{B\}$$

 $\{C, D\} \rightarrow \{B\}$
 $Nicht: \{B\} \rightarrow \{C\}$

Notationskonvention:

$$CD \rightarrow B$$
 statt $\{C, D\} \rightarrow \{B\}$

Funktionale Abhängigkeiten

• Def.: Sei \mathcal{R} ein Schema, und α , $\beta \subseteq \mathcal{R}$. Die funktionale Abhängigkeit $\alpha \to \beta$ gilt, wenn für alle möglichen Ausprägungen R von R und alle r, $s \in R$ mit $r \cdot \alpha = s \cdot \alpha$ gilt, dass $r \cdot \beta = s \cdot \beta$.

Städte				
Name	BLand	Vorwahl	EW	
Frankfurt	Hessen	069	650000	
Frankfurt	Brandenburg	0335	84000	
München	Bayern	089	1200000	
Passau	Bayern	0851	50000	
•••	•••	•••		

Beispiel

Stammbaum				
Kind	Vater	Mutter	Opa	Oma
Sofie	Alfons	Sabine	Lothar	Linde
Sofie	Alfons	Sabine	Hubert	Lisa
Niklas	Alfons	Sabine	Lothar	Linde
Niklas	Alfons	Sabine	Hubert	Lisa
	•••	•••	Lothar	Martha
•••	•••	•••	•••	•••

- Familie: {[Opa, Oma, Vater, Mutter, Kind]}
- Annahme: [Theo, Martha, Herbert, Maria, Else] bedeutet
 - Theo und Martha sind Eltern von Herbert oder
 - Theo und Martha sind Eltern von Maria

Beispiel

Stammbaum				
Kind	Vater	Mutter	Opa	Oma
Sofie	Alfons	Sabine	Lothar	Linde
Sofie	Alfons	Sabine	Hubert	Lisa
Niklas	Alfons	Sabine	Lothar	Linde
Niklas	Alfons	Sabine	Hubert	Lisa
	•••	•••	Lothar	Martha
•••	•••	•••	•••	•••

- ► Kind → Vater, Mutter
- Kind,Opa → Oma
- Kind,Oma → Opa

Schlüssel

- $\alpha \subseteq \mathcal{R}$ ist ein Super-Schlüssel, falls folgendes gilt:
 - $\bullet \alpha \to \mathcal{R}$
- \bullet β ist voll funktional abhängig von α genau dann wenn
 - $\alpha \rightarrow \beta$ gilt und
 - \bullet α nicht mehr verkleinert werden kann,
 - d.h. für kein $A \in \alpha$ gilt $(\alpha \{A\}) \rightarrow \beta$.
 - Notation für volle funktionale Abhängigkeit: $\alpha \rightarrow \beta$
- $\alpha \subseteq \mathcal{R}$ ist ein Kandidaten-Schlüssel, falls $\alpha \to \mathcal{R}$ gilt.

Schlüsselbestimmung

Städte				
Name	BLand	Vorwahl	EW	
Frankfurt	Hessen	069	650000	
Frankfurt	Brandenburg	0335	84000	
München	Bayern	089	1200000	
Passau	Bayern	0851	50000	
•••	•••	•••		

- Kandidaten-Schlüssel von Städte:
 - {Name,BLand}
 - {Name, Vorwahl}

Beachte, dass zwei kleinere Städte dieselbe Vorwahl haben können

Schlüssel

- $\alpha \subseteq \mathcal{R}$ ist ein Super-Schlüssel, falls folgendes gilt:
 - $\alpha \to \mathcal{R}$
- β ist voll funktional abhängig von α genau dann wenn
 - $\alpha \rightarrow \beta$ gilt und
 - α nicht mehr verkleinert werden kann,
 - d.h. für kein $A \in \alpha$ gilt $(\alpha \{A\}) \rightarrow \beta$.
 - Notation für volle funktionale Abhängigkeit: $\alpha \rightarrow \beta$
- $\alpha \subseteq \mathcal{R}$ ist ein Kandidaten-Schlüssel, falls $\alpha \to \mathcal{R}$ gilt.

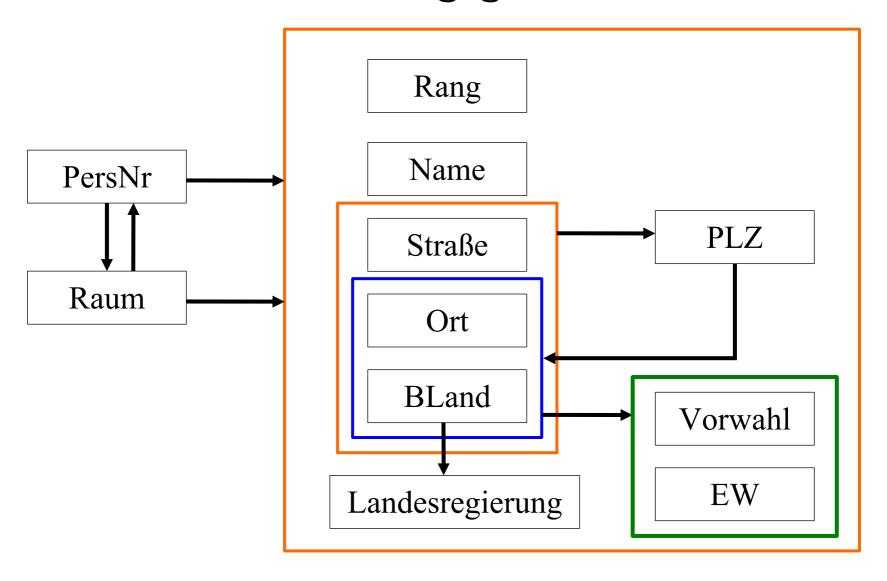
Städte				
Name	BLand	Vorwahl	EW	
Frankfurt	Hessen	069	650000	
Frankfurt	Brandenburg	0335	84000	
München	Bayern	089	1200000	
Passau	Bayern	0851	von <i>Städte</i> : 50000	
	•••			

- Kandidaten-Schlüssel
 - {Name,BLand}
 - {Name, Vorwahl}

Bestimmung funktionaler Abhängigkeiten

- Professoren: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung]}
 - PersNr → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung}
 - Ort,BLand} → {EW, Vorwahl}
 - {PLZ} → {Bland, Ort, EW}
 - {Bland, Ort, Straße} → {PLZ}
 - ◆ {Bland} → {Landesregierung}
 - \bullet {Raum} \rightarrow {PersNr}
- Zusätzliche Abhängigkeiten, die aus obigen abgeleitet werden können:
 - ◆ {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung}
 - {PLZ} → {Landesregierung}

Graphische Darstellung der funktionalen Abhängigkeiten



Herleitung funktionaler Abhängigkeiten: Armstrong-Axiome

- Reflexivität
 - Falls β eine Teilmenge von α ist ($\beta \subseteq \alpha$) dann gilt immer $\alpha \to \beta$. Insbesondere gilt immer $\alpha \to \alpha$.
- Verstärkung
 - Falls $\alpha \to \beta$ gilt, dann gilt auch $\alpha \gamma \to \beta \gamma$. Hierbei stehe z.B. $\alpha \gamma$ für $\alpha \cup \gamma$.
- Transitivität
 - Falls $\alpha \to \beta$ und $\beta \to \gamma$ gilt, dann gilt auch $\alpha \to \gamma$.
- Diese drei Axiome sind vollständig und korrekt. Zusätzliche Axiome erleichtern die Herleitung:
 - Vereinigungsregel:
 - Wenn $\alpha \to \beta$ und $\alpha \to \gamma$ gelten, dann gilt auch $\alpha \to \beta \gamma$
 - Dekompositionsregel:
 - Wenn $\alpha \to \beta \gamma$ gilt, dann gelten auch $\alpha \to \beta$ und $\alpha \to \gamma$
 - Pseudotransitivitätsregel:
 - Wenn $\alpha \to \beta$ und $\gamma\beta \to \delta$, dann gilt auch $\alpha\gamma \to \delta$

Bestimmung der Hülle einer Attributmenge

- Eingabe: eine Menge F von FDs, eine Menge α von Attributen.
- Ausgabe: die größte Menge α^+ von Attributen, für die $\alpha \rightarrow \alpha^+$ gilt.
- AttrHülle(F,α)
 - Erg := α
 - While (Änderungen an Erg) do
 - Foreach FD $\beta \rightarrow \gamma$ in F do
 - If $\beta \subseteq \text{Erg then Erg} := \text{Erg} \cup \gamma$
 - Ausgabe α^+ = Erg

Kanonische Überdeckung

- Fc heißt kanonische Überdeckung von F, wenn die folgenden drei Kriterien erfüllt sind:
 - 1. $Fc \equiv F$, d.h. $Fc^+ = F^+$
 - 2. In Fc existieren keine FDs, die überflüssige Attribute enthalten. D.h. es muß folgendes gelten:
 - $\forall A \in \alpha : (Fc (\alpha \rightarrow \beta) \cup ((\alpha \{A\}) \rightarrow \beta)) \not\equiv Fc$
 - $\forall B \in \beta$: (Fc $-(\alpha \rightarrow \beta) \cup (\alpha \rightarrow (\beta \{B\}))) \not\equiv Fc$
 - 3. Jede linke Seite einer funktionalen Abhängigkeit in Fc ist einzigartig. Dies kann durch sukzessive Anwendung der Vereinigungsregel auf FDs der Art $\alpha \to \beta$ und $\alpha \to \gamma$ erzielt werden, so dass die beiden FDs durch $\alpha \to \beta \gamma$ ersetzt werden.

Berechnung der kanonischen Überdeckung

- 1. Führe für jede FD $\alpha \rightarrow \beta \in F$ die Linksreduktion durch:
 - Überprüfe für alle $A \in \alpha$, ob A überflüssig ist, d.h., ob
 - $\beta \subseteq \text{AttrH\"ulle}(F, \alpha A)$ gilt. Falls dies der Fall ist, ersetze $\alpha \to \beta$ durch $(\alpha - A) \to \beta$.
- 2. Führe für jede (verbliebene) FD die Rechtsreduktion durch:
 - Überprüfe für alle $B \in \beta$, ob
 - B ∈ AttrHülle(F (α → β) ∪ (α → (β B)), α)
 gilt. Falls dies der Fall ist, ist B auf der rechten Seite überflüssig und kann eliminiert werden, d.h. ersetze α → β durch α → (β–B).
- 3. Entferne die FDs der Form $\alpha \rightarrow \emptyset$, die im 2. Schritt möglicherweise entstanden sind.
- 4. Fasse FDs der Form $\alpha \rightarrow \beta_1$, ..., $\alpha \rightarrow \beta_n$ zusammen, so dass $\alpha \rightarrow (\beta_1 \cup ... \cup \beta_n)$ verbleibt.

"Schlechte" Relationenschemata

	ProfVorl					
PersNr	Name	Rang	Raum	VorINr	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
•••	•••	•••		•••	•••	•••
2132	Popper	C3	52	5259	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

- Update-Anomalien
 - Sokrates zieht um, von Raum 226 in R. 338. Was passiert?
- Einfüge-Anomalien
 - Neue/r Prof ohne Vorlesungen?
- Löschanomalien
 - Letzte Vorlesung einer/s Profs wird gelöscht? Was passiert?

Zerlegung (Dekomposition) von Relationen

 Es gibt zwei Korrektheitskriterien für die Zerlegung von Relationenschemata:

1. Verlustlosigkeit

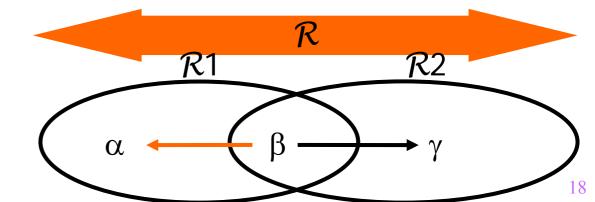
• Die in der ursprünglichen Relationenausprägung R des Schemas R enthaltenen Informationen müssen aus den Ausprägungen $R_1, ..., R_n$ der neuen Relationenschemata $R_1, ..., R_n$ rekonstruierbar sein.

Abhängigkeitserhaltung

• Die für \mathcal{R} geltenden funktionalen Anhängigkeiten müssen auf die Schemata $\mathcal{R}_1, \ldots, \mathcal{R}_n$ übertragbar sein.

Kriterien für die Verlustlosigkeit einer Zerlegung

- - $\bullet R1 := \Pi_{R1} (R)$
 - \bullet R2 := Π_{R2} (R)
- Die Zerlegung von $\mathcal R$ in $\mathcal R$ 1 und $\mathcal R$ 2 ist verlustlos, falls für jede mögliche (gültige) Ausprägung R von $\mathcal R$ gilt:
 - \bullet R = R1 \bowtie R2
- Hinreichende Bedingung für die Verlustlosigkeit einer Zerlegung
 - $(R1 \cap R2) \rightarrow R1$ oder
 - $(R1 \cap R2) \rightarrow R2$



Biertrinker-Beispiel

Biertrinker				
Kneipe Gast Bier				
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

"Verlustige" Zerlegung

Biertrinker				
Kneipe Gast Bier				
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

 $\prod_{\text{Kneipe, Gast}}$

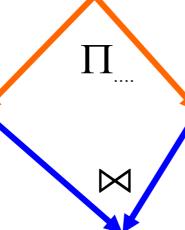
 $\prod_{\text{Gast, Bier}}$

Besucht		
Kneipe Gast		
Kowalski	Kemper	
Kowalski	Eickler	
Innsteg	Kemper	

Trinkt		
Gast	Bier	
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	

Biertrinker				
Kneipe	Gast	Bier		
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

Besucht		
Kneipe	Gast	
Kowalski	Kemper	
Kowalski	Eickler	
Innsteg Kemper		



Trinkt		
Gast	Bier	
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	

Besucht <i>M</i> Trinkt			
Kneipe	Gast	Bier	
Kowalski	Kemper	Pils	
Kowalski	Kemper	Hefeweizen	
Kowalski	Eickler	Hefeweizen	
Innsteg	Kemper	Pils	
Innsteg	Kemper	Hefeweizen	

Erläuterung des Biertrinker-Beispiels

- Unser Biertrinker-Beispiel war eine "verlustige" Zerlegung und dementsprechend war die hinreichende Bedingung verletzt. Es gilt nämlich nur die eine nicht-triviale funktionale Abhängigkeit
 - {Kneipe,Gast}→{Bier}
- Wohingegen keine der zwei möglichen, die Verlustlosigkeit garantierenden FDs gelten
 - $\{Gast\} \rightarrow \{Bier\}$
 - {Gast}→{Kneipe}
- Das liegt daran, dass die Leute (insbes. Kemper) in unterschiedlichen Kneipen unterschiedliches Bier trinken. In derselben Kneipe aber immer das gleiche Bier
 - (damit sich die KellnerInnen darauf einstellen können?)

Verlustfreie Zerlegung

Eltern			
Vater	Mutter	Kind	
Johann	Martha	Else	
Johann	Maria	Theo	
Heinz	Martha	Cleo	

 $\prod_{\text{Vater, Kind}}$

 $\prod_{\text{Mutter, Kind}}$

Väter		
Vater	Kind	
Johann	Else	
Johann	Theo	
Heinz	Cleo	

Mütter		
Mutter	Kind	
Martha	Else	
Maria	Theo	
Martha	Cleo	

Erläuterung der verlustfreien Zerlegung der Eltern-Relation

- Eltern: {[Vater, Mutter, Kind]}
- Väter: {[Vater, Kind]}
- Mütter: {[Mutter, Kind]}
- Verlustlosigkeit ist garantiert
- Es gilt nicht nur eine der hinreichenden FDs, sondern gleich beide
 - {Kind} → {Mutter}
 - {Kind} → {Vater}
- Also ist {Kind} natürlich auch der Schlüssel der Relation Eltern.
- Die Zerlegung von Eltern ist zwar verlustlos, aber auch ziemlich unnötig, da die Relation in sehr gutem Zustand (~Normalform) ist.

Abhängigkeitsbewahrung

- \mathcal{R} ist zerlegt in $\mathcal{R}_1, ..., \mathcal{R}_n$
- $F_{\mathcal{R}} = (F_{\mathcal{R}_1} \cup ... \cup F_{\mathcal{R}_n})$ bzw $F_{\mathcal{R}^+} = (F_{\mathcal{R}_1} \cup ... \cup F_{\mathcal{R}_n})$ +
- Beispiel für Abhängigkeitsverlust
 - PLZverzeichnis: {[Straße, Ort, Bland, PLZ]}
- Annahmen
 - Orte werden durch ihren Namen (Ort) und das Bundesland (Bland) eindeutig identifiziert
 - Innerhalb einer Straße ändert sich die Postleitzahl nicht
 - Postleitzahlengebiete gehen nicht über Ortsgrenzen und Orte nicht über Bundeslandgrenzen hinweg
- Daraus resultieren die FDs
 - {PLZ} → {Ort, BLand}
 - Straße, Ort, BLand} → {PLZ}
- Betrachte die Zerlegung
 - Straßen: {[PLZ, Straße]}
 - Orte: {[PLZ, Ort, BLand]}

Zerlegung der Relation PLZverzeichnis

<i>PLZverzeichnis</i>			
Ort BLand Straße PLZ			
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

 $\prod_{\mathrm{PLZ,Straße}}$

Stadt,Bland,PLZ

Straßen		
PLZ Straße		
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	

Orte			
Ort	BLand	PLZ	
Frankfurt	Hessen	60313	
Frankfurt	Hessen	60437	
Frankfurt	Brandenburg	15234	

•Die FD {Straße, Ort, BLand} → {PLZ} ist im zerlegten Schema nicht mehr enthalten → Einfügen inkonsistenter Tupel möglich

Einfügen zweier Tupel, die die FD Ort, Bland, Straße > PLZ verletzen

<i>PLZverzeichnis</i>			
Ort	BLand	Straße	PLZ
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

 $\prod_{\text{PLZ,Straße}}$

Straßen

PLZ Straße

15234 Goethestraße

60313 Goethestraße

60437 Galgenstraße

15235 Goethestrasse

Staat, Diana, 1 EE			
Orte			
Ort	BLand	PLZ	
Frankfurt	Hessen	60313	
Frankfurt	Hessen	60437	
Frankfurt	Brandenburg	15234	
Frankfurt	Brandenburg	15235	

Stadt Bland PLZ

Einfügen zweier Tupel, die die FD Ort,Bland,Straße→PLZ verletzen

PLZverzeichnis PLZver			
Ort	BLand	Straße	PLZ
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234
Frankfurt	Brandenburg	Goethestraße	15235

Straßen		
PLZ	Straße	
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	
15235	Goethestrasse	

Orte			
Ort	BLand	PLZ	
Frankfurt	Hessen	60313	
Frankfurt	Hessen	60437	
Frankfurt	Brandenburg	15234	
Frankfurt	Brandenburg	1523 <u>5</u> ₈	

Erste Normalform

Nur atomare Domänen

Eltern			
Vater	Mutter	Kinder	
Johann	Martha	{Else, Lucie}	
Johann	Maria	{Theo, Josef}	
Heinz	Martha	{Cleo}	

1 NF

Eltern			
Vater	Mutter	Kind	
Johann	Martha	Else	
Johann	Martha	Lucie	
Johann	Maria	Theo	
Johann	Maria	Josef	
Heinz	Martha	Cleo	

Exkurs: NF²-Relationen

- Non-First Normal-Form-Relationen
- Geschachtelte Relationen

<i>Eltern</i>			
Vater	Mutter	Kinder	
		KName	KAlter
Johann	Martha	Else	5
		Lucie	3
Johann	Maria	Theo	3
		Josef	1
Heinz	Martha	Cleo	9

Zweite Normalform

- In einer Relation soll immer nur ein Konzept modelliert werden.
- Jedes Nichtschlüssel-Attribut soll einen Fakt zu dem durch den gesamten(!) Schlüssel identifizierten Konzept beschreiben.
- Def.: Eine Relation $\mathcal R$ mit zugehörigen FDs $F_{\mathcal R}$ ist in zweiter Normalform, falls jedes Nichtschlüssel-Attribut $A \in \mathcal R$ voll funktional abhängig ist von jedem Kandidatenschlüssel der Relation.

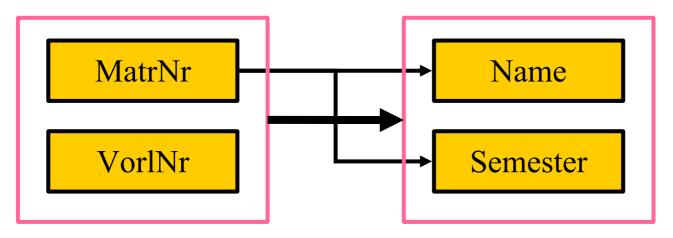
Zweite Normalform

• Def. (Wdh.): Eine Relation \mathcal{R} mit zugehörigen FDs $F_{\mathcal{R}}$ ist in zweiter Normalform, falls jedes Nichtschlüssel-Attribut $A \in \mathcal{R}$ voll funktional abhängig ist von jedem Kandidatenschlüssel der Relation.

StudentenBelegung			
MatrNr	VorlNr	Name	Semester
26120	5001	Fichte	10
27550	5001	Schopenhauer	6
27550	4052	Schopenhauer	6
28106	5041	Carnap	3
28106	5052	Carnap	3
28106	5216	Carnap	3
28106	5259	Carnap	3
•••	•••	•••	• • •

- Studentenbelegung ist nicht in zweiter NF
 - {MatrNr} → {Name}
 - {MatrNr} → {Semester}

Zweite Normalform



- Einfügeanomalie: Was macht man mit Studenten, die keine Vorlesungen hören?
- Updateanomalien: Wenn z.B. Carnap ins vierte Semester kommt, muss man sicherstellen, dass alle vier Tupel geändert werden.
- Löschanomalie: Was passiert wenn Fichte ihre einzige Vorlesung absagt?
- Zerlegung in zwei Relationen
 - hören: {[MatrNr, VorlNr]}
 - Studenten: {[MatrNr, Name, Semester]}
- Beide Relationen sind in 2 NF erfüllen sogar noch "höhere" Gütekriterien ~
 Normalformen.

Dritte Normalform

- Derselbe Fakt soll nicht mehrfach gespeichert werden.
- D.h., kein Nichtschlüssel-Attribut soll einen Fakt einer Attributmenge darstellen, die kein Schlüssel ist.
- Def.: Ein Relationenschema \mathcal{R} ist in dritter Normalform, wenn für jede für \mathcal{R} geltende funktionale Abhängigkeit der Form $\alpha \to B$ mit $B \in \mathcal{R}$ mindestens eine von drei Bedingungen gilt:
 - B $\in \alpha$, d.h., die FD ist trivial.
 - ullet α ist Superschlüssel von ${\cal R}$.
 - Das Attribut B ist in einem Kandidatenschlüssel von \mathcal{R} enthalten d.h. B ist *prim*.

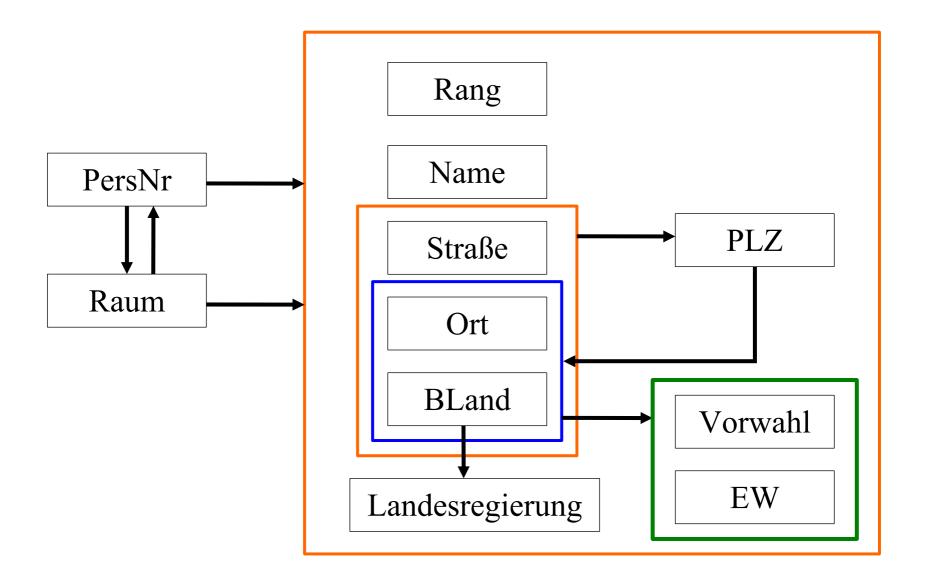
Beispiel

 ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, EW, Landesregierung]}

mit den FDs

- {PersNr} → {Name, Rang, Raum, Ort, Straße, BLand}
- 2. {Raum} → {PersNr}
- Straße, BLand, Ort → {PLZ}
- 4. {Ort,BLand} → {EW, Vorwahl}
- 5. {BLand} → {Landesregierung}
- 6. $\{PLZ\} \rightarrow \{BLand, Ort\}$

ist nicht in 3NF, da z.B. {Ort,BLand} → {Vorwahl} keine der drei Bedingungen der Definition erfüllt.



Zerlegung mit dem Synthesealgorithmus

- Der Synthesealgorithmus ermittelt zu einem gegebenen Relationenschema \mathcal{R} mit funktionalen Abhängigkeiten F eine Zerlegung in $\mathcal{R}_1, \ldots, \mathcal{R}_n$, die die drei folgenden Kriterien erfüllt:
 - $\mathcal{R}_1, \ldots, \mathcal{R}_n$ ist eine verlustlose Zerlegung von \mathcal{R} .
 - Die Zerlegung $\mathcal{R}_1, \ldots, \mathcal{R}_n$ ist abhängigkeitserhaltend.
 - Alle $\mathcal{R}_1, \ldots, \mathcal{R}_n$ sind in dritter Normalform.

Synthesealgorithmus

1. Bestimme die kanonische Überdeckung F_c zu F.

(Wiederholung:

- a. Linksreduktion
- b. Rechtsreduktion
- c. Entfernung von FDs der Form $\alpha \rightarrow \emptyset$
- d. Zusammenfassung gleicher linker Seiten)
- 2. Für jede funktionale Abhängigkeit $\alpha \rightarrow \beta \in F_c$:
 - Kreiere ein Relationenschema $\mathcal{R}_{\alpha} := \alpha \cup \beta$
 - Ordne \mathcal{R}_{α} die FDs $F_{\alpha} := \{\alpha \rightarrow \beta \in F_{c} \mid \alpha \cup \beta \subseteq \mathcal{R}_{\alpha}\}$ zu.
- Falls eines der in Schritt 2. erzeugten Schemata einen Kandidatenschlüssel von $\mathcal R$ bzgl. F_c enthält, sind wir fertig. Sonst wähle einen Kandidatenschlüssel $\kappa \subseteq \mathcal R$ aus und definiere zusätzlich folgendes Schema:
 - $\mathcal{R}_{\kappa} := \kappa$
 - $F_{\kappa} := \emptyset$
- 4. Eliminiere diejenigen Schemata \mathcal{R}_{α} , die in einem anderen Relationenschema \mathcal{R}_{α} enthalten sind, d.h. für die $\mathcal{R}_{\alpha} \subseteq \mathcal{R}_{\alpha}$ gilt.

Anwendung des Synthesealgorithmus

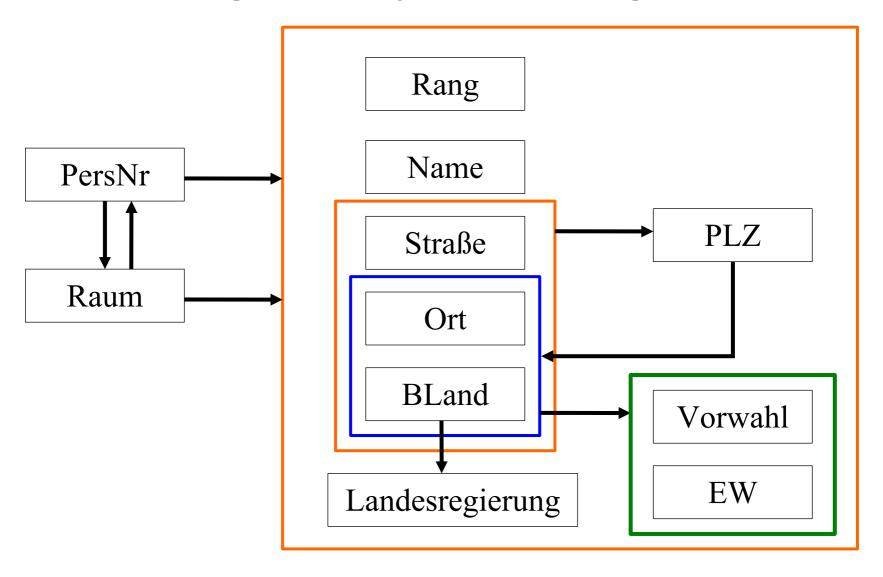
 ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, EW, Landesregierung]}

$$\int 1.$$

- {PersNr} → {Name, Rang, Raum, Ort, Straße, BLand}
- 2. {Raum} → {PersNr}
- Straße, BLand, Ort → {PLZ}
- 4. {Ort,BLand} → {EW, Vorwahl}
- 5. {BLand} → {Landesregierung}
- 6. $\{PLZ\} \rightarrow \{BLand, Ort\}$

- Professoren: {[PersNr, Name, Rang, Raum, Ort, Straße, BLand]}
- PLZverzeichnis: {[Straße, BLand, Ort, PLZ]}
- OrteVerzeichnis: {[Ort, BLand, EW, Vorwahl]}
- Regierungen: {[Bland, Landesregierung]}

Anwendung des Synthesealgorithmus



Boyce-Codd-Normalform

- Die Boyce-Codd-Normalform (BCNF) ist eine Verschärfung der 3 NF. Sie soll vermeiden, dass Information mehrfach abgespeichert wird.
- Ein Relationenschema \mathcal{R} mit FDs F ist in BCNF, wenn für jede für \mathcal{R} geltende funktionale Abhängigkeit der Form $\alpha \to \beta \in F$ mindestens eine der zwei Bedingungen gilt:
 - $\beta \subseteq \alpha$, d.h., die Abhängigkeit ist trivial
 - ullet α ist Superschlüssel von ${\mathcal R}$.
- Man kann jede Relation verlustlos in BCNF-Relationen zerlegen.
- Manchmal lässt sich dabei die Abhängigkeitserhaltung aber nicht erzielen. (Deswegen ist neben BCNF auch die 3NF noch interessant.)

Städte ist in 3NF, aber nicht in BCNF

- Städte: {[Ort, BLand, Ministerpräsident/in, EW]}
- Geltende FDs:
 - {Ort, BLand} → {EW}
 - {BLand} → {Ministerpräsident/in}
 - {Ministerpräsident/in} → {BLand}
- Schlüsselkandidaten:
 - Ort, BLand
 - {Ort, Ministerpräsident/in}

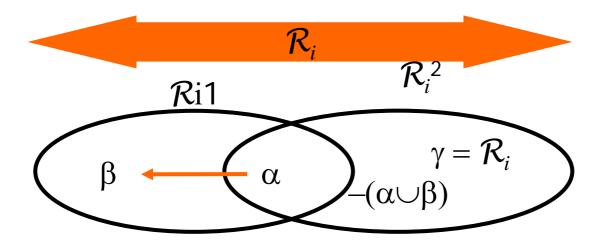
Dekomposition

- Man kann grundsätzlich jedes Relationenschema \mathcal{R} mit funktionalen Anhängigkeiten F so in $\mathcal{R}_1, \ldots, \mathcal{R}_n$ zerlegen, dass gilt:
 - $\mathcal{R}_1, \ldots, \mathcal{R}_n$ ist eine verlustlose Zerlegung von \mathcal{R} .
 - Alle $\mathcal{R}_1, \ldots, \mathcal{R}_n$ sind in BCNF.
 - Es kann leider nicht immer erreicht werden, dass die Zerlegung $\mathcal{R}_1, \ldots, \mathcal{R}_n$ abhängigkeitserhaltend ist.

Dekompositions-Algorithmus

- Starte mit $Z = \{R\}$
- Solange es noch ein Relationenschema \mathcal{R}_i in Z gibt, das nicht in BCNF ist, mache folgendes:
 - Es gibt also eine für \mathcal{R}_i geltende nicht-triviale funktionale Abhängigkeit ($\alpha \to \beta$) mit
 - $\bullet \alpha \cap \beta = \emptyset$
 - $\bullet \neg (\alpha \rightarrow \mathcal{R})$
 - Finde eine solche FD.
 - Man sollte sie so wählen, dass β alle von α funktional abhängigen Attribute $B \in (\mathcal{R}_i \alpha)$ enthält, damit der Dekompositionsalgorithmus möglichst schnell terminiert.
 - Zerlege \mathcal{R}_i in $\mathcal{R}_i^1 := \alpha \cup \beta$ und $\mathcal{R}_i^2 := \mathcal{R}_i \beta$
 - Entferne \mathcal{R}_i aus Z und füge \mathcal{R}_i^1 und \mathcal{R}_i^2 ein, also
 - $\bullet \mathsf{Z} := (\mathsf{Z} \{\mathcal{R}_i\}) \cup \{\mathcal{R}_i^1\} \cup \{\mathcal{R}_i^2\}$

Veranschaulichung der Dekomposition



Dekomposition der Relation Städte in BCNF-Relationen

- Städte: {[Ort, BLand, Ministerpräsident/in, EW]}
- Geltende FDs:
 - {BLand} → {Ministerpräsident/in}
 - {Ort, BLand} → {EW}
 - {Ministerpräsident/in} → {BLand}
- \bullet \mathcal{R}_i^1 :
 - Regierungen: {[BLand, Ministerpräsident/in]}
- \mathcal{R}_i^2 :
 - Städte: {[Ort, BLand, EW]}
- Diese Zerlegung ist verlustlos (und auch abhängigkeitserhaltend)

Dekomposition des PLZverzeichnis in BCNF-Relationen

PLZverzeichnis: {[Straße, Ort, Bland, PLZ]}

- Funktionale Abhängigkeiten:
 - \bullet {PLZ} \rightarrow {Ort, BLand}
 - {Straße, Ort, BLand} → {PLZ}
- Betrachte die Zerlegung
 - Straßen: {[PLZ, Straße]}
 - Orte: {[PLZ, Ort, BLand]}
- Diese Zerlegung
 - ist verlustlos,
 - aber nicht abhängigkeitserhaltend (siehe oben).

Mehrwertige Abhängigkeiten (MVDs)

	R				
	α β γ				
	A1 Ai	Ai+1 Aj	Aj+1 An		
t ₁	a1 ai	ai+1 aj 🔽	√ aj+1 an		
t ₂	a1 ai	bi+1 bj ∠	b j+1 bn		
t ₃	a1 ai	bi+1 bj	aj+1 an		
4	a1 ai	ai+1 aj	bj+1 bn		

- Def.: Die mehrwertige Abhängigkeit α →→ β gilt, wenn aus der Existenz zweier Tupel t₁ und t₂ mit gleichen α–Werten die Existenz zweier Tupel t₃ und t₄ folgt mit
 - \bullet $t_3.\alpha = t_4.\alpha = t_1.\alpha = t_2.\alpha$
 - $\bullet t_3.\beta = t_1.\beta, t_4.\beta = t_2.\beta$
 - $t_3.\gamma = t_2.\gamma$, $t_4.\gamma = t_1.\gamma$

Many-Valued Dependencies (MVDs)

- Jede FD ist auch eine MVD.
- MVDs heissen auch Tuple-generating dependencies:
 - Man kann eine Relation MVD-konform machen, indem man zusätzliche Tupel einfügt. (Bei FDs geht das nicht.)

Mehrwertige Abhängigkeiten

R				
Α	В	С		
а	b	C		
а	bb 🔏	СС		
а	bb	С		
а	b	СС		

$$\bullet$$
 A $\rightarrow \rightarrow$ B

$$\bullet$$
 A \rightarrow C

Mehrwertige Abhängigkeiten: ein

Beispiel

Fähigkeiten					
PersNr Sprache ProgSprache					
3002	griechisch	С			
3002	lateinisch	Pascal			
3002 griechisch		Pascal			
3002 lateinisch		С			
3005	deutsch	Ada			

- Mehrwertige Abhängigkeiten dieser Relation:
 - {PersNr}→→{Sprache} und
 - {PersNr} \rightarrow {ProgSprache}
- MVDs führen zu Redundanz und Anomalien

Mehrwertige Abhängigkeiten: ein

Beispiel

Fähigkeiten						
PersNr	PersNr Sprache ProgSprache					
3002	С					
3002	Pascal					
3002	Pascal					
3002	lateinisch	С				
3005	deutsch	Ada				

 Π PersNr, Sprache

Sprachen				
PersNr	Sprache			
3002	griechsich			
3002	lateinisch			
30005	deutsch			

PersNr, ProgSprache

Sprachen			
PersNr ProgSprache			
3002	С		
3002	Pascal		
30005	Ada 52		

Mehrwertige Abhängigkeiten: ein

Beispiel

Fähigkeiten					
PersNr Sprache ProgSprache					
3002 griechisch		С			
3002 lateinisch		Pascal			
3002 griechisch		Pascal			
3002 lateinisch		С			
3005	deutsch	Ada			

Sprachen			
PersNr Sprache			
3002	griechsich		
3002	lateinisch		
30005	deutsch		

	Sprachen			
PersNr ProgSprache				
	3002	С		
	3002	Pascal		
	30005	Ada 53		

Beispiel (Fortsetzung)

Stammbaum					
Kind	Vater	Mutter	Opa	Oma	
Sofie	Alfons	Sabine	Lothar	Linde	
Sofie	Alfons	Sabine	Hubert	Lisa	
Niklas	Alfons	Sabine	Lothar	Linde	
Niklas	Alfons	Sabine	Hubert	Lisa	
	•••	•••	Lothar	Martha	
•••	•••	•••	•••	•••	

- Familie: {[Opa, Oma, Vater, Mutter, Kind]}
- Annahme: [Theo, Martha, Herbert, Maria, Else] bedeutet
 - Theo und Martha sind Eltern von Herbert oder
 - Theo und Martha sind Eltern von Maria

Beispiel (Fortsetzung)

Stammbaum					
Kind	Vater	Mutter	Opa	Oma	
Sofie	Alfons	Sabine	Lothar	Linde	
Sofie	Alfons	Sabine	Hubert	Lisa	
Niklas	Alfons	Sabine	Lothar	Linde	
Niklas	Alfons	Sabine	Hubert	Lisa	
	•••	•••	Lothar	Martha	
•••	•••	•••	•••	•••	

- ► Kind → Vater, Mutter
- Kind,Opa → Oma
- ► Kind,Oma → Opa

MVDs?

Beispiel (Fortsetzung)

Stammbaum					
Kind	Vater	Mutter	Opa	Oma	
Sofie	Alfons	Sabine	Lothar	Linde	
Sofie	Alfons	Sabine	Hubert	Lisa	
Niklas	Alfons	Sabine	Lothar	Linde	
Niklas	Alfons	Sabine	Hubert	Lisa	
	•••	•••	Lothar	Martha	
•••	•••	•••	•••	•••	

- ► Kind → Vater, Mutter
- Kind,Opa → Oma
- Kind,Oma → Opa
- \circ V,M $\rightarrow \rightarrow$ K
- V,M →→ Opa,Oma

Verlustlose Zerlegung bei MVDs: hinreichende + notwendige Bedingung

- $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$ $\mathbf{R}_1 := \Pi_{\mathcal{R}_1} (R)$ $\mathbf{R}_2 := \Pi_{\mathcal{R}_2} (R)$
- Die Zerlegung von \mathcal{R} in \mathcal{R}_1 und \mathcal{R}_2 ist verlustlos, falls für jede mögliche (gültige) Ausprägung R von \mathcal{R} gilt:
 - $\bullet R = R_1 \bowtie R_2$
- Die Zerlegung von \mathcal{R} in \mathcal{R}_1 und \mathcal{R}_2 ist verlustlos genau dann wenn
 - $\bullet \mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$

und mindestens eine von zwei MVDs gilt:

- $(\mathcal{R}_1 \cap \mathcal{R}_2) \rightarrow \mathcal{R}_1$ oder
- $\bullet (\mathcal{R}_1 \cap \mathcal{R}_2) \rightarrow \rightarrow \mathcal{R}_2$

Inferenzregeln für MVDs

- Reflexivität: $\beta \subseteq \alpha \Rightarrow \alpha \rightarrow \beta$
- Verstärkung: Sei $\alpha \to \beta$. Dann gilt $\gamma \alpha \to \gamma \beta$.
- Transitivität: Sei $\alpha \to \beta$ und $\beta \to \gamma$. Dann gilt $\alpha \to \gamma$.
- Komplement: $\alpha \longrightarrow \beta$. Dann gilt $\alpha \longrightarrow \mathcal{R} \beta \alpha$.
- Mehrwertige Verstärkung: Sei $\alpha \to \beta$ und $\delta \subseteq \gamma$. Dann gilt $\gamma \alpha \to \delta \beta$.
- Mehrwertige Transitivität: Sei $\alpha \longrightarrow \beta$ und $\beta \longrightarrow \gamma$. Dann gilt $\alpha \longrightarrow \gamma \beta$.
- Verallgemeinerung: Sei $\alpha \to \beta$. Dann gilt $\alpha \to \beta$.

Inferenzregeln für MVDs (Forts.)

- Koaleszenz: Sei $\alpha \to \beta$ und $\gamma \subseteq \beta$. Existiert ein $\delta \subseteq \mathcal{R}$, so daß $\delta \cap \beta = \emptyset$ und $\delta \to \gamma$, gilt $\alpha \to \gamma$.
- Mehrwertige Vereinigung: sei $\alpha \to \beta$ und $\alpha \to \gamma$. Dann gilt $\alpha \to \gamma \beta$.
- Schnittmenge: Sei $\alpha \longrightarrow \beta$ und $\alpha \longrightarrow \gamma$. Dann gilt $\alpha \longrightarrow \beta \cap \gamma$.
- Differenz: Sei $\alpha \to \beta$ und $\alpha \to \gamma$. Dann gilt $\alpha \to \beta \gamma$ und $\alpha \to \gamma \beta$.

Triviale MVDs

- Def.: Eine MVD ist trivial, wenn sie von jeder Relationenausprägung erfüllt wird.
- Satz: Eine MVD $\alpha \rightarrow \beta$ ist trivial genau dann wenn
 - $\beta \subseteq \alpha$ oder
 - $\beta = R \alpha$.

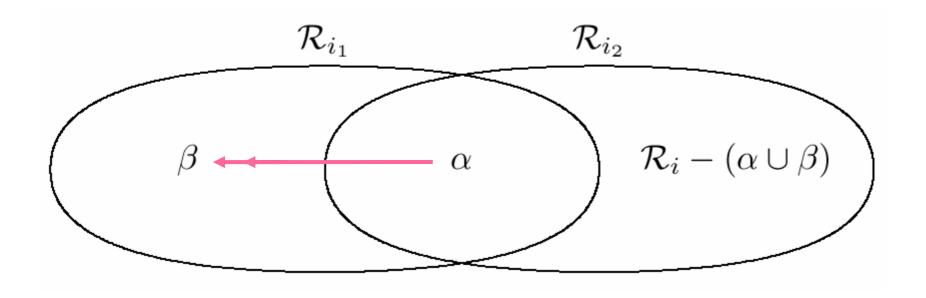
4. Normalform

- Def.: Eine Relation \mathcal{R} ist in 4 NF, wenn für jede MVD $\alpha \rightarrow \rightarrow \beta$ eine der folgenden Bedingungen gilt:
 - Die MVD ist trivial oder
 - α ist Superschlüssel von \mathcal{R} .

Dekomposition in 4 NF

- Starte mit der Menge Z := {R}
- Solange es noch ein Relationenschema \mathcal{R}_i in Z gibt, das nicht in 4NF ist, mache folgendes:
 - Es gibt also eine für \mathcal{R}_i geltende nicht-triviale MVD $(\alpha \rightarrow \beta)$, für die gilt:
 - $\bullet \alpha \cap \beta = \emptyset$
 - $-(\alpha \rightarrow \mathcal{R}_i)$
 - Finde eine solche MVD
 - Zerlege \mathcal{R}_i in $\mathcal{R}_i^1 := \alpha \cup \beta$ und $\mathcal{R}_i^2 := \mathcal{R}_i \beta$
 - Entferne \mathcal{R}_i aus Z und füge \mathcal{R}_i^1 und \mathcal{R}_i^2 ein, also
 - $Z := (Z \{R_i\}) \cup \{R_i^1\} \cup \{R_i^2\}$

Dekomposition in 4 NF



Zusammenfassung

- Die Verlustlosigkeit ist für alle Zerlegungsalgorithmen in alle Normalformen garantiert.
- Die Abhängigkeitserhaltung kann nur bis zur dritten Normalform garantiert werden.

