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What is categorization?

From Wikipedia:
Categorization is the process in
which ideas and objects are
recognized, differentiated, and
understood.
Ideally, a category illuminates a
relationship between the
subjects and objects of
knowledge.
Categorization is fundamental
in language, prediction,
inference, decision-making
and in all kinds of
environmental interaction.
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Overview and General Motivation
▶ Truly interdisciplinary: philosophy, cognition,

social/management science, linguistics, AI.

▶ rapid development, different approaches;

▶ emerging unifying perspective: categories are dynamic in
their essence; they shape and are shaped by processes of
social interaction.

▶ Data-driven developments, both empirical and theoretical.
▶ However, what is lacking:

▶ a common ground for the various approaches;
▶ formal models addressing dynamics and connections with the

processes of social interaction.

▶ Research program: logic as common ground; dynamics as
starting point rather than outcome; systematic connection
between dynamics and processes of social interaction.

▶ This involves exploring seriously uncharted territory in the
mathematical theory of nonclassical logics.
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How did I get interested in categories?

Uniform duality-theoretic approaches to nonclassical logics

▶ canonical extensions;

▶ unified correspondence;

▶ updates on algebras;

▶ multi-type calculi;

▶ multi-type algebraic proof theory.

Mathematical theory of LE-logics (LE: lattice expansions)

▶ algebraic and state-based (aka relational) semantics;

▶ generalized Sahlqvist correspondence and canonicity;

▶ syntactic and semantic cut elimination, finite model property;

▶ Goldblatt-Thomason theorem.

Can we make intuitive sense of LE-logics?
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Basic lattice logic & main ideas
Language: L ∋ ϕ ::= p ∈ Prop | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ
Lattice Logic: Set of L-sequents ϕ ⊢ ψ
▶ containing:

p ⊢ p ⊥ ⊢ p p ⊢ ⊤ p ⊢ p ∨ q q ⊢ p ∨ q p ∧ q ⊢ p p ∧ q ⊢ q

▶ closed under:
ϕ⊢χ χ⊢ψ

ϕ⊢ψ
ϕ⊢ψ

ϕ(χ/p)⊢ψ(χ/p)
χ⊢ϕ χ⊢ψ
χ⊢ϕ∧ψ

ϕ⊢χ ψ⊢χ
ϕ∨ψ⊢χ

Challenge: Interpreting ∨ as ‘or’ and ∧ as ‘and’ does not work,
since ‘and’ and ‘or’ distribute over each other, while ∧ and ∨ don’t.
Proposal: Interpreting ϕ ∈ L as other entities than sentences?
Examples: categories, concepts, theories, interrogative agendas.
The interpretation of ∨ and ∧ in all these contexts is ok with
failure of distributivity!
Approach:
▶ Understand LE-logics as the logics of these entities;
▶ integrate LE-logics into more expressive logics capturing how

these entities interact (e.g. with sentences, actions etc.).
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LE-logics as the logics of formal concepts

Birkhoff (1938): “lattice theory provides the proper vocabulary for
discussing order, and especially systems which are in any sense
hierarchies.”
Wille (1973-): “Formal Concept Analysis has been developed as a
subfield of Applied Mathematics based on the mathematization of
concept and concept hierarchy.”
“Concepts can be philosophically understood as the basic units of
thought [...]. According to the main philosophical tradition, a
concept is constituted by its extension, comprising all objects
which belong to the concept, and its intension, including all
attributes which apply to all objects of the extension [...].
Concepts can only live in relationships with many other concepts
where the subconcept-superconcept-relation plays a prominent
role.”
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Formal contexts as models of lattice logic

(∅, xyz)

(b, xy)

(ab, x)

(abcd ,∅)

(cd , z)

(c , yz)

(bc, y)⇝
X

I

A

x y z

a b dc

Language: L ∋ ϕ ::= p ∈ Prop | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ
Lattice Logic: Set of L-sequents ϕ ⊢ ψ
▶ containing:

p ⊢ p ⊥ ⊢ p p ⊢ ⊤ p ⊢ p ∨ q q ⊢ p ∨ q p ∧ q ⊢ p p ∧ q ⊢ q

▶ closed under:
ϕ⊢χ χ⊢ψ

ϕ⊢ψ
ϕ⊢ψ

ϕ(χ/p)⊢ψ(χ/p)
χ⊢ϕ χ⊢ψ
χ⊢ϕ∧ψ

ϕ⊢χ ψ⊢χ
ϕ∨ψ⊢χ
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Formal contexts as models of lattice logic

(∅, xyz)

(b, xy)

(ab, x)
V (p)

(abcd ,∅)

(cd , z)

(c , yz)

(bc, y)

V (q)

⇝
X

I

A

x
p

y
q

z

a
p

b
pq

dc
q

Let P = (A,X , I ) and P+ be the complex algebra of P.
Models: M := (P,V ) with V : Prop → P+

V (p) := ([[p]], ([p]))

membership: M, a ⊩ p iff a ∈ [[p]]M
description: M, x ≻ p iff x ∈ ([p])M
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Formal contexts as models of lattice logic

(∅, xyz)

(b, xy)

(ab, x)
V (p)

(abcd ,∅)

(cd , z)

(c , yz)

(bc, y)

V (q)

⇝
X

I

A

x
p

y
q

z

a
p

b
pq

dc
q

M, a ⊩ ⊥ iff ∀x(aIx) M, x ≻ ⊥ always
M, a ⊩ ⊤ always M, x ≻ ⊤ iff ∀a(aIx)
M, a ⊩ ϕ ∧ ψ iff M, a ⊩ ϕ and M, a ⊩ ψ
M, x ≻ ϕ ∧ ψ iff for all a ∈ A, if M, a ⊩ ϕ ∧ ψ, then aIx

M, a ⊩ ϕ ∨ ψ iff for all x ∈ X , if M, x ≻ ϕ ∨ ψ, then aIx
M, x ≻ ϕ ∨ ψ iff M, x ≻ ϕ and M, x ≻ ψ

M |= ϕ ⊢ ψ iff [[ϕ]] ⊆ [[ψ]] iff ([ψ]) ⊆ ([ϕ])
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Expanding the language with modal operators
Enriched formal contexts: F = (A,X , I , {Ri | i ∈ Agents})
Ri ⊆ A× X and ∀a((R↑[a])↓↑ = R↑[a]) and ∀x((R↓[x ])↑↓ = R↓[x ])

X

I

A

x y z

a b dc

⇝

⊥

b

a = x

⊤

d = z

c

y

Language: L′ ∋ ϕ ::= p ∈ Prop | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | □iϕ
□iϕ: concept ϕ according to agent i
Logic:
▶ Additional axioms: ⊤ ⊢ □i⊤ □iϕ ∧□iψ ⊢ □i (ϕ ∧ ψ)
▶ Additional rule: ϕ⊢ψ

□iϕ⊢□iψ
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Interpretation of □i -formulas on enriched formal contexts

X

I

A

x y z

a b dc

⇝

⊥

b

a = x

⊤

d = z

c

y

V (□iϕ) = □iV (ϕ) = (R↓
i [([ϕ])], (R

↓
i [([ϕ])])

↑)

M, a ⊩ □iϕ iff for all x ∈ X , if M, x ≻ ϕ, then aRix
M, x ≻ □iϕ iff for all a ∈ A, if M, a ⊩ □iϕ, then aIx
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Epistemic interpretation of modal axioms

Reflexivity aka Factivity

∀p(□ip ≤ p) iff Ri ⊆ I

Agent i ’s attributions are factually correct!

Symmetry

∀p(p ≤ □i♢ip) iff R♢i ⊆ R♦i

If agent i recognizes feature x as an a-feature, then i must also
recognize object a as an x-object.

Transitivity aka Positive introspection

∀p(□ip ≤ □i□ip) iff Ri ⊆ Ri ;Ri

If agent i recognizes object a as an x-object, then i must also
attribute to a all the features shared by x-objects according to i .
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Non epistemic interpretation: rough concepts
Conceptual approximation spaces: F = (A,X , I ,R□,R♢) with
R□ ⊆ A× X and R♢ ⊆ X × A, I -compatible and s.t. R■ ;R□ ⊆ I .
Fact: F |= □p ⊢ ♢p iff R■ ;R□ ⊆ I

M, a ⊩ □φ iff for all x ∈ X , if M, x ≻ φ, then aR□x
M, x ≻ □φ iff for all a ∈ A, if M, a ⊩ □ (φ), then aIx ,
M, a ⊩ ♢ϕ iff for all x ∈ X , if M, x ≻ ♢ϕ, then aIx
M, x ≻ ♢ϕ iff for all a ∈ A, if M, a ⊩ ϕ, then aR♢x .

If (A,X , I ) database and R ⊆ A× X I -compatible,

aIx stands for “object a has feature x”
aRx stands for “object a demonstrably has feature x”

If R□ := R and R♢ := R−1, then

[[□ϕ]] = {a ∈ A | ∀x(x ≻ ϕ⇒ aRx)} certified members of ϕ.

([♢ϕ]) = {x ∈ X | ∀a(a ⊩ ϕ⇒ aRx)},
hence [[♢ϕ]] := possible members of ϕ.
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Rough concepts: unifying Rough Set Theory and FCA

Conceptual approximation spaces

polarity-based frames F = (P,R□,R♢) s.t.:

R□;R■ ⊆ I (1)

F is

▶ reflexive if R□ ⊆ I and R■ ⊆ I ;

▶ symmetric if R♢ = R;

▶ transitive if R□ ⊆ R□ ;R□ and R♢ ⊆ R♢ ;R♢.
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LE-ALC: unifying Description Logic and FCA

▶ Disjoint sets OBJ and FEAT (individual names for objects
and features);

▶ Role names for LE-ALC:
I ⊆ OBJ× FEAT R□ ⊆ OBJ× FEAT R♢ ⊆ FEAT×OBJ

▶ Language of LE-ALC-concepts:
C ::= D | C1 ∧ C2 | C1 ∨ C2 | ⊤ | ⊥ | ⟨R♢⟩C | [R□]C

where D ∈ C, given set of atomic concept names;

▶ TBox assertions : C1 ≡ C2 (C1 ⊑ C2 defined as
C1 ≡ C2 ∧ C3, for some fresh concept name C3)

▶ ABox assertions:
aR□x , xR♢a, aIx , a : C , x :: C , ¬α,
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Models of LE-ALC
Tuples M = (F, ·I), s.t.
- F = (A,X , I ,R□,R♢) enriched formal context;
- ·I interpretation map:

▶ aI ∈ A and x I ∈ X for each a ∈ OBJ and x ∈ FEAT;

▶ DI ∈ F+ for each D ∈ C
Complex concept names are interpreted homomorphically:

⊥I = (X ↓,X ) ⊤I = (A,A↑) (C1 ∧ C2)
I = C I

1 ∧ C I
2

(C1 ∨ C2)
I = C I

1 ∨ C I
2 ([R□]C )I = [R□]C

I (⟨R♢⟩C )I = ⟨R♢⟩C I

Results:
▶ Tableaux algorithm for consistency-checking of LE-ALC

knowledge bases with acyclic TBoxes;

▶ proof of termination, soundness, and completeness.

▶ Complexity: PTIME-complete, while analogous problem for
ALC is PSPACE-complete.
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