Formal Concept Analysis in Boolean Matrix Factorization

Algorithms and Extensions to Ordinal and Fuzzy-Valued Data

Jan Konecny

ICFCA 2023

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Formal Concept Analysis

Just basic notation:

$$\blacktriangleright \langle X, Y, I \rangle - \text{formal context}$$

►
$$(\cdot)^{\uparrow}: 2^{X} \to 2^{Y}, (\cdot)^{\downarrow}: 2^{Y} \to 2^{X}$$
 – concept-forming operators

▶ $\mathcal{B}(X, Y, I)$ set of all formal concepts (also concept lattice)

We unify formal context $\langle X, Y, I \rangle$ with $X = \{1, ..., n\}$, $Y = \{1, ..., m\}$ with Boolean matrix $I \in \{0, 1\}^{n \times m}$:

$$I_{ij} = 1$$
 iff $\langle i, j \rangle \in I$

Warning: By abuse of notation, we often do not distinguish between these representations.

Boolean Matrix Factorization

Input: Matrix I

▶ *n* × *m*

contains Boolean values – truth (1) and false (0)

For instance,

/1	1	0	0	0/
1	1	0	0	1
1	1	1	1	0
$\backslash 1$	0	0	0	1/

Goal: to decompose I into $A \circ B \approx I$ where

- **A** is $n \times k$ matrix object \times factors
- **B** is $k \times m$ matrix factors \times attributes

• effort
$$k \ll m$$

The symbol \circ in $\boldsymbol{A} \circ \boldsymbol{B}$ is Boolean matrix product:

$$(oldsymbol{A}\circoldsymbol{B})_{ij} = igvee_{\ell=1...k}oldsymbol{A}_{i\ell}\wedgeoldsymbol{B}_{\ell j}$$

For instance:

$$egin{pmatrix} 1&1&0&0&0\ 1&1&0&0&1\ 1&1&1&1&0\ 1&0&0&0&1 \end{pmatrix} = egin{pmatrix} 1&0&0\ 1&0&1\ 1&1&0\ 0&0&1\end{pmatrix} \circ egin{pmatrix} 1&1&0&0&0\ 0&0&1&1&0\ 1&0&0&0&1\end{pmatrix}$$

Aslo called / equivalent with:

- Boolean matrix decomposition
- Formal context decomposition / factorization
- Problem of covering a bipartite graph by bicliques

J. Orlin

Contentment in graph theory: covering graphs with cliques.

in: Proc. Kon. Neder. Akad. Wet., Amsterdam, ser. A. volume vol. 80, 1977.

Problem of finding the 2-dimension of a poset

History

First fundamental results in 70s:

D. S. Nau et al.,

A mathematical analysis of human leukocyte antigen serology, Math. Biosci. 40(1978), 243–270.

L. Stockmeyer

The set basis problem is NP-complete,

Tech. rep. rc5431, IBM, Yorktown Heights, NY, USA, 1975 .

An increase in interest due to Miettinen's work:

- Boolean version of the discrete basis problem and ASSO
 - P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, The discrete basis problem, IEEE TKDE 20(2008), 1348–62.
- Boolean CX and CUR decompositions
 - P. Miettinen,

. . .

The Boolean column and column-row matrix decompositions,

Data Mining Knowl. Disc. 17(2008), 39-56.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

sparsity issues

. . .

. . .

Sparse Boolean matrix factorizations, Proc. IEEE ICDM 2010, pp. 935–940.

- selection of the number of factors
 - P. Miettinen, J. Vreeken,

Model order selection for Boolean matrix factorization, ACM SIGKDD 2011, pp. 51–59.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- restricted decompositions using so-called tiles and formal concepts in Boolean data
 - F. Geerts, B. Goethals, T. Mielikäinen, Tiling databases, Proc. Discovery Science 2004, pp. 278–289.
 - 🔋 R. Belohlavek, V. Vychodil,

. . .

Discovery of optimal factors in binary data via a novel method of matrix decomposition.

J. Computer and System Sciences 76(1)(2010), 3–20.

Goal: to decompose I into $A \circ B \approx I$ where

- ► A is n × k matrix object × factors
- **B** is $k \times m$ matrix factors \times attributes
- effort $k \ll m$

By \approx in $\mathbf{A} \circ \mathbf{B} \approx \mathbf{I}$ we mean, that $\mathbf{A} \circ \mathbf{B}$ is close to \mathbf{I} . We express this as minimalization of reconstruction error:

$$E(I, \boldsymbol{A} \circ \boldsymbol{B}) = E_{\mathrm{u}}(I, \boldsymbol{A} \circ \boldsymbol{B}) + E_{\mathrm{o}}(I, \boldsymbol{A} \circ \boldsymbol{B})$$

where

 $E_{u}(I, A \circ B) = \{ \langle i, j \rangle : I_{ij} = 1, (A \circ B)_{ij} = 0 \}$ is undercovering error (uncovering)

$$E_{o}(\mathbf{I}, \mathbf{A} \circ \mathbf{B}) = \{ \langle i, j \rangle : \mathbf{I}_{ij} = 0, (\mathbf{A} \circ \mathbf{B})_{ij} = 1 \}$$

is overcovering error

 E_{u} and E_{o} are not equally serious:

Because the o-product uses a logical sum

- E_u decreases with adding new factors,
- E_o increases with adding new factors

A sport analogy: long jump

- $E_{\rm u}$ is an underperformed jump (more strength will fix it)
- $E_{\rm o}$ is a foul jump (more strength does not fix it)

From-bellow methods – assure $E_{\rm o} = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

coverage = (nm - E)/nm

- GreConD is from-bellow
- Asso allows for overcovering

Basic variants

Discrete Basis Problem (DBP)

- Input: $I \in \{0,1\}^{m \times n}$ and positive integer k
- ▶ Goal: find $A \in \{0,1\}^{m \times k}$ and $B \in \{0,1\}^{k \times n}$, that minimalize $E(I, A \circ B)$

 Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H., The discrete basis problem,
 IEEE Transactional Knowledge and Data Engineering 20(10)(2008), 1348–1362

Approximate Factorization Problem (AFP)

- ▶ Input: for $I \in \{0,1\}^{m \times n}$ and given error $0 \le \varepsilon \le 1$
- ▶ Goal: find $A \in \{0, 1\}^{m \times k}$ and $B \in \{0, 1\}^{k \times n}$, s.t. $E(I, A \circ B) \le \varepsilon$, that minimalize k
- Belohlavek R., Vychodil V.

Discovery of optimal factors in binary data via a novel method of matrix decomposition

Journal of Computer and System Sciences 76(1)(2010), 3–20.

🔋 Belohlavek, R., Trnecka, M.,

From-below approximations in Boolean matrix factorization: Geometry and new algorithm,

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Journal of Computer and System Sciences 81(8)(2015), 1678–1697.

FCA in BMF

The boolean matrix product

$$(oldsymbol{A}\circoldsymbol{B})_{ij} = igvee_{\ell=1...k}oldsymbol{A}_{i\ell}\wedgeoldsymbol{B}_{\ell j}$$

can be written as

$$(\boldsymbol{A} \circ \boldsymbol{B})_{ij} = \bigvee_{\ell=1...k} (\boldsymbol{A}_{\ell_{-}} \circ \boldsymbol{B}_{-\ell})$$

where

For example, we can write

$$I = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

as

$$\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \circ \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \end{pmatrix} \lor \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \circ \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \end{pmatrix} \lor \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \circ \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

i.e.

$$=\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \vee \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \vee \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Belohlavek R., Vychodil V.

Discovery of optimal factors in binary data via a novel method of matrix decomposition

Journal of Computer and System Sciences 76(1)(2010), 3-20.

Observation:

- BMF = covering with rectangles
- Formal concepts (as maximal rectangles) are ideal factors.

This is quite a trivial result.

Important role in showing the DM community this view.

universality There is $\mathcal{F} = \{ \langle A_1, B_1 \rangle, \langle A_2, B_2 \rangle, \dots, \langle A_k, B_k \rangle \} \subseteq \mathcal{B}(I)$ such that $I = A_T \circ B_T$.

where

$$(\mathbf{A}_{\mathcal{F}})_{i\ell} = \begin{cases} 1 & \text{if } i \in A_{\ell}, \\ 0 & \text{otherwise.} \end{cases} \quad (\mathbf{B}_{\mathcal{F}})_{\ell j} = \begin{cases} 1 & \text{if } j \in B_{\ell}, \\ 0 & \text{otherwise.} \end{cases}$$

optimality If there are $A \in \{0,1\}^{n \times k}$ and $B \in \{0,1\}^{k \times m}$, then there is $\mathcal{F} \subseteq \mathcal{B}(I)$ s.t.

$$I = A_{\mathcal{F}} \circ B_{\mathcal{F}}.$$

and $|\mathcal{F}| \leq k$.

Some Algorithms

・ロト・4日ト・4日ト・4日・9000

GreCon

- Compute $\mathcal{B}(X, Y, I)$
- Iteratively greedily select concepts from B(X, Y, I) which cover the most (yet uncovered) ones

Efficient implementation in:

 Martin Trnecka, Roman Vyjidacek: Revisiting the GreCon algorithm for Boolean matrix factorization. Knowl. Based Syst. 249: 108895 (2022)
 (uses incidence counters ...)

GreConD

- Does not compute $\mathcal{B}(X, Y, I)$ in advance
- Finds the concepts on demand.

Algorithm 1: GreConD(1)

```
\mathcal{U} \leftarrow \{\langle i, j \rangle \mid I_{ii} = 1\};\
\mathcal{F} \leftarrow \emptyset:
while \mathcal{U} \neq \emptyset do
        D \leftarrow \emptyset;
        V \leftarrow 0:
                                                                            |D \oplus j| = |(D \cup j)^{\downarrow} \times (D \cup j)^{\downarrow\uparrow} \cap \mathcal{U}|
        select j that maximizes |D \oplus j|;
        while |D \oplus j| > V do
                V \leftarrow |D \oplus j|;
                D \leftarrow (D \cup j)^{\uparrow\downarrow};
                select j that maximizes |D \oplus j|;
        C \leftarrow D^{\downarrow}:
        \mathcal{F} \leftarrow \mathcal{F} \cup \{\langle C, D \rangle\};
        for \langle i, j \rangle \in \mathcal{U} do
          if \langle i,j \rangle \in C \circ D then \mathcal{U} \leftarrow \mathcal{U} - \{\langle i,j \rangle\};
```

GreConD – Demonstration

 $D = \emptyset$

$$I = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$U \text{ is collection of entries with ones in } I.$$
$$D = \emptyset$$

Find $j \in Y$ that maximizes $|D \oplus j|$:
 $\blacktriangleright j = 1$:

$$\{1\}^{\downarrow} \circ \{1\}^{\downarrow\uparrow} = egin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(highlighted entries are those in \mathcal{U}).. $|D \oplus j| = 4$

▶
$$j = 2$$
:
$$\{2\}^{\downarrow} \circ \{2\}^{\downarrow\uparrow} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$|D \oplus 2| = 6$$
▶ $j = 3 \text{ and } j = 4$:

$$\{3\}^{\downarrow} \circ \{3\}^{\downarrow\uparrow} = \{4\}^{\downarrow} \circ \{4\}^{\downarrow\uparrow} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

$$|D \oplus 3| = |D \oplus 4| = 4$$

$$j = 5:$$

$$|D \oplus 5| = 4$$

$$\begin{array}{l} j = 2 \text{ maximizes } |D \oplus j| \\ D \leftarrow D \cup \{2\}^{\downarrow\uparrow} = \{1,2\} \end{array}$$

・ロト・日本・モート・モー うらの

$$|D\oplus 3|=|D\oplus 4|=4$$

 $|D \oplus 5| = 3.$

We did not find a concept with better coverage, therefore we take $\langle D^{\downarrow},D\rangle$ as the first factor.

We remove covered entries from $\ensuremath{\mathcal{U}}$

$$\begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{vmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

And continue with finding the next factor.

Essential elements

Consider for every entry $I_{ij} = 1$, the interval

$$\mathcal{I}_{ij} = [\gamma(i), \mu(j)] = \{ c \in \mathcal{B}(I) \mid \gamma(i) \le c \le \mu(j) \},\$$

in $\mathcal{B}(\mathbf{I})$, where $\gamma(i) = \{i^{\uparrow\downarrow}, i^{\uparrow}\}$ and $\mu(i) = \{j^{\downarrow}, i^{\downarrow\uparrow}\}$.

Entries $\langle i, j \rangle$ for which \mathcal{I}_{ij} is minimal w.r.t. \subseteq are called essential. It constitutes a new object-attribute relation, $\mathcal{E}(I) \in \{0, 1\}^{n \times m}$:

 $(\mathcal{E}(\mathbf{I}))_{ij} = 1$ iff \mathcal{I}_{ij} is nonempty (a) and minimal (b).

- (a) equivalent to $I_{ij} = 1$
- (b) equivalent to: for all objects i' with $\{i'\}^{\uparrow} \subset \{i\}^{\uparrow}$ we have $I_{i'j} = 0$; analogously for attributes.

For any $\mathcal{F} \subseteq \mathcal{B}(I)$, if $J \subseteq A_{\mathcal{F}} \circ B_{\mathcal{F}}$ then $I = A_{\mathcal{F}} \circ B_{\mathcal{F}}$.

 $\mathcal{I}_{3,2}$ in not minimal: $\mathcal{I}_{3,3} \subset \mathcal{I}_{3,2}$ $\mathcal{I}_{3,3}$ is minimal.

$$\mathcal{E}(\boldsymbol{I}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \triangleright $\mathcal{E}(I)$ tends to be significantly smaller than I.
- We may focus on the entries $\langle i, j \rangle \in \mathcal{E}(I)$, and ignore the (less important) entries in I that are not in $\mathcal{E}(I)$.

R. Belohlavek, M. Trnecka

From-below approximations in Boolean matrix factorization: Geometry and new algorithm.

- J. Comput. Syst. Sci. 81(8): 1678-1697 (2015)
- GreEss algorithm

Essential elements (called tight) with part of the theory also appears in:

C.V. Glodeanu, B. Ganter

Applications of Ordinal Factor Analysis. ICFCA 2013: 109-124

The 8M algorithm

 R. Belohlavek, M. Trnecka The 8M Algorithm from Today's Perspective.
 ACM Transactions on Knowledge Discovery from Data 15 (2)(2021), article 22.

8M

- ▶ first algorithm for BMF (1983)
- part of BMDP (statistics package; now non-existent)
- does not use the geometric view, uses classical linear algebra
- still it gives good results

8M+

- improvement of 8M using FCA
- "two steps forward, one step back" idea: included in GreConD and Asso → significant improvement

Extension to a setting with fuzzy attributes

Factorization of Matrices with Truth Degrees

Input: Matrix I

- ▶ *n* × *m*
- contains truth degrees truth (1) and false (0), and intermediate degrees

For instance,

$$\begin{pmatrix} 0.8 & 1 & 0 & 0 & 0 \\ 1 & 0.8 & 0 & 0 & 0.2 \\ 0.4 & 1 & 0.8 & 0.4 & 0 \\ 0.2 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Goal: to decompose I into $A \circ B \approx I$ where

- ► **A** is *n* × *k* matrix object × factors
- **B** is $k \times m$ matrix factors \times attributes
- effort $k \ll m$

The structure of truth degrees = complete residuated lattice

Definition

Complete residuated lattice is a structure $\mathsf{L}=\langle L,\wedge,\vee,\otimes,\rightarrow,0,1\rangle$ s.t.

- ⟨L, ∧, ∨, 0, 1⟩ is a complete lattice, i.e. poset where arbitrary infima and suprema exist (the lattice order of L is denoted ≤);
- ⟨L, ⊗, 1⟩ is a commutative monoid, i.e., ⊗ is a commutative, associative binary operation with a ⊗ 1 = a for all a ∈ L;
- \blacktriangleright $\,\otimes\,$ and $\,\rightarrow\,$ satisfy the adjoint property, i.e.,

$$a\otimes b\leq c\qquad \Longleftrightarrow\qquad a\leq b\rightarrow c.$$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Joseph A. Goguen The logic of inexact concepts. Synthese (1969): 325-373.

Example

Typical examples, L = [0, 1] and \otimes and \rightarrow given as:

Łukasiewicz $a \otimes b = \max(a+b-1,0),$ $a \rightarrow b = \min(1 - a + b, 1),$ Gödel $a \otimes b = \min(a, b),$ $a \rightarrow b = \begin{cases} 1 & \text{if } a \leq b, \\ b & \text{otherwise,} \end{cases}$ Goguen (product) $a \otimes b = a \cdot b$. $a \rightarrow b = \begin{cases} 1 & \text{if } a \leq b, \\ \frac{b}{a} & \text{otherwise.} \end{cases}$

Factorization of Matrices with Truth Degrees

Goal: to decompose I into $A \circ B \approx I$ where

- **A** is $n \times k$ matrix object \times factors
- **B** is $k \times m$ matrix factors \times attributes
- effort $k \ll m$

The o-product is defined as:

$$(oldsymbol{A}\circoldsymbol{B})_{ij}=igwedge_{\ell=1}^koldsymbol{A}_{i\ell}\otimesoldsymbol{B}_{\ell j}$$

For matrices $I, J \in L^{n \times m}$

$$s(\boldsymbol{I}, \boldsymbol{J}) = rac{\sum_{i,j=1}^{m,n} s_L(\boldsymbol{I}_{ij}, \boldsymbol{J}_{ij})}{n \cdot m}$$

i.e. $s(I, J) \in [0, 1]$ is the normalized sum over all matrix entries of the closeness of the corresponding entries in I and J.

We require

Addressing two issues (I)

- Ordinal data and the methods for data analysis of such data appear in the literature on mathematical psychology.
- The tools employed there are basically modifications of classical factor analysis methods: grades (truth degrees) are represented by and treated like numbers.

This leads to loss of interpretability, demonstrated in:

N. Tatti, T. Mielikäinen, A. Gionis, H. Mannila, What is the dimension of your binary data? Proc. IEEE ICDM 2006, pp. 603–612. Addressing two issues (II)

 Ordinal scaling + Boolean algorithms - brings considerably worse performace as regards both the quality of decomposition and computation time.
 Decathlon example at the panel discussion:

 R. Belohlavek, M. Krmelova:
 Factor Analysis of Sports Data via Decomposition of Matrices with Grades.
 CLA 2012: 293-304

Double scaling – is (mostly) equivalent.

The decathlon example

Scores of Top 5 Athletes

	10	lj	sp	hj	40	hu	di	pv	ja	15
Sebrle	894	1020	873	915	892	968	844	910	897	680
Clay	989	1050	804	859	852	958	873	880	885	668
Karpov	975	1012	847	887	968	978	905	790	671	692
Macey	885	927	835	944	863	903	836	731	715	775
Warners	947	995	758	776	911	973	741	880	669	693

Matrix I with Graded Attributes (input to the method)

	10	lj	sp	hj	40	hu	di	pv	ja	15
Sebrle	0.50	1.00	1.00	1.00	0.75	1.00	0.75	0.75	1.00	0.75
Clay	1.00	1.00	0.75	0.75	0.50	1.00	1.00	0.50	1.00	0.50
Karpov	1.00	1.00	1.00	0.75	1.00	1.00	1.00	0.25	0.25	0.75
Macey	0.50	0.50	0.75	1.00	0.75	0.75	0.75	0.25	0.50	1.00
Warners	0.75	0.75	0.50	0.50	0.75	1.00	0.25	0.50	0.25	0.75

Graphical Representation of Matrix I

|▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ | 亘|||の久の

Formal Concept Analysis for Inexact Data

Formal L-concept analysis in sense of:

Ana Burusco Juandeaburre and Ramón Fuentes-González. The study of the L-fuzzy concept lattice. Mathware & soft computing. 1994 Vol. 1 Num. 3 p. 209-218 (1994)

Silke Pollandt.

Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten. Springer-Verlag, Berlin-Heidelberg, 1997.

Radim Belohlavek. Lattices generated by binary fuzzy relations. Abstracts of FSTA 1998, Liptovský Ján, Slovakia, p. 11 (1998) Formal Concept Analysis with Fuzzy Attributes

Input: formal context

object b has attribute β (at least) in degree 0.8

イロト 不得下 イヨト イヨト

э

L-sets and L-relations

Definition

L-set A in universe U is a mapping $A: U \to L$.

- The set of all L-sets in U is denoted L^U .
- ▶ If all $u \in U$ different from $u_1, u_2, ..., u_n$ satisfy A(u) = 0, we can also write A as

$$\{A(u_1)/u_1, A(u_2)/u_2, \ldots, A(u_n)/u_n\}.$$

Operations on L-sets defined component-wise: For instance intersection $A \cap B$ of $A, B \in L^U$ is defined by

$$(A \cap B)(u) = A(u) \wedge B(u)$$
 for all $u \in U$.

Concept-forming operators

Ordinary formal context $\langle X, Y, I \rangle$ induces operators $\uparrow : 2^X \to 2^Y$ and $\Downarrow : 2^Y \to 2^X$:

$$y \in A^{\uparrow}$$
 iff for all $x \in X$: $x \in A$ implies $\langle x, y \rangle \in I$
 $x \in B^{\downarrow}$ iff for all $y \in Y$: $y \in B$ implies $\langle x, y \rangle \in I$
 $\downarrow \downarrow$

For formal L-context $\langle X, Y, I \rangle$ (*I* is L-relation between X and Y): induces operators $\uparrow : L^X \to L^Y$ and $\downarrow : L^Y \to L^X$:

$$A^{\uparrow}(y) = \bigwedge_{x \in X} A(x) \to I(x, y)$$

 $B^{\downarrow}(x) = \bigwedge_{y \in Y} B(y) \to I(x, y)$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Formal (L-)concept, ...

Formal concept: $\langle A, B \rangle$ where $A^{\uparrow} = B, B^{\downarrow} = A$. Formal L-concept: $\langle A, B \rangle$ where $A^{\uparrow} = B, B^{\downarrow} = A$.

A - extent, B - intent.

Set of all concepts:

$$\mathcal{B}(X,Y,I) = \{ \langle A,B \rangle \mid \langle A,B \rangle \text{ is a formal (L-)concept} \}$$

Sets of extents and intents:

$$Ext(X, Y, I) = \{A \mid \langle A, B \rangle \in \mathcal{B}(X, Y, I)\}$$
$$Int(X, Y, I) = \{B \mid \langle A, B \rangle \in \mathcal{B}(X, Y, I)\}$$

Concept lattice: $\mathcal{B}(X, Y, I) + \leq$, where

 $\langle A,B\rangle \leq \langle C,D\rangle \quad \text{iff} \quad A\subseteq C.$

Factorization of Matrices with Truth Degrees

R. Belohlavek,

Optimal decompositions of matrices with entries from residuated lattices,

- J. Logic Comput. 22(2012), 1405–1425.
- R. Belohlavek, V. Vychodil
 Factorization of matrices with grades.
 Fuzzy Sets and Systems 292(1)(2016), 85–97.
- 🔋 R. Belohlavek, J. Konecny

Operators and Spaces Associated to Matrices with Grades and Their Decompositions I,II. NAFIPS 2008, CLA 2010: 60-69

E. Bartl, R. Belohlavek, J. Konecny
 Optimal decompositions of matrices with grades into binary and graded matrices. Ann. Math.
 Artif. Intell. 59(2): 151-167 (2010)

Intermezzo: General framework

Triangular products:

$$(oldsymbol{A} ee oldsymbol{B})_{ij} = igwedge_{\ell=1}^k oldsymbol{A}_{i\ell} o oldsymbol{B}_{\ell j} \ (oldsymbol{A} ee oldsymbol{B})_{ij} = igwedge_{\ell=1}^k oldsymbol{B}_{\ell j} o oldsymbol{A}_{i\ell}$$

Studied by Bandler and Kohout:

L. J. Kohout and W. Bandler.

Relational-product architectures for information processing. *Information Sciences*, 37(1-3):25–37, 1985.

We could be interested in factorization into these products.

These, together with \circ , are covered by a unifying framework proposed in:

📔 E. Bartl, R. Belohlavek

Sup-t-norm and inf-residuum are a single type of relational equations.

Int. J. Gen. Syst. 40(6): 599-609 (2011)

R. Belohlavek

Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences.

Fuzzy Sets Syst. 197: 45-58 (2012)

$\mathsf{FCA} \text{ in } \mathsf{BMF}$

The graded matrix product

$$(oldsymbol{A}\circoldsymbol{B})_{ij} = igvee_{\ell=1...k}oldsymbol{A}_{i\ell}\otimesoldsymbol{B}_{\ell j}$$

can be written as

$$(\boldsymbol{A} \circ \boldsymbol{B})_{ij} = \bigvee_{\ell=1...k} (\boldsymbol{A}_{\ell_{-}} \circ \boldsymbol{B}_{-\ell})$$

where

$GreConD_L$

 designed for computing exact and almost exact decompositions, it may be easily adopted for computing approximate decompositions as well as for solving the DBP(L).

R. Belohlavek,

Optimal decompositions of matrices with entries from residuated lattices,

J. Logic Comput. 22(2012), 1405-1425.

R. Belohlavek, V. Vychodil,
 Factorization of matrices with grades.
 Fuzzy Sets and Systems 292(1)(2016), 85–97 (preliminary version in LNAI 5548(2009), 83–97).

Algorithm 2: GreCond_L(I)

$$\begin{split} \mathcal{U} \leftarrow \{\langle i, j \rangle \mid I_{ij} \neq 0\}; \\ \mathcal{F} \leftarrow \varnothing; \\ \text{while } \mathcal{U} \neq \varnothing \text{ do} \\ & \left| \begin{array}{c} D \leftarrow \varnothing; \\ V \leftarrow 0; \\ & |D \oplus_a j| = |(D \cup \{^a/j\})^{\downarrow} \times (D \cup \{^a/j\})^{\downarrow\uparrow} \cap \mathcal{U}| \\ \text{select } \langle j, a \rangle \text{ that maximizes } |D \oplus_a j|; \\ \text{while } |D \oplus_a j| > V \text{ do} \\ & \left| \begin{array}{c} V \leftarrow |D \oplus_a j|; \\ D \leftarrow (D \cup \{^a/j\})^{\uparrow\downarrow}; \\ \text{select } \langle j, a \rangle \text{ that maximizes } |D \oplus_a j|; \\ & C \leftarrow D^{\downarrow}; \\ \mathcal{F} \leftarrow \mathcal{F} \cup \{\langle C, D \rangle\}; \\ \text{ for } \langle i, j \rangle \in \mathcal{U} \text{ do} \\ & \left| \begin{array}{c} \text{if } I_{ij} \leq C(i) \circ D(j) \text{ then } \mathcal{U} \leftarrow \mathcal{U} - \{\langle i, j \rangle\}; \\ \end{array} \right. \end{split}$$

Other algorithms

Asso for Matrices with Truth Degrees

 R. Belohlavek, M. Trneckova
 The Discrete Basis Problem and Asso Algorithm for Fuzzy Attributes
 IEEE Trans. Fuzzy Syst. 27(7): 1417-1427 (2019)

GreEss for Matrices with Truth Degrees

R. Belohlavek, M. Trneckova
 Factorization of matrices with grades via essential entries
 Fuzzy Sets Syst. 360: 97-116 (2019)

Future research

- Other algebraic sctructures.
- Significance of BMF for DM + ML (reduction of dimensionality)
 - R. Belohlavek, J. Outrata, M. Trnecka Impact of Boolean factorization as preprocessing methods for classification of Boolean data. Ann. Math. Artif. Intell. 72(1-2): 3-22 (2014)
- Complexity issues
- Novel approaches to factorization
 - 🔋 J. Konecny, M. Trnecka

Boolean Matrix Factorization for Data with Symmetric Variables.

ICDM 2022: 1011-1016