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Formal Concept Analysis

Just basic notation:
▶ ⟨X ,Y , I ⟩ – formal context
▶ (·)↑ : 2X → 2Y , (·)↓ : 2Y → 2X – concept-forming operators
▶ B(X ,Y , I ) set of all formal concepts (also concept lattice)

We unify formal context ⟨X ,Y , I ⟩ with X = {1, . . . , n},
Y = {1, . . . ,m} with Boolean matrix I ∈ {0, 1}n×m:

Iij = 1 iff ⟨i , j⟩ ∈ I

Warning: By abuse of notation, we often do not distinguish
between these representations.



Boolean Matrix Factorization

Input: Matrix I
▶ n ×m

▶ contains Boolean values – truth (1) and false (0)

For instance, 1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1



Goal: to decompose I into A ◦ B ≈ I where
▶ A is n × k matrix object × factors
▶ B is k ×m matrix factors × attributes
▶ effort k ≪ m



The symbol ◦ in A ◦ B is Boolean matrix product:

(A ◦ B)ij =
∨

ℓ=1...k

Aiℓ ∧ Bℓj

For instance:1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

 =

1 0 0
1 0 1
1 1 0
0 0 1

 ◦(1 1 0 0 0
0 0 1 1 0
1 0 0 0 1

)



Aslo called / equivalent with:

▶ Boolean matrix decomposition
▶ Formal context decomposition / factorization
▶ Problem of covering a bipartite graph by bicliques

J. Orlin
Contentment in graph theory: covering graphs with
cliques,
in: Proc. Kon. Neder. Akad. Wet., Amsterdam, ser. A,
volume vol. 80, 1977 .

▶ Problem of finding the 2-dimension of a poset



History

First fundamental results in 70s:

D. S. Nau et al.,
A mathematical analysis of human leukocyte antigen serology,
Math. Biosci. 40(1978), 243–270.

L. Stockmeyer
The set basis problem is NP-complete,
Tech. rep. rc5431, IBM, Yorktown Heights, NY, USA, 1975 .



An increase in interest due to Miettinen’s work:

▶ Boolean version of the discrete basis problem and ASSO

P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H.
Mannila,
The discrete basis problem,
IEEE TKDE 20(2008), 1348–62.

▶ Boolean CX and CUR decompositions

P. Miettinen,
The Boolean column and column-row matrix
decompositions,
Data Mining Knowl. Disc. 17(2008), 39–56.

. . .



. . .
▶ sparsity issues

P. Miettinen,
Sparse Boolean matrix factorizations,
Proc. IEEE ICDM 2010, pp. 935–940.

▶ selection of the number of factors

P. Miettinen, J. Vreeken,
Model order selection for Boolean matrix factorization,
ACM SIGKDD 2011, pp. 51–59.

. . .



. . .
▶ restricted decompositions using so-called tiles and formal

concepts in Boolean data

F. Geerts, B. Goethals, T. Mielikäinen,
Tiling databases,
Proc. Discovery Science 2004, pp. 278–289.

R. Belohlavek, V. Vychodil,
Discovery of optimal factors in binary data via a novel
method of matrix decomposition.
J. Computer and System Sciences 76(1)(2010), 3–20.



Goal: to decompose I into A ◦ B ≈ I where
▶ A is n × k matrix object × factors
▶ B is k ×m matrix factors × attributes
▶ effort k ≪ m

By ≈ in A ◦ B ≈ I we mean, that A ◦ B is close to I .
We express this as minimalization of reconstruction error:

E (I ,A ◦ B) = Eu(I ,A ◦ B) + Eo(I ,A ◦ B)

where
▶ Eu(I ,A ◦ B) = {⟨i , j⟩ : Iij = 1, (A ◦ B)ij = 0}

is undercovering error (uncovering)
▶ Eo(I ,A ◦ B) = {⟨i , j⟩ : Iij = 0, (A ◦ B)ij = 1}

is overcovering error



Eu and Eo are not equally serious:

Because the ◦-product uses a logical sum
▶ Eu decreases with adding new factors,
▶ Eo increases with adding new factors

A sport analogy: long jump
▶ Eu is an underperformed jump (more strength will fix it)
▶ Eo is a foul jump (more strength does not fix it)

From-bellow methods – assure Eo = 0.
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Mushroom data

GreConD

Asso

coverage = (nm − E)/nm

▶ GreConD is from-bellow
▶ Asso allows for overcovering



Basic variants

Discrete Basis Problem (DBP)
▶ Input: I ∈ {0, 1}m×n and positive integer k
▶ Goal: find A ∈ {0, 1}m×k and B ∈ {0, 1}k×n, that minimalize

E (I ,A ◦ B)

Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H.,
The discrete basis problem,
IEEE Transactional Knowledge and Data Engineering
20(10)(2008), 1348–1362



Approximate Factorization Problem (AFP)
▶ Input: for I ∈ {0, 1}m×n and given error 0 ≤ ε ≤ 1
▶ Goal: find A ∈ {0, 1}m×k and B ∈ {0, 1}k×n, s.t.

E (I ,A ◦ B) ≤ ε, that minimalize k

Belohlavek R., Vychodil V.
Discovery of optimal factors in binary data via a novel method
of matrix decomposition
Journal of Computer and System Sciences 76(1)(2010), 3–20.

Belohlavek, R., Trnecka, M.,
From-below approximations in Boolean matrix factorization:
Geometry and new algorithm,
Journal of Computer and System Sciences 81(8)(2015),
1678–1697.



FCA in BMF

The boolean matrix product

(A ◦ B)ij =
∨

ℓ=1...k

Aiℓ ∧ Bℓj

can be written as

(A ◦ B)ij =
∨

ℓ=1...k

(Aℓ_ ◦ B_ℓ)

where
▶ Aℓ_ is ℓ-th row of A,
▶ B_ℓ is ℓ-th column of B.



For example, we can write

I =


1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

 =


1 0 0
1 0 1
1 1 0
0 0 1

 ◦
1 1 0 0 0

0 0 1 1 0
1 0 0 0 1


as

1
1
1
0

◦(1 1 0 0 0
)
∨


0
0
1
0

◦(0 0 1 1 0
)
∨


0
1
0
1

◦(1 0 0 0 1
)

i.e. 
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

 ∨


0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

 ∨


0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1





Belohlavek R., Vychodil V.
Discovery of optimal factors in binary data via a novel method
of matrix decomposition
Journal of Computer and System Sciences 76(1)(2010), 3–20.

Observation:
▶ BMF = covering with rectangles
▶ Formal concepts (as maximal rectangles) are ideal factors.

This is quite a trivial result.
Important role in showing the DM community this view.



universality
There is F = {⟨A1,B1⟩, ⟨A2,B2⟩, . . . , ⟨Ak ,Bk⟩} ⊆ B(I ) such that

I = AF ◦ BF .

where

(AF )iℓ =

{
1 if i ∈ Aℓ,

0 otherwise.
(BF )ℓj =

{
1 if j ∈ Bℓ,

0 otherwise.

optimality
If there are A ∈ {0, 1}n×k and B ∈ {0, 1}k×m, then there is
F ⊆ B(I ) s.t.

I = AF ◦ BF .

and |F| ≤ k .



Some Algorithms



GreCon
▶ Compute B(X ,Y , I )

▶ Iteratively greedily select concepts from B(X ,Y , I ) which
cover the most (yet uncovered) ones

Efficient implementation in:

Martin Trnecka, Roman Vyjidacek:
Revisiting the GreCon algorithm for Boolean matrix
factorization.
Knowl. Based Syst. 249: 108895 (2022)

(uses incidence counters ...)

GreConD
▶ Does not compute B(X ,Y , I ) in advance
▶ Finds the concepts on demand.



Algorithm 1: GreConD(I )

U ← {⟨i , j⟩ | Iij = 1};
F ← ∅;

while U ̸= ∅ do

D ← ∅;
V ← 0;

select j that maximizes |D ⊕ j |;
while |D ⊕ j | > V do

V ← |D ⊕ j |;
D ← (D ∪ j)↑↓;
select j that maximizes |D ⊕ j |;

C ← D↓;
F ← F ∪ {⟨C ,D⟩};

for ⟨i , j⟩ ∈ U do
if ⟨i , j⟩ ∈ C ◦ D then U ← U − {⟨i , j⟩};

|D ⊕ j | = |(D ∪ j)↓ × (D ∪ j)↓↑ ∩ U|



GreConD – Demonstration

I =


1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


U is collection of entries with ones in I .
D = ∅
Find j ∈ Y that maximizes |D ⊕ j |:
▶ j = 1:

{1}↓ ◦ {1}↓↑ =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


(highlighted entries are those in U).. |D ⊕ j | = 4



▶ j = 2:

{2}↓ ◦ {2}↓↑ =


1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0


|D ⊕ 2| = 6

▶ j = 3 and j = 4:

{3}↓ ◦ {3}↓↑ = {4}↓ ◦ {4}↓↑ =


0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0


|D ⊕ 3| = |D ⊕ 4| = 4

▶ j = 5:
|D ⊕ 5| = 4



j = 2 maximizes |D ⊕ j |
D ← D ∪ {2}↓↑ = {1, 2}

Repeat:
Find j ∈ Y that maximizes |D ⊕ j |:
▶ j = 1 and j = 2: they are already in D

▶ j = 3 and j = 4:

{1, 2, 3}↓◦{1, 2, 3}↓↑ = {1, 2, 4}↓◦{1, 2, 4}↓↑ =


0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0


|D ⊕ 3| = |D ⊕ 4| = 4



▶ j = 5:

{1, 2, 5}↓ ◦ {1, 2, 5}↓↑ =


0 0 0 0 0
1 1 0 0 1
0 0 0 0 0
0 0 0 0 0


|D ⊕ 5| = 3.

We did not find a concept with better coverage, therefore we take
⟨D↓,D⟩ as the first factor.

We remove covered entries from U
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

⇒


1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


And continue with finding the next factor.



Essential elements

Consider for every entry Iij = 1, the interval

Iij = [γ(i), µ(j)] = {c ∈ B(I ) | γ(i) ≤ c ≤ µ(j)},

in B(I ), where γ(i) = {i↑↓, i↑} and µ(i) = {j↓, i↓↑}.

Entries ⟨i , j⟩ for which Iij is minimal w.r.t. ⊆ are called essential.
It constitutes a new object-attribute relation, E(I ) ∈ {0, 1}n×m:

(E(I ))ij = 1 iff Iij is nonempty (a) and minimal (b).

(a) – equivalent to Iij = 1
(b) – equivalent to: for all objects i ′ with {i ′}↑ ⊂ {i}↑ we have

Ii ′j = 0; analogously for attributes.

For any F ⊆ B(I ), if J ⊆ AF ◦ BF then I = AF ◦ BF .



•

•

•

•
B(I )

{2}↓, {2}↓↑

{3}↑↓, {3}↑


1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1



I3,2 in not minimal: I3,3 ⊂ I3,2
I3,3 is minimal.

E(I ) =


0 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1





▶ E(I ) tends to be significantly smaller than I .
▶ We may focus on the entries ⟨i , j⟩ ∈ E(I ), and ignore the (less

important) entries in I that are not in E(I ).

R. Belohlavek, M. Trnecka
From-below approximations in Boolean matrix factorization:
Geometry and new algorithm.
J. Comput. Syst. Sci. 81(8): 1678-1697 (2015)

▶ GreEss algorithm

Essential elements (called tight) with part of the theory also
appears in:

C.V. Glodeanu, B. Ganter
Applications of Ordinal Factor Analysis.
ICFCA 2013: 109-124



The 8M algorithm

R. Belohlavek, M. Trnecka
The 8M Algorithm from Today’s Perspective.
ACM Transactions on Knowledge Discovery from Data 15
(2)(2021), article 22.

8M
▶ first algorithm for BMF (1983)
▶ part of BMDP (statistics package; now non-existent)
▶ does not use the geometric view, uses classical linear algebra
▶ still it gives good results

8M+
▶ improvement of 8M using FCA
▶ “two steps forward, one step back” idea: included in GreConD

and Asso → significant improvement



Extension to a setting with fuzzy attributes



Factorization of Matrices with Truth Degrees
Input: Matrix I
▶ n ×m

▶ contains truth degrees – truth (1) and false (0), and
intermediate degrees

For instance, 0.8 1 0 0 0
1 0.8 0 0 0.2

0.4 1 0.8 0.4 0
0.2 0 0 0 1



Goal: to decompose I into A ◦ B ≈ I where
▶ A is n × k matrix object × factors
▶ B is k ×m matrix factors × attributes
▶ effort k ≪ m



The structure of truth degrees = complete residuated lattice

Definition
Complete residuated lattice is a structure L = ⟨L,∧,∨,⊗,→, 0, 1⟩
s.t.
▶ ⟨L,∧,∨, 0, 1⟩ is a complete lattice, i.e. poset where arbitrary

infima and suprema exist (the lattice order of L is denoted ≤);
▶ ⟨L,⊗, 1⟩ is a commutative monoid, i.e., ⊗ is a commutative,

associative binary operation with a⊗ 1 = a for all a ∈ L;
▶ ⊗ and → satisfy the adjoint property, i.e.,

a⊗ b ≤ c ⇐⇒ a ≤ b → c .

Joseph A. Goguen
The logic of inexact concepts.
Synthese (1969): 325-373.



Example
Typical examples, L = [0, 1] and ⊗ and → given as:

▶ Łukasiewicz
a⊗ b = max(a+ b − 1, 0),
a→ b = min(1− a+ b, 1),

▶ Gödel
a⊗ b = min(a, b),

a→ b =

{
1 if a ≤ b,

b otherwise,

▶ Goguen (product)
a⊗ b = a · b,

a→ b =

{
1 if a ≤ b,
b
a otherwise.



Factorization of Matrices with Truth Degrees

Goal: to decompose I into A ◦ B ≈ I where
▶ A is n × k matrix object × factors
▶ B is k ×m matrix factors × attributes
▶ effort k ≪ m

The ◦-product is defined as:

(A ◦ B)ij =
k∧

ℓ=1

Aiℓ ⊗ Bℓj



For matrices I , J ∈ Ln×m

s(I , J) =

∑m,n
i ,j=1 sL(Iij , Jij)

n ·m

i.e. s(I , J) ∈ [0, 1] is the normalized sum over all matrix entries of
the closeness of the corresponding entries in I and J.

We require
▶ sL(a, b) = 1 if and only if a = b,
▶ sL(0, 1) = sL(1, 0) = 0,

(in which case s(I , J) = 1 iff I = J .)



Addressing two issues (I)

▶ Ordinal data and the methods for data analysis of such data
appear in the literature on mathematical psychology.

▶ The tools employed there are basically modifications of
classical factor analysis methods: grades (truth degrees) are
represented by and treated like numbers.

This leads to loss of interpretability, demonstrated in:

N. Tatti, T. Mielikäinen, A. Gionis, H. Mannila,
What is the dimension of your binary data?
Proc. IEEE ICDM 2006, pp. 603–612.



Addressing two issues (II)

▶ Ordinal scaling + Boolean algorithms – brings considerably
worse performace as regards both the quality of decomposition
and computation time.
Decathlon example at the panel discussion:

R. Belohlavek, M. Krmelova:
Factor Analysis of Sports Data via Decomposition of
Matrices with Grades.
CLA 2012: 293-304

▶ Double scaling – is (mostly) equivalent.



The decathlon example







Formal Concept Analysis for Inexact Data

Formal L-concept analysis in sense of:

Ana Burusco Juandeaburre and Ramón Fuentes-González.
The study of the L-fuzzy concept lattice.
Mathware & soft computing. 1994 Vol. 1 Num. 3 p. 209-218
(1994)

Silke Pollandt.
Fuzzy Begriffe: Formale Begriffsanalyse von unscharfen Daten.
Springer–Verlag, Berlin–Heidelberg, 1997.

Radim Belohlavek.
Lattices generated by binary fuzzy relations.
Abstracts of FSTA 1998, Liptovský Ján, Slovakia, p. 11 (1998)



Formal Concept Analysis with Fuzzy Attributes

Input: formal context

α β γ

a ×
b × ×
c ×

attributes→ → →

ob
je

ct
s

→
→
→ ⇒

α β γ

a 1 0 0.1
b 0.9 0.8 0.1
c 0 0 0.6

attributes→ → →

ob
je

ct
s

→
→
→

• object b has attribute β

•object b has attribute β (at least) in degree 0.8



L-sets and L-relations

Definition
L-set A in universe U is a mapping A : U → L.

▶ The set of all L-sets in U is denoted LU .
▶ If all u ∈ U different from u1, u2, . . . , un satisfy A(u) = 0,

we can also write A as

{A(u1)/u1,
A(u2)/u2, . . . ,

A(un)/un}.

Operations on L-sets defined component-wise:
For instance intersection A ∩ B of A,B ∈ LU is defined by

(A ∩ B)(u) = A(u) ∧ B(u) for all u ∈ U.



Concept-forming operators

Ordinary formal context ⟨X ,Y , I ⟩ induces operators ⇑ : 2X → 2Y

and ⇓ : 2Y → 2X :

y ∈ A⇑ iff for all x ∈ X : x ∈ A implies ⟨x , y⟩ ∈ I

x ∈ B⇓ iff for all y ∈ Y : y ∈ B implies ⟨x , y⟩ ∈ I

⇓
For formal L-context ⟨X ,Y , I ⟩ (I is L-relation between X and Y ):
induces operators ↑ : LX → LY and ↓ : LY → LX :

A↑(y) =
∧
x∈X

A(x)→ I (x , y)

B↓(x) =
∧
y∈Y

B(y)→ I (x , y)



Formal (L-)concept, . . .
Formal concept: ⟨A,B⟩ where A⇑ = B,B⇓ = A.

Formal L-concept: ⟨A,B⟩ where A↑ = B,B↓ = A.

A – extent, B – intent.

Set of all concepts:

B(X ,Y , I ) = {⟨A,B⟩ | ⟨A,B⟩ is a formal (L-)concept}

Sets of extents and intents:

Ext(X ,Y , I ) = {A | ⟨A,B⟩ ∈ B(X ,Y , I )}
Int(X ,Y , I ) = {B | ⟨A,B⟩ ∈ B(X ,Y , I )}

Concept lattice: B(X ,Y , I )+ ≤, where

⟨A,B⟩ ≤ ⟨C ,D⟩ iff A ⊆ C .



Factorization of Matrices with Truth Degrees

R. Belohlavek,
Optimal decompositions of matrices with entries from
residuated lattices,
J. Logic Comput. 22(2012), 1405–1425.

R. Belohlavek, V. Vychodil
Factorization of matrices with grades.
Fuzzy Sets and Systems 292(1)(2016), 85–97.

R. Belohlavek, J. Konecny
Operators and Spaces Associated to Matrices with Grades and
Their Decompositions I,II.
NAFIPS 2008, CLA 2010: 60-69

E. Bartl, R. Belohlavek, J. Konecny
Optimal decompositions of matrices with grades into binary
and graded matrices. Ann. Math.
Artif. Intell. 59(2): 151-167 (2010)



Intermezzo: General framework

Triangular products:

(A ◁ B)ij =
k∧

ℓ=1

Aiℓ → Bℓj

(A ▷ B)ij =
k∧

ℓ=1

Bℓj → Aiℓ

Studied by Bandler and Kohout:

L. J. Kohout and W. Bandler.
Relational-product architectures for information processing.
Information Sciences, 37(1-3):25–37, 1985.

▶ We could be interested in factorization into these products.



These, together with ◦, are covered by a unifying framework
proposed in:

E. Bartl, R. Belohlavek
Sup-t-norm and inf-residuum are a single type of relational
equations.
Int. J. Gen. Syst. 40(6): 599-609 (2011)

R. Belohlavek
Sup-t-norm and inf-residuum are one type of relational product:
Unifying framework and consequences.
Fuzzy Sets Syst. 197: 45-58 (2012)



FCA in BMF

The graded matrix product

(A ◦ B)ij =
∨

ℓ=1...k

Aiℓ ⊗ Bℓj

can be written as

(A ◦ B)ij =
∨

ℓ=1...k

(Aℓ_ ◦ B_ℓ)

where
▶ Aℓ_ is ℓ-th row of A,
▶ B_ℓ is ℓ-th column of B.



GreConDL

▶ designed for computing exact and almost exact
decompositions, it may be easily adopted for computing
approximate decompositions as well as for solving the DBP(L).

R. Belohlavek,
Optimal decompositions of matrices with entries from
residuated lattices,
J. Logic Comput. 22(2012), 1405–1425.

R. Belohlavek, V. Vychodil,
Factorization of matrices with grades.
Fuzzy Sets and Systems 292(1)(2016), 85–97 (preliminary
version in LNAI 5548(2009), 83–97).



Algorithm 2: GreCondL(I )

U ← {⟨i , j⟩ | Iij ̸= 0};
F ← ∅;

while U ̸= ∅ do

D ← ∅;
V ← 0;

select ⟨j , a⟩ that maximizes |D ⊕a j |;
while |D ⊕a j | > V do

V ← |D ⊕a j |;
D ← (D ∪ {a/j})↑↓;
select ⟨j , a⟩ that maximizes |D ⊕a j |;

C ← D↓;
F ← F ∪ {⟨C ,D⟩};

for ⟨i , j⟩ ∈ U do
if Iij ≤ C (i) ◦ D(j) then U ← U − {⟨i , j⟩};

|D ⊕a j | = |(D ∪ {a/j})↓ × (D ∪ {a/j})↓↑ ∩ U|



Other algorithms

Asso for Matrices with Truth Degrees

R. Belohlavek, M. Trneckova
The Discrete Basis Problem and Asso Algorithm for Fuzzy
Attributes
IEEE Trans. Fuzzy Syst. 27(7): 1417-1427 (2019)

GreEss for Matrices with Truth Degrees

R. Belohlavek, M. Trneckova
Factorization of matrices with grades via essential entries
Fuzzy Sets Syst. 360: 97-116 (2019)



Future research

▶ Other algebraic sctructures.
▶ Significance of BMF for DM + ML (reduction of

dimensionality)

R. Belohlavek, J. Outrata, M. Trnecka
Impact of Boolean factorization as preprocessing methods
for classification of Boolean data.
Ann. Math. Artif. Intell. 72(1-2): 3-22 (2014)

▶ Complexity issues
▶ Novel approaches to factorization

J. Konecny, M. Trnecka
Boolean Matrix Factorization for Data with Symmetric
Variables.
ICDM 2022: 1011-1016


