© Institut AIFB, 2002. Alle Rechte vorbehalten. Nachdruck oder photomechanische Wiedergabe nur mit Genehmigung des Verfassers. Zuwiderhandlungen unterliegen den strafrechtlichen Bedingungen des Urheberrechtgesetzes.

Kapitel VII.6: Kohonen's Self-Organizing Map

Example: "Poverty Map"

V

- describe poverty of countries and/or their citizens with 39 attributes
- data set includes 78 world countries
- similar countries are positioned close to each other

BI	EL	SWE	8	ITA		YUG		rom		ie.		CHN TUR		bur IDN	MDO	9	5		BGD NPL		btn	afg gin MLI ner SLE	
AUT che DEU FRA	NL	D	JPN				bgr csk		HUN POL PRT				2	5		gab Ibr		khm	n ä	РАК	mc sdr	z mrt 1 yem	
		3		ESP		GRC		-		2		THA		MAR	8		IND		caf		SEN	MWI TZA uga	
DNK GBR NOR	FI	N	IRL		3	3	URY		ARG	6	ECU mex		12	EG	ŝΥ	hti		lao png ZAR		a.	3	tcd	
		5		-		KOR				zaf		2		TUN	dza irq		GHA		NGA		4	ETH	
CAN USA			ISR		1		2		COL		lbn		lby	ZW	/E	omr	0	4		ago	9	TVO	
		AUS	5	÷		MUS tto						IRN PRY syr		hnd	BW/	٩	KEN		BEN CIV		cog som	bdi RWA	
NZL	1		<u>ت</u>		СНІ	. 1	PAN		alb		mng sau			vn	m	jor nic				1	-	tgo	Figure
		HKG	i.	are		CRI VEN		kwt		JAM MYS	ĺ.			DOM LKA			BOL				GTM	CMR Iso nam ZMB	1997

Kapitel VII.6: Kohonen's S	Self-Organizing Map
VII.6 Kohonen's Self-O	rganizing Map
VII.6.1 Introduction	(Kohonen, 1997)
 Self-Organizing Map learning algorithm 	(SOM) algorithm is an <u>unsupervised</u>
- visualize	high-dimensional data sets on a 2-dimensional
<u>regular gr</u> - construct	<u>10</u> of neurons ed clusters provide insights into the structure of
the given	data set
\rightarrow see CF	e Data Understanding phase in RISP DM Methodology
- distinguis	h training phase and deployment phase
 SOM is a heuristic te objects to clusters 	chnique delivering an exact assignment of
Vorlesung: Knowledge Discovery	2

Kapitel VII.6: Kohonen's Self-Organizing Map

• grey levels may be used to visualize the cluster structure:

- light shade is used for indicating high similarity between neighboring elements

- dark shade indicates low similarity

Figure 2: Kohonen, 1997

4

Vorlesung: Knowledge Discovery

Kapitel VII.6: Kohonen's Self-Organizing Map

VII.6.2 SOM Structure

- A SOM is formed of <u>neurons</u> located on a <u>regular</u>, usually 1- or 2dimensional grid
- each neuron i is represented by a <u>n-dimensional weight vector</u> *m_i* = [*m_{i_i}*,...,*m<sub>i_n*] - n is equal to the number of attributes of the training data

 </sub>
- neurons are connected to adjacent neurons
 - adjacent neurons of a given neuron i belong to the 1-neighbourhood N_{i,1}
 - neighborhoods with different sizes may be defined: N_{i 11}N_{i 2},....
- 2-dimensional grids may be arranged in a <u>rectangular</u> or a <u>hexagonal</u> structure

Vorlesung: Knowledge Discovery

Kapitel VII.6: Kohonen's Self-Organizing Map

VII.6.3 Initialization

- number of neurons has to be chosen high enough
 - predefined
 iterative
- · neighborhood size influences smoothness of the learning
- · weight vectors have to be initialized
 - e.g. <u>random</u> initialization or <u>sample</u> initialization

 weight vectors are initialized with random samples drawn from the training set

- BMU c is determined by $d(x, m_c) = \min d(x, m_i)$

- choose d e.g. as Euclidean distance

 for every training instance the BMU and additional <u>neurons</u> in the neighborhood of the BMU are adjusted by the <u>Kohonen-Learning-Rule</u>

7

5

Vorlesung: Knowledge Discovery

Kapitel VII.6: Kohonen's Self-Organizing Map

Kohonen-Learning-Rule

- weight vector of BMU and its neighborhood are adjusted in such a way that the resulting weight vectors are <u>more similar</u> to the training instance
- $m_i(t+1) = m_i(t) + h_{ci}(t) \cdot [x(t) m_i(t)]$

- t: time

- x(t): training instance processed at time t
- h_{ci}(t): neighborhood of BMU c at time t; defines region of influence that the training instance has on the SOM; it is a non-increasing function of time and of the distance of unit i from BMU c.

Vorlesung: Knowledge Discovery

Kapitel VII.6: Kohonen's Self-Organizing Map

- neighborhood has to be large enough in the beginnnig

- <u>global</u> adjustment of the SOM has to be achieved
- e.g. initial radius of neighborhood may be equal to half the diameter of the SOM
- during learning radius may shrink to <u>1 unit</u> in order to converge
 - <u>fine</u> adjustment of the direct neighborhood of the BMU

 $-h_{ci}(t) = h(d(r_{c}, r_{i}), t) \cdot \alpha(t)$ $-h: \underline{neighborhood function}$ $-r_{i}: \text{ location of unit i on the map grid}$ $-\alpha(t): \underline{\text{learning rate function}}$ $-\underline{neighborhood} \text{ function h:}$ $-\underline{bubble} \text{ function: constant over the whole}$ $-\underline{bubble}$

Kapitel VII.6: Kohonen's Self-Organizing Map

Kapitel VII.6: Kohonen's Self-Organizing Map

 - in order to achieve a good accuracy <u>number</u> of <u>learning steps</u> has to be high enough, e.g. 500 times the number of SOM neurons

- SOM can also handle missing values:
 - leave out the missing attributes from the distance calculation

a

Kapitel VII.6: Kohonen's Self-Organizing Map

VII.6.5 Deployment

• SOM is a good data exploration technique

- easy and natural visualization

 yet <u>unseen examples</u> activate a single neuron in the SOM: the best matching unit

13

• SOM algorithm available in various data mining tools

• e.g.

- Clementine
 - Sphinx Vision (ASOC)

Vorlesung: Knowledge Discovery