8. Übung zur Vorlesung "Datenbanken" im Sommersemester 2004

Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz

21. Juni 2004

Aufgabe 1 - Normalisierung

Bringen Sie die folgende Relation in Bezug auf die gegebenen funktionalen Abhängigkeiten mit dem Dekompositionsalgorithmus in BCNF.

$$R1(\underline{A}, B, C, D, E, F, G, \underline{H}, I, J, K, L)$$

Funktionale Abhängigkeiten:

- (i) $A \rightarrow B, C, D, E, F, G$
- (ii) $B \rightarrow C, D, E, F, G$
- (iii) A, H \rightarrow I, J, K, L
- (iv) $I \rightarrow J, L$
- (v) $F \rightarrow E$

Aufgabe 2 - RAID

Ein RAID-5-Array befindet sich in dem Zustand nach Tabelle 1. Dabei sei $B_{2,3}$ der dritte Block auf der zweiten Platte, $P_{124,3}$ der Parity-Block der dritten Blöcke von Platten 1, 2 und 4, usw.

Tabelle 1

Platte 1		Platte 2		Platte 3		Platte 4	
$P_{234,1}$	1111	$B_{2,1}$	0100	$B_{3,1}$	1101	$B_{4,1}$	0110
$B_{1,2}$	0110	$P_{134,2}$	0111	$B_{3,2}$	0110	$B_{4,2}$	0111
$B_{1,3}$	1011	$B_{2,3}$	1100	$P_{124,3}$	1110	$B_{4,3}$	1001
$B_{1,4}$	0010	$B_{2,4}$	1001	$B_{3,4}$	0110	$P_{123,4}$	1101

• Schreiben Sie die Werte

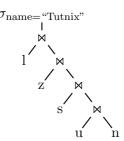
1000 in $B_{1,2}$ 0100 in $B_{3,4}$

Wie sieht das RAID-Array nachher aus? Auf welche Platten wurde zugegriffen?

• In dem RAID 5 ist Platte 3 ausgefallen. Der Zustand nach Einbau der neuen Platte ist:

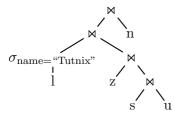
Tabelle 2 Platte 1 Platte 2 Platte 3 Platte 4 $P_{234.1}$ 1111 $B_{2.1}$ 0100 $B_{3.1}$ $B_{4.1}$ 0110 XXXX $P_{134,2}$ $B_{1.2}$ 0110 1000 $B_{3,2}$ $B_{4.2}$ 0111 XXXX $B_{1.3}$ 1011 $B_{2,3}$ 1100 $P_{124,3}$ XXXX $B_{4.3}$ 1001 $B_{1,4}$ 00101001 $XXXX \mid P_{123,4}$ 1101 $B_{2,4}$ $B_{3,4}$

- Rekonstruieren Sie den Inhalt von Platte 3.
- Welche Operation hat zwischen dem Zustand von Tabelle 1 und dem von Tabelle 2 stattgefunden?


Aufgabe 3 - Optimierung

Folgende Anfrage rechnet den Durchschnitt der Noten aus, die der Lehrer "Tutnix" vergeben hat:

```
select l.name, avg(noten)
from lehrer 1,
     schueler s,
     unterricht u,
     notennumerisch n,
     zeugnis z
where l.name='Tutnix'
and
      s.buchst = u.buchst
and
      s.jahrgang = u.jahrgang
and
      u.lehrername = 1.name
and
      n.notea = z.note
      z.schuelername = s.name
and
group by 1.name
```


Dafür könnte ein ungünstiger Auswertungsplan (Query Execution Plan, QEP) wie folgt aussehen:

QEP1

Die Datenbank DB2 hat dies zum folgenden QEP optimiert:

QEP2:

Bringen sie mit den äquivalenzerhaltenden Transformationsregeln aus der Vorlesung den Plan QEP1 in die Form QEP2.

Zur Erinnerung – die Assoziativität des Joins sieht wie folgt aus:

* Aufgabe 4 - Armstrong-Axiome

Die Armstrong-Axiome für funktionale Abhängigkeiten lauten (\rightarrow Kap. 6, Folie 10)

Reflexivität R Wenn $\beta \subseteq \alpha$, dann gilt $\alpha \to \beta$

Verstärkung V Wenn $\alpha \to \beta$, dann gilt auch $\alpha \gamma \to \beta \gamma$

Transitiviät T Wenn $\alpha \to \beta$ und $\beta \to \gamma,$ dann gilt auch $\alpha \to \gamma$

Beweisen Sie damit die drei folgenden zusätzlichen Regeln:

Vereinigung Wenn gilt $\alpha \to \beta, \alpha \to \gamma$, dann gilt auch $\alpha \to \beta \gamma$.

Pseudotransitivität Wenn gilt $\alpha \to \beta$ und $\beta \gamma \to \delta$, dann gilt auch $\alpha \gamma \to \delta$

Dekomposition Wenn gilt $\alpha \to \beta \gamma$, dann gelten auch $\alpha \to \beta$ und $\alpha \to \gamma$