Formal Concept Analysis in Boolean Matrix
Factorization
Algorithms and Extensions to Ordinal and Fuzzy-Valued Data

Jan Konecny

ICFCA 2023



Formal Concept Analysis

Just basic notation:
» (X,Y,I) - formal context

> ()T:2X = 2Y ()F:2Y = 2X - concept-forming operators
> B(X,Y,I) set of all formal concepts (also concept lattice)

We unify formal context (X, Y, /) with X = {1,... n},
Y ={1,..., m} with Boolean matrix I € {0,1}"*™:
Iy=1 iff (i,j)el

Warning: By abuse of notation, we often do not distinguish
between these representations.



Boolean Matrix Factorization

Input: Matrix /
> nxm

» contains Boolean values — truth (1) and false (0)

For instance,

=
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o~ oo
o~ oo
= O = O

Goal: to decompose I into Ao B = I where
> Ais n x k matrix object x factors
> B is k x m matrix factors x attributes
> effort k < m



The symbol o in Ao B is Boolean matrix product:

(AOB)U = \/ A,‘g/\ ng

0=1...k
For instance:
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Aslo called / equivalent with:

» Boolean matrix decomposition

» Formal context decomposition / factorization

» Problem of covering a bipartite graph by bicliques

[ J. Orlin

Contentment in graph theory: covering graphs with
cliques,
in: Proc. Kon. Neder. Akad. Wet., Amsterdam, ser. A,
volume vol. 80, 1977 .

» Problem of finding the 2-dimension of a poset



History

First fundamental results in 70s:

[ D.S. Nau et al.,
A mathematical analysis of human leukocyte antigen serology,
Math. Biosci. 40(1978), 243-270.

@ L. Stockmeyer
The set basis problem is NP-complete,
Tech. rep. rc5431, IBM, Yorktown Heights, NY, USA, 1975 .



An increase in interest due to Miettinen's work:

» Boolean version of the discrete basis problem and ASSO

[ P. Miettinen, T. Mielikdinen, A. Gionis, G. Das, H.

Mannila,
The discrete basis problem,
IEEE TKDE 20(2008), 1348-62.

» Boolean CX and CUR decompositions
3 P. Miettinen,
The Boolean column and column-row matrix

decompositions,
Data Mining Knowl. Disc. 17(2008), 39-56.



P sparsity issues

[@ P. Miettinen,
Sparse Boolean matrix factorizations,
Proc. IEEE ICDM 2010, pp. 935-940.

» selection of the number of factors

[§ P. Miettinen, J. Vreeken,
Model order selection for Boolean matrix factorization,
ACM SIGKDD 2011, pp. 51-59.



> restricted decompositions using so-called tiles and formal
concepts in Boolean data

[ F. Geerts, B. Goethals, T. Mielikdinen,
Tiling databases,
Proc. Discovery Science 2004, pp. 278-289.

3 R. Belohlavek, V. Vychodil,
Discovery of optimal factors in binary data via a novel
method of matrix decomposition.
J. Computer and System Sciences 76(1)(2010), 3-20.



Goal: to decompose I into Ao B = I where
> Ais n x k matrix object x factors
» B is k x m matrix factors x attributes
> effort k < m

By ~ in Ao B =~ I we mean, that Ao B is close to .
We express this as minimalization of reconstruction error:

E(1,AoB) = E,(I,AcB)+ E,(I,Ao B)

where
> Eu(I,AoB)={(i,j) : I; =1, (Ao B); =0}
is undercovering error (uncovering)
> E,(1,AoB) = {(i,j) : I; =0, (Ao B); =1}
is overcovering error



E, and E, are not equally serious:

Because the o-product uses a logical sum
» E, decreases with adding new factors,

» E, increases with adding new factors

A sport analogy: long jump
» E, is an underperformed jump (more strength will fix it)

» E, is a foul jump (more strength does not fix it)

From-bellow methods — assure E, = 0.



Mushroom data
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Basic variants

Discrete Basis Problem (DBP)
» Input: I € {0,1}*" and positive integer k
> Goal: find A € {0,1}™*k and B € {0,1}**", that minimalize
E(l,Ao B)

[ Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H.,

The discrete basis problem,
IEEE Transactional Knowledge and Data Engineering

20(10)(2008), 1348-1362



Approximate Factorization Problem (AFP)
» Input: for I € {0,1}™*" and given error 0 <e <1

» Goal: find A € {0,1}™k and B € {0,1}**", s.t.
E(l,Ao B) < ¢, that minimalize k

[§ Belohlavek R., Vychodil V.
Discovery of optimal factors in binary data via a novel method
of matrix decomposition
Journal of Computer and System Sciences 76(1)(2010), 3-20.

[§ Belohlavek, R., Trnecka, M.,
From-below approximations in Boolean matrix factorization:
Geometry and new algorithm,
Journal of Computer and System Sciences 81(8)(2015),
1678-1697.



FCA in BMF

The boolean matrix product

(AoB);= \/ AunBy
0=1...k

can be written as

(A (0] B),J = (Agi o B,E)
(=1..k
where
> A, is (-th row of A,
» B ;s (-th column of B.



For example, we can write
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[@ Belohlavek R., Vychodil V.
Discovery of optimal factors in binary data via a novel method

of matrix decomposition
Journal of Computer and System Sciences 76(1)(2010), 3-20.

Observation:
» BMF = covering with rectangles
» Formal concepts (as maximal rectangles) are ideal factors.

This is quite a trivial result.
Important role in showing the DM community this view.



universality
There is F = {<A1, Bl>, <A2, BQ>, cee, <Ak, Bk>} - B(I) such that

l = A]: O B]:.
where
1 ifI'GAg, 1 iijBg,
Ar)y = Br), =
(Az)ic {0 otherwise. (Bx)y {0 otherwise.
optimality

If there are A € {0,1}™k and B € {0,1}**™, then there is
F CB(I) s.t.
I = AroBr.

and |F| < k.



Some Algorithms



GreCon
» Compute B(X, Y, /)
> lteratively greedily select concepts from B(X, Y, /) which
cover the most (yet uncovered) ones
Efficient implementation in:
[§ Martin Trnecka, Roman Vyjidacek:
Revisiting the GreCon algorithm for Boolean matrix
factorization.

Knowl. Based Syst. 249: 108895 (2022)
(uses incidence counters ...)

GreConD
» Does not compute B(X, Y, /) in advance

» Finds the concepts on demand.



Algorithm 1: GreConD(/)

U {0oJ) [y =1}
F <+ @;

while U # & do

D «+ @;
V «0; D@ j|=[(DUj)* x (DUj) nu

select j that maximizes |D @ j|;
while [D @ j| > V do

V « |Daj|

D+ (DU,

select j that maximizes |D @ j

C + DY

F+— FU{C,D)};

for (i,j) € U do

| if (i,j) € CoD then U « U —{(i,j)};




GreConD — Demonstration

11000
|1 10001
{11110
10001
U is collection of entries with ones in I.
D=go
Find j € Y that maximizes |D & j:
1 00 00
1 00 00
4 W
el =11 000 0
1 00 00
(highlighted entries are those in U).. |D & j| =4
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j = 2 maximizes |D & j|
D+« DU{2W ={1,2}

Repeat:
Find j € Y that maximizes |D & j|:

» j=1and j = 2: they are already in D
» j=3andj =4

{1,2,3}0{1,2,311 = {1,2,4}0{1,2, 4} =

IDe3|=|Dad=4

O = O O

o = OO

o = OO

o = OO

O O O O



00000
11001

! "
{1,2,5}4 0 {1,2,5} 00000
00000

|D & 5| =3.
We did not find a concept with better coverage, therefore we take
(D*, D) as the first factor.

We remove covered entries from U

11000 11000
11001 11001
11110 = 11110
1 0001 1 00 01

And continue with finding the next factor.



Essential elements

Consider for every entry I;; = 1, the interval
Zij = [y(), )] = {c € BUI) | 7(i) < ¢ < p(j)},
in B(I), where (i) = {i™,i"} and u(i) = {j*, *1}.

Entries (i, ) for which Zj; is minimal w.r.t. C are called essential.
It constitutes a new object-attribute relation, £(1) € {0, 1}"*™:

(E(N); =1 iff Zj is nonempty (a) and minimal (b).
(a) —equivalent to I =1

(b) — equivalent to: for all objects i’ with {i’}T C {i}" we have
lirj = 0; analogously for attributes.

For any F C B(I), if J C Ar o Br then I = Ar o Br.
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» £(I) tends to be significantly smaller than /.

» We may focus on the entries (i, j) € £(I), and ignore the (less
important) entries in I that are not in £(1).

[ R. Belohlavek, M. Trnecka
From-below approximations in Boolean matrix factorization:

Geometry and new algorithm.
J. Comput. Syst. Sci. 81(8): 1678-1697 (2015)

» GreEss algorithm

Essential elements (called tight) with part of the theory also
appears in:

[W C.V. Glodeanu, B. Ganter
Applications of Ordinal Factor Analysis.

ICFCA 2013: 109-124



The 8M algorithm

[3 R. Belohlavek, M. Trnecka
The 8M Algorithm from Today's Perspective.

ACM Transactions on Knowledge Discovery from Data 15
(2)(2021), article 22.

8M
> first algorithm for BMF (1983)
» part of BMDP (statistics package; now non-existent)

» does not use the geometric view, uses classical linear algebra

> still it gives good results

8M+
» improvement of 8M using FCA

> “two steps forward, one step back” idea: included in GreConD
and Asso — significant improvement



Extension to a setting with fuzzy attributes



Factorization of Matrices with Truth Degrees

Input: Matrix /
> nxm

» contains truth degrees — truth (1) and false (0), and
intermediate degrees

For instance,

08 1 0 0 O
1 08 0 0 02
04 1 08 04 O
02 0 0 O 1

Goal: to decompose I into Ao B = | where
> Ais n x k matrix object x factors
> B is k x m matrix factors x attributes
> effort k < m



The structure of truth degrees = complete residuated lattice
Definition
Complete residuated lattice is a structure L = (L, A, V,®, —,0,1)
s.t.
» (L,A,V,0,1) is a complete lattice, i.e. poset where arbitrary
infima and suprema exist (the lattice order of L is denoted <);
» (L,®,1) is a commutative monoid, i.e., ® is a commutative,
associative binary operation with a® 1 = a for all a € L;

> ® and — satisfy the adjoint property, i.e.,
a®b<c = a<b-—ec.
[§ Joseph A. Goguen

The logic of inexact concepts.
Synthese (1969): 325-373.



Example
Typical examples, L = [0,1] and ® and — given as:

» tukasiewicz a®b=max(a+ b—1,0),
a—b=min(l—a+b,1),
> Godel a® b =min(a, b),

1 ifa<b
a—>b:{ ha=o

b otherwise,

» Goguen (product)

otherwise.

1 ifa<b
a—>b—{b ta=b



Factorization of Matrices with Truth Degrees

Goal: to decompose I into Ao B ~ | where
> Ais n x k matrix object x factors
» B is k x m matrix factors x attributes
» effort k < m

The o-product is defined as:

k
(AoB)j = )\ A ® By
(=1



For matrices I, J € L"™*™

>ority sy, Jy)
n-m

s(1,d) =

i.e. s(1,J) € [0,1] is the normalized sum over all matrix entries of
the closeness of the corresponding entries in / and J.

We require
» si(a,b) =1if and only if a = b,
» 5(0,1) = 5.(1,0) =0,

(in which case s(1,J) =1iff I = J.)



Addressing two issues (1)

» Ordinal data and the methods for data analysis of such data
appear in the literature on mathematical psychology.

» The tools employed there are basically modifications of
classical factor analysis methods: grades (truth degrees) are
represented by and treated like numbers.

This leads to loss of interpretability, demonstrated in:

[§ N. Tatti, T. Mielikdinen, A. Gionis, H. Mannila,
What is the dimension of your binary data?
Proc. IEEE ICDM 2006, pp. 603-612.



Addressing two issues (II)

» Ordinal scaling + Boolean algorithms — brings considerably
worse performace as regards both the quality of decomposition
and computation time.

Decathlon example at the panel discussion:

[3 R. Belohlavek, M. Krmelova:
Factor Analysis of Sports Data via Decomposition of
Matrices with Grades.
CLA 2012: 293-304

» Double scaling — is (mostly) equivalent.



The decathlon example

Scores of Top 5 Athletes

‘ Hl[]‘Ej|sp‘hj‘40‘hu‘di‘pv‘ja‘lS‘
Sebrle(|894|1020({873(915|892|968 |844|910|897|680
Clay|[989]1050|804 |859(852|958|873|880|885|668
Karpov||975|1012|847|887|968|978(905|790|671|692
Macey||885| 927|835|944|863|903|836|731 (715|775
Warners||947| 995|758|776(911|973|741|880|669|693




Matrix I with Graded Attributes (input to the method)
| Hl{)|1j|sp|hj|4{)|hu|da’|pv|ja|l5
Sebrle||0.50(1.00| 1.00 |1.00]0.75| 1.00 | 0.75 [0.75]1.00|0.75
Clay||1.00|1.00| 0.75|0.75]|0.50| 1.00 | 1.00(0.50{1.00{0.50
Karpov||1.00|1.00| 1.00{0.75|1.00| 1.00 | 1.00 |0.25]0.25]0.75
Macey||0.50/0.50] 0.75 |1.00(0.75| 0.75| 0.75|0.25{0.50(1.00
Warners||0.75]0.75| 0.50 |0.50(0.75| 1.00 | 0.25 {0.50|0.25|0.75

Graphical Representation of Matrix /
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Formal Concept Analysis for Inexact Data

Formal L-concept analysis in sense of:

[@ Ana Burusco Juandeaburre and Ramén Fuentes-Gonzalez.
The study of the L-fuzzy concept lattice.
Mathware & soft computing. 1994 Vol. 1 Num. 3 p. 209-218
(1994)

[@ Silke Pollandt.
Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten.
Springer—Verlag, Berlin—Heidelberg, 1997.

[§ Radim Belohlavek.
Lattices generated by binary fuzzy relations.
Abstracts of FSTA 1998, Liptovsky Jan, Slovakia, p. 11 (1998)



Formal Concept Analysis with Fuzzy Attributes

Input: formal context

attributes attributes

L1
B

|
X
X

object b has attribute 3

object b has attribute 3 (at least) in degree 0.8



L-sets and L-relations

Definition
L-set A in universe U is a mapping A: U — L.

» The set of all L-sets in U is denoted LY.

» If all v € U different from uy, up, . .., u, satisfy A(u) =0,
we can also write A as

(AW ) AW/, Ay

Operations on L-sets defined component-wise:
For instance intersection AN B of A, B € LY is defined by

(AN B)(u) = A(u) A B(u) for all u e U.



Concept-forming operators

Ordinary formal context (X, Y, /) induces operators {} : 2% — 2¥
and | : 2Y — 2X;

ye AT iff  forall x € X: x € A implies (x,y) €/

x € BY iff forally e Y:ye Bimplies (x,y) €/

4

For formal L-context (X, Y, /) (I is L-relation between X and Y):
induces operators 1 : LX — LY and | : LY — LX:

Al(y) = N\ A() = I(x,y)

xeX

/\B ) — 1(x,y)

yey



Formal (L-)concept, ...
Formal concept: (A, B) where AT = B, BY = A.

Formal L-concept: (A, B) where AT = B, B} = A.

A — extent, B — intent.

Set of all concepts:
B(X,Y,l)={(A,B)| (A, B) is a formal (L-)concept}
Sets of extents and intents:

Ext(X,Y,1)={A| (A B) € B(X,Y,}
Int(X,Y,l)={B| (A B) € B(X,Y,I)}

Concept lattice: B(X, Y, /)+ <, where

(A,B) < (C,D) iff ACC.



Factorization of Matrices with Truth Degrees

[ R. Belohlavek,
Optimal decompositions of matrices with entries from
residuated lattices,
J. Logic Comput. 22(2012), 1405-1425.

[ R. Belohlavek, V. Vychodil
Factorization of matrices with grades.
Fuzzy Sets and Systems 292(1)(2016), 85-97.

[§ R. Belohlavek, J. Konecny
Operators and Spaces Associated to Matrices with Grades and
Their Decompositions |,I1.
NAFIPS 2008, CLA 2010: 60-69

[§ E. Bartl, R. Belohlavek, J. Konecny
Optimal decompositions of matrices with grades into binary
and graded matrices. Ann. Math.
Artif. Intell. 59(2): 151-167 (2010)



Intermezzo: General framework

Triangular products:

k
(A<B)j= )\ Aic — By
(=1

k
(A>B);j = /\ By — Ai
(=1
Studied by Bandler and Kohout:

[3 L. J. Kohout and W. Bandler.
Relational-product architectures for information processing.
Information Sciences, 37(1-3):25-37, 1985.

» We could be interested in factorization into these products.



These, together with o, are covered by a unifying framework
proposed in:

[ E. Bartl, R. Belohlavek
Sup-t-norm and inf-residuum are a single type of relational
equations.
Int. J. Gen. Syst. 40(6): 599-609 (2011)

3 R. Belohlavek
Sup-t-norm and inf-residuum are one type of relational product:
Unifying framework and consequences.
Fuzzy Sets Syst. 197: 45-58 (2012)



FCA in BMF

The graded matrix product

(AoB); = \/ Ay @ Byj
0=1..k

can be written as

(A (0] B),J = (Agi o B,E)
(=1..k
where
> A, is (-th row of A,
» B 4 is (-th column of B.



GreConD;
» designed for computing exact and almost exact
decompositions, it may be easily adopted for computing
approximate decompositions as well as for solving the DBP(L).

[ R. Belohlavek,
Optimal decompositions of matrices with entries from

residuated lattices,
J. Logic Comput. 22(2012), 1405-1425.

[ R. Belohlavek, V. Vychodil,
Factorization of matrices with grades.
Fuzzy Sets and Systems 292(1)(2016), 85-97 (preliminary
version in LNAI 5548(2009), 83-97).



Algorithm 2: GreCond (/)

U {{i,)) | l; # 0}
F <+ @;

while U # & do

D «+ @;
V «0; ID@ajl = [(DU{/ih) x (DU /i) nU]
select (j, a) that maximizes |D @, j|;
while |D &, j| > V do
V ‘D @aj’;
D« (DU {Zih,
select (j,a) that maximizes |D @, j|;

C + D'
F«— FU{(C,D)};

for (i,j) € U do
| if [ < C(i) o D(j) then U < U — {(i,j)};




Other algorithms

Asso for Matrices with Truth Degrees

[ R. Belohlavek, M. Trneckova

The Discrete Basis Problem and Asso Algorithm for Fuzzy
Attributes
|IEEE Trans. Fuzzy Syst. 27(7): 1417-1427 (2019)

GreEss for Matrices with Truth Degrees

[ R. Belohlavek, M. Trneckova
Factorization of matrices with grades via essential entries
Fuzzy Sets Syst. 360: 97-116 (2019)



Future research

» Other algebraic sctructures.

» Significance of BMF for DM + ML (reduction of
dimensionality)

[3 R. Belohlavek, J. Outrata, M. Trnecka
Impact of Boolean factorization as preprocessing methods
for classification of Boolean data.
Ann. Math. Artif. Intell. 72(1-2): 3-22 (2014)
» Complexity issues

» Novel approaches to factorization

[§ J. Konecny, M. Trnecka
Boolean Matrix Factorization for Data with Symmetric
Variables.
ICDM 2022: 1011-1016



