Breaking the Barrier: A Computation of the Ninth Dedekind Number

Christian Jäkel
Dresden University of Technology

ICFCA 2023

- based on the preprint: A computation of the ninth Dedekind number by C. Jäkel, 3. April 2023
- a paper is currently in review

Introduction

- fast growing integer sequence
- very difficult to compute
- introduced in 1897 by Richard Dedekind

Dedekind numbers are the solution to a counting problem, that determines...

Introduction

- fast growing integer sequence
- very difficult to compute
- introduced in 1897 by Richard Dedekind

Dedekind numbers are the solution to a counting problem, that determines...

The Number of Monotone Boolean Functions on n Variables

$f:\{0,1\}^{n} \rightarrow\{0,1\}$, monotone w.r.t. $0 \leq 1$
Example $n=2$:

- $f(x, y)=0, f(x, y)=1$
- $f(x, y)=x, f(x, y)=y$
- $f(x, y)=x \wedge y, f(x, y)=x \vee y$

The monotonic Boolean functions are precisely those that can be defined by combining the inputs using only the operators \wedge and \vee.

The Number of Monotone Boolean Functions on n Variables

$f:\{0,1\}^{n} \rightarrow\{0,1\}$, monotone w.r.t. $0 \leq 1$
Example $n=2$:

- $f(x, y)=0, f(x, y)=1$
- $f(x, y)=x, f(x, y)=y$
- $f(x, y)=x \wedge y, f(x, y)=x \vee y$

The monotonic Boolean functions are precisely those that can be defined by combining the inputs using only the operators \wedge and \vee.

The Number of Antichains in the Powerset Lattice with n Generators

- powerset lattice $2^{X}:=\left(2^{X}, \subseteq\right)$, with $\# X=n$
- collection of subsets $\Sigma \subseteq 2^{X}$:

$$
\forall \sigma, \tau \in \Sigma: \sigma \nsubseteq \tau \text { and } \tau \nsubseteq \sigma
$$

Example $X=\{x, y\}$:

$$
\emptyset,\{\{x, y\}\},\{\{x\}\},\{\{y\}\},\{\{x\},\{y\}\},\{\emptyset\}
$$

Antichains are elements of the space $2^{2 x}$

The Number of Antichains in the Powerset Lattice with n Generators

- powerset lattice $2^{X}:=\left(2^{X}, \subseteq\right)$, with $\# X=n$
- collection of subsets $\Sigma \subseteq 2^{X}$:

$$
\forall \sigma, \tau \in \Sigma: \sigma \nsubseteq \tau \text { and } \tau \nsubseteq \sigma
$$

Example $X=\{x, y\}$:

$$
\emptyset,\{\{x, y\}\},\{\{x\}\},\{\{y\}\},\{\{x\},\{y\}\},\{\emptyset\}
$$

Antichains are elements of the space $2^{2 x}$.

The Number of Elements of the Free Distributive Lattice with n Generators

 Let $\mathbb{D}_{n}=(\mathrm{D}(n), \leq)$ denote the free distributive lattice with n generators.Example with generators x and y :

Dedekind's Problem

The determination of \mathbb{D}_{n} 's cardinality is known as Dedekind's Problem.

Berman, J., Köhler, P.: (1976):

probably the oldest unsolved problem in lattice theory."

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed form, but it can only be applied to small values of n.

Dedekind's Problem

The determination of \mathbb{D}_{n} 's cardinality is known as Dedekind's Problem.

Berman, J., Köhler, P.: (1976):
"... probably the oldest unsolved problem in lattice theory."

Kisielewicz Andrzej (1988):
Provided an arithmetic formula for the Dedekind numbers in closed
form, but it can only be applied to small values of n.

Dedekind's Problem

The determination of \mathbb{D}_{n} 's cardinality is known as Dedekind's Problem.

Berman, J., Köhler, P.: (1976):
"... probably the oldest unsolved problem in lattice theory."

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed form, but it can only be applied to small values of n.

Dedekind Numbers

Let $\mathrm{d}(n):=\# \mathbb{D}_{n}$ denote the n-th Dedekind number.

n	$\mathrm{~d}(n)$	Year
0	2	
1	3	
2	6	1897, Dedekind
3	20	
4	168	
5	7581	1940, Church
6	7828354	1946, Ward
7	2414682040998	1965, Church
8	56130437228687557907788	1991, Wiedemann

$2023: d(9)=286386577668298411128469151667598498812366$

Table of Contents

(1) Introduction
(2) Shifting Theorem
(3) Equivalent Lattices
(4) Enumeration Formulas
(5) Practical Computation

Shifting Theorem

- let $\mathbb{2}^{n}:=\left(2^{n}, \subseteq\right)$ denote the powerset lattice with n generators
- it holds that $\mathbb{D}_{n+k} \cong \mathbb{D}_{n}^{2^{k}}$

Theorem
 The Dedekind number $d(n+k)$ is equal to the number of monotone mappings from $\mathbb{2}^{k}$ into \mathbb{D}_{n}.

Shifting Theorem

- let $\mathbb{2}^{n}:=\left(2^{n}, \subseteq\right)$ denote the powerset lattice with n generators
- it holds that $\mathbb{D}_{n+k} \cong \mathbb{D}_{n}^{\mathbb{D}^{k}}$

Theorem
The Dedekind number $\mathrm{d}(n+k)$ is equal to the number of monotone mappings from $\mathbb{2}^{k}$ into \mathbb{D}_{n}.

Generation and Numerical Representation

Corollary

There is a one to one correspondence of elements from \mathbb{D}_{n+1} and pairs (x, y) of elements x, y from \mathbb{D}_{n}, such that $x \leq y$.

Generation and Numerical Representation

The integer values define a linear order, denoted by \sqsubseteq.

Generation and Numerical Representation

The integer values define a linear order, denoted by \sqsubseteq.

Equivalent Lattices

- finite lattice $\mathbb{L}=(L, \vee, \wedge, \perp, \top)$ or $\mathbb{L}=(L, \leq)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is isomorphism $: \Leftrightarrow x \leq y \Leftrightarrow \varphi(x) \leq \varphi(y)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is anti isomorphism : $\Leftrightarrow x \leq y \Leftrightarrow \varphi(y) \leq \varphi(x)$

Definition
Two lattices \mathbb{L}_{1} and \mathbb{L}_{2} are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{L}_{1} \equiv \mathbb{L}_{2}$. It holds that \equiv is an equivalence relation.

Equivalent Lattices

- finite lattice $\mathbb{L}=(L, \vee, \wedge, \perp, \top)$ or $\mathbb{L}=(L, \leq)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is isomorphism : $\Leftrightarrow x \leq y \Leftrightarrow \varphi(x) \leq \varphi(y)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is anti isomorphism : $\Leftrightarrow x \leq y \Leftrightarrow \varphi(y) \leq \varphi(x)$

Definition
Two lattices \mathbb{L}_{1} and \mathbb{L}_{2} are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{L}_{1} \equiv \mathbb{L}_{2}$. It holds that \equiv is an equivalence relation.

Equivalent Lattices

- finite lattice $\mathbb{L}=(L, \vee, \wedge, \perp, \top)$ or $\mathbb{L}=(L, \leq)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is isomorphism $: \Leftrightarrow x \leq y \Leftrightarrow \varphi(x) \leq \varphi(y)$
- $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ is anti isomorphism : $\Leftrightarrow x \leq y \Leftrightarrow \varphi(y) \leq \varphi(x)$

Definition

Two lattices \mathbb{L}_{1} and \mathbb{L}_{2} are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{L}_{1} \equiv \mathbb{L}_{2}$. It holds that \equiv is an equivalence relation.

Equivalent Intervals

- for $a, b \in L, a \leq b$: interval $[a, b]:=\{x \mid x \in L, a \leq x \leq b\}$
- set of all intervals $\operatorname{Int}(\mathbb{L})$
- $I, J \in \operatorname{Int}(\mathbb{L})$ are equivalent iff they are (anti) isomorphic
- factorization $\operatorname{Int}(\mathbb{L}) / \equiv$

Equivalent Intervals

- for $a, b \in L, a \leq b$: interval $[a, b]:=\{x \mid x \in L, a \leq x \leq b\}$
- set of all intervals $\operatorname{Int}(\mathbb{L})$
- $I, J \in \operatorname{Int}(\mathbb{L})$ are equivalent iff they are (anti) isomorphic
- factorization $\operatorname{Int}(\mathbb{L}) / \equiv$

Equivalent Intervals of \mathbb{D}_{2}

$$
\begin{aligned}
& \{[0,0],[1,1],[3,3],[5,5],[7,7],[15,15]\}, \\
& \{[0,1],[1,3],[1,5],[3,7],[5,7],[7,15]\}, \\
& \{[0,3],[0,5],[3,15],[5,15]\}, \\
& \{[1,7]\}, \\
& \{[0,7],[1,15]\}, \\
& \{[0,15]\}
\end{aligned}
$$

Notation

$$
\begin{aligned}
& \text { For } I \in \operatorname{Int}(\mathbb{L}) \text { and } \\
& \text { every } x \in I \text {, let: } \\
& \perp_{\mathrm{I}}(x):=\#\left[\perp_{\mathrm{I}}, x\right], \\
& \top_{\mathrm{I}}(x):=\#\left[x, \top_{\mathrm{I}}\right] .
\end{aligned}
$$

Subscript I can be omitted.

Enumeration of \mathbb{D}_{n+1}, via $\mathbb{2}^{1} \xrightarrow{\leq} \mathbb{D}_{n}$

$$
\mathrm{d}(n+1)=\# \operatorname{Int}\left(\mathbb{D}_{n}\right)
$$

Enumeration of \mathbb{D}_{n+1}, via $\mathbb{2}^{1} \xrightarrow{\leq} \mathbb{D}_{n}$

$$
\begin{aligned}
\mathrm{d}(n+1) & =\# \operatorname{Int}\left(\mathbb{D}_{n}\right) \\
& =\sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I]
\end{aligned}
$$

Enumeration of \mathbb{D}_{n+2}, via $\mathcal{2}^{2} \xrightarrow{\leq} \mathbb{D}_{n}$

$$
\mathrm{d}(n+2)=\sum_{a, b \in \mathrm{D}(n)} \perp(a \wedge b) \cdot \mathrm{T}(a \vee b)
$$

Enumeration of \mathbb{D}_{n+2}, via $\mathbb{2}^{2} \xrightarrow{\leq} \mathbb{D}_{n}$

$$
\mathrm{d}(n+2)=\sum_{I \in \operatorname{Int}\left(\mathbb{(\mathbb { D }}_{n}\right)}(\# I)^{2}=\sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv}(\# I)^{2} \cdot \#[I]
$$

Enumeration of \mathbb{D}_{n+4}, via $\mathbb{2}^{4} \xrightarrow{\leq} \mathbb{D}_{n}$

$$
\begin{aligned}
\mathrm{d}(n+4)= & \sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{a, b, c, d, e, f \in I} X, \text { with: } \\
X= & \perp(a \wedge c \wedge d) \cdot \top(b \vee c \vee d) \\
& \cdot \perp(b \wedge c \wedge e) \cdot \top(a \vee c \vee e) \\
& \cdot \perp(a \wedge e \wedge f) \cdot \top(b \vee e \vee f) \\
& \cdot \perp(b \wedge d \wedge f) \cdot \top(a \vee d \vee f)
\end{aligned}
$$

Enumeration of \mathbb{D}_{n+4}, via $\mathbb{2}^{4} \xrightarrow{\leq} \mathbb{D}_{n}$

Theorem
For $I \in \operatorname{Int}\left(\mathbb{D}_{n}\right)$ and $a, b, c, d \in I$, we define matrices:

$$
\begin{aligned}
\alpha_{a b}(c, d) & :=\perp(a \wedge c \wedge d) \cdot \top(b \vee c \vee d), \\
\beta_{a b}(c, d) & :=\perp(b \wedge c \wedge d) \cdot \top(a \vee c \vee d), \\
\gamma_{a b} & :=\alpha_{a b} \cdot \beta_{a b} .
\end{aligned}
$$

It holds that:

$$
\mathrm{d}(n+4)=\sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{a, b \in I} \operatorname{Tr}\left(\gamma_{a b}^{2}\right) .
$$

Proof.

$$
\begin{aligned}
& d(n+4)= \\
& \sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{a, b \in I} \sum_{c, d \in I} \sum_{e, f \in I} \alpha_{a b}(c, d) \beta_{a b}(c, e) \alpha_{a b}(e, f) \beta_{a b}(d, f)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& d(n+4)= \\
& \sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{a, b \in I} \sum_{c, d \in I} \sum_{e, f \in I} \alpha_{a b}(c, d) \beta_{a b}(c, e) \alpha_{a b}(e, f) \beta_{a b}(d, f) \\
& \gamma_{a b}(d, e)=\sum_{c \in I} \alpha_{a b}(d, c) \beta_{a b}(c, e) \text { and } \gamma_{a b}(e, d)=\sum_{f \in I} \alpha_{a b}(e, f) \beta_{a b}(f, d)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& d(n+4)= \\
& \sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{a, b \in I} \sum_{c, d \in I} \sum_{e, f \in I} \alpha_{a b}(c, d) \beta_{a b}(c, e) \alpha_{a b}(e, f) \beta_{a b}(d, f) \\
& \gamma_{a b}(d, e)= \sum_{c \in I} \alpha_{a b}(d, c) \beta_{a b}(c, e) \text { and } \gamma_{a b}(e, d)=\sum_{f \in I} \alpha_{a b}(e, f) \beta_{a b}(f, d) \\
& \sum_{d, e \in I} \gamma_{a b}(d, e) \gamma_{a b}(e, d)=\sum_{d \in I} \gamma_{a b}^{2}(d, d)=\operatorname{Tr}\left(\gamma_{a b}^{2}\right)
\end{aligned}
$$

Matrix Multiplication

- standard algorithmic problem
- a lot of specialized libraries
- high performance on GPUs can be achieved
- to compute $\mathrm{d}(5+4)$, maximal matrix dimension is 7581×7581

Symmetry w.r.t. a and b

Symmetry w.r.t. a and b

$$
(a, b) \in I \times\left. I\right|_{\sqsubseteq}: \quad \omega(a, b):= \begin{cases}1, & a=b \\ 2, & a \sqsubset b\end{cases}
$$

Let $\varphi: I \rightarrow I$ be an (anti) isomorphism and $(a, b),(\tilde{a}, \tilde{b}) \in I \times\left. I\right|_{\sqsubseteq}$:

$$
\exists \varphi: I \rightarrow I, \varphi(a)=\tilde{a} \text { and } \varphi(b)=\tilde{b} .
$$

Symmetry w.r.t. a and b

$$
(a, b) \in I \times\left. I\right|_{\sqsubseteq}: \quad \omega(a, b):= \begin{cases}1, & a=b \\ 2, & a \sqsubset b\end{cases}
$$

Let $\varphi: I \rightarrow I$ be an (anti) isomorphism and $(a, b),(\tilde{a}, \tilde{b}) \in I \times\left. I\right|_{\sqsubseteq}$:

$$
\begin{aligned}
(a, b) \sim(\tilde{a}, \tilde{b}): & \Longleftrightarrow \\
& \exists \varphi: I \rightarrow I, \varphi(a)=\tilde{a} \text { and } \varphi(b)=\tilde{b} .
\end{aligned}
$$

Enumeration of \mathbb{D}_{n+4}, via $\mathbb{2}^{4} \xrightarrow{\leq} \mathbb{D}_{n}$

Theorem
For $I \in \operatorname{Int}\left(\mathbb{D}_{n}\right)$ and $a, b, c, d \in I$, we define matrices:

$$
\begin{aligned}
\alpha_{a b}(c, d) & :=\perp(a \wedge c \wedge d) \cdot \top(b \vee c \vee d), \\
\beta_{a b}(c, d) & :=\perp(b \wedge c \wedge d) \cdot T(a \vee c \vee d), \\
\gamma_{a b} & :=\alpha_{a b} \cdot \beta_{a b} .
\end{aligned}
$$

It holds that $\mathrm{d}(n+4)=$

$$
\sum_{[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv} \#[I] \cdot \sum_{[(a, b)] \in\left(I \times\left. I\right|_{\sqsubseteq}\right) / \sim} \omega(a, b) \cdot \#[(a, b)] \cdot \operatorname{Tr}\left(\gamma_{a b}^{2}\right) .
$$

Proof.

Proof.

Computation of $\mathrm{d}(n+4)$

(1) generate elements and intervals of \mathbb{D}_{n}
(2) compute equivalence classes $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, save one representative for each class, save the cardinality of each class
(3) for every equivalence class representative I of $\operatorname{Int}\left(\mathbb{D}_{n}\right) /=$, compute equivalence classes of $(I \times I \mid \sqsubset) / \sim$, save one representative and the cardinality
(4) run the computation according to the last theorem

Computation of $\mathrm{d}(n+4)$

(1) generate elements and intervals of \mathbb{D}_{n}
(2) compute equivalence classes $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, save one representative for each class, save the cardinality of each class
(3) for every equivalence class representative I of $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, compute equivalence classes of $\left(I \times\left. I\right|_{\sqsubseteq}\right) / \sim$, save one representative and the cardinality
(4) run the computation according to the last theorem

Computation of $\mathrm{d}(n+4)$

(1) generate elements and intervals of \mathbb{D}_{n}
(2) compute equivalence classes $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, save one representative for each class, save the cardinality of each class
(3) for every equivalence class representative I of $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, compute equivalence classes of $\left(I \times\left. I\right|_{\sqsubseteq}\right) / \sim$, save one representative and the cardinality
(4) run the computation according to the last theorem

Computation of $\mathrm{d}(n+4)$

(1) generate elements and intervals of \mathbb{D}_{n}
(2) compute equivalence classes $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, save one representative for each class, save the cardinality of each class
(3) for every equivalence class representative I of $\operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, compute equivalence classes of $\left(I \times\left. I\right|_{\sqsubseteq}\right) / \sim$, save one representative and the cardinality
(4) run the computation according to the last theorem

Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L}=(L, \leq)$
- join irreducibles $J(\mathbb{L})$ and meet irreducibles $M(\mathbb{L})$
- formal context $\mathbb{K}:=(J(\mathbb{L}), M(\mathbb{L}), R)$ with $R:=\leq\left.\right|_{J(\mathbb{L}) \times M(\mathbb{L})}$
- $\mathbb{K}^{d}:=\left(M, J, R^{d}\right)$ dual context to $\mathbb{K}=(J, M, R)$
- $\mathbb{K}_{1}=\left(J_{1}, M_{1}, R_{1}\right), \mathbb{K}_{2}=\left(J_{2}, M_{2}, R_{2}\right)$, context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$, with $j R_{1} m \Leftrightarrow \alpha(j) R_{2} \beta(m)$
- lattice isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism: $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$ exists
- lattice anti isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}^{d}$ exists

Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L}=(L, \leq)$
- join irreducibles $J(\mathbb{L})$ and meet irreducibles $M(\mathbb{L})$
- formal context $\mathbb{K}:=(J(\mathbb{L}), M(\mathbb{L}), R)$ with $R:=\leq\left.\right|_{J(\mathbb{L}) \times M(\mathbb{L})}$
- $\mathbb{K}^{d}:=\left(M, J, R^{d}\right)$ dual context to $\mathbb{K}=(J, M, R)$
- $\mathbb{K}_{1}=\left(J_{1}, M_{1}, R_{1}\right), \mathbb{K}_{2}=\left(J_{2}, M_{2}, R_{2}\right)$, context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$, with $j R_{1} m \Leftrightarrow \alpha(j) R_{2} \beta(m)$
- lattice isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism: $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$ exists
- lattice anti isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}^{d}$ exists

Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L}=(L, \leq)$
- join irreducibles $J(\mathbb{L})$ and meet irreducibles $M(\mathbb{L})$
- formal context $\mathbb{K}:=(J(\mathbb{L}), M(\mathbb{L}), R)$ with $R:=\leq\left.\right|_{J(\mathbb{L}) \times M(\mathbb{L})}$
- $\mathbb{K}^{d}:=\left(M, J, R^{d}\right)$ dual context to $\mathbb{K}=(J, M, R)$
- $\mathbb{K}_{1}=\left(J_{1}, M_{1}, R_{1}\right), \mathbb{K}_{2}=\left(J_{2}, M_{2}, R_{2}\right)$, context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$, with $j R_{1} m \Leftrightarrow \alpha(j) R_{2} \beta(m)$
- lattice isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism: $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}$ exists
- lattice anti isomorphism $\varphi: \mathbb{L}_{1} \rightarrow \mathbb{L}_{2}$ exists \Longleftrightarrow context isomorphism $(\alpha, \beta): \mathbb{K}_{1} \rightarrow \mathbb{K}_{2}^{d}$ exists

Formal Context \rightarrow Bipartite Graph

$$
\mathbb{K}^{\mathrm{s}}=\left(J^{\mathrm{s}}, M^{\mathrm{s}}, R^{\mathrm{s}}\right):=\mathbb{K} \dot{\cup} \mathbb{K}^{d}:=\left(J \dot{\cup} M, J \cup \dot{\cup} M, R \dot{\cup} R^{d}\right)
$$

Context (Anti) Isomorphism \rightarrow Graph Isomorphism

Equivalent Lattices

- given: $\mathcal{L}=\{\mathbb{L} \mid$ finite lattice $\mathbb{L}\}$
- task: compute \mathcal{L} / \equiv
- special case: $\operatorname{Int}(\mathbb{L})$ defines set of sublattices
- $\mathcal{K}=\{\mathbb{K} \mid$ formal context $\mathbb{K}\}$
- task: compute equivalence classes w.r.t. context (anti) isomorphisms
- $\mathcal{K}^{\mathbf{s}}=\left\{\mathbb{K}^{\mathbf{s}} \mid\right.$ symmetrization of formal context $\left.\mathbb{K}^{\mathrm{s}}\right\}$
- task: compute equivalence classes w.r.t. graph isomorphisms

Equivalent Lattices

- given: $\mathcal{L}=\{\mathbb{L} \mid$ finite lattice $\mathbb{L}\}$
- task: compute \mathcal{L} / \equiv
- special case: $\operatorname{Int}(\mathbb{L})$ defines set of sublattices
- $\mathcal{K}=\{\mathbb{K} \mid$ formal context $\mathbb{K}\}$
- task: compute equivalence classes w.r.t. context (anti) isomorphisms
- $\mathcal{K}^{\mathrm{s}}=\left\{\mathbb{K}^{\mathrm{s}} \mid\right.$ symmetrization of formal context $\left.\mathbb{K}^{\mathrm{s}}\right\}$
- task: compute equivalence classes w.r.t. graph isomorphisms

Equivalent Lattices

- given: $\mathcal{L}=\{\mathbb{L} \mid$ finite lattice $\mathbb{L}\}$
- task: compute \mathcal{L} / \equiv
- special case: $\operatorname{Int}(\mathbb{L})$ defines set of sublattices
- $\mathcal{K}=\{\mathbb{K} \mid$ formal context $\mathbb{K}\}$
- task: compute equivalence classes w.r.t. context (anti) isomorphisms
- $\mathcal{K}^{\mathrm{s}}=\left\{\mathbb{K}^{\mathrm{s}} \mid\right.$ symmetrization of formal context $\left.\mathbb{K}^{\mathrm{s}}\right\}$
- task: compute equivalence classes w.r.t. graph isomorphisms

Canonical Labeling / Graph Canonization

- canonical form $\operatorname{Canon}(\mathbb{G})$, of a graph \mathbb{G}, is a labeled graph that is isomorphic to \mathbb{G}
- $\mathbb{G}_{1} \cong \mathbb{G}_{2} \Longleftrightarrow \operatorname{Canon}\left(\mathbb{G}_{1}\right)=\operatorname{Canon}\left(\mathbb{G}_{2}\right)$
- complexity of determining isomorphism classes grows linearly with the number of graphs
- software nauty (No AUTomorphisms, Yes?), by Brendan McKay, can compute a canonical string of a given colored graph
- for example: $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3} \rightarrow$ ":DgXI@G ", ":DgWCgCb", ":DgXI@G "

Canonical Labeling / Graph Canonization

- canonical form Canon (\mathbb{G}), of a graph \mathbb{G}, is a labeled graph that is isomorphic to \mathbb{G}
- $\mathbb{G}_{1} \cong \mathbb{G}_{2} \Longleftrightarrow \operatorname{Canon}\left(\mathbb{G}_{1}\right)=\operatorname{Canon}\left(\mathbb{G}_{2}\right)$
- complexity of determining isomorphism classes grows linearly with the number of graphs
- software nauty (No AUTomorphisms, Yes?), by Brendan McKay, can compute a canonical string of a given colored graph
- for example: $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3} \rightarrow$ ":DgXI@G ", ":DgWCgCb", ":DgXI@G "

Algorithm to Compute Equivalent Intervals

Data: $\operatorname{Int}\left(\mathbb{D}_{\mathrm{m}}\right)$
Result: $\operatorname{Int}\left(\mathbb{D}_{\mathrm{m}}\right) / \equiv$
for $[x, y] \in \operatorname{Int}\left(\mathbb{D}_{\mathrm{m}}\right)$ do

- compute a formal context that represents $[x, y]$;
- transform the context to a colored bipartite graph;
- compute a canonical string with "nauty";
end
- count occurrences of each string;

Number of Equivalent Intervals

n	$\# \operatorname{Int}\left(\mathbb{D}_{\mathrm{m}}\right)$	$\# \operatorname{Int}\left(\mathbb{D}_{\mathrm{m}}\right) / \equiv$	reduction
2	20	6	30%
3	168	18	10%
4	7581	134	1.77%
5	7828354	9919	0.13%
6	2414682040998	175396936	0.0073%

Equivalent (a, b) Values from $I \times I$

- for every $[I] \in \operatorname{Int}\left(\mathbb{D}_{n}\right) / \equiv$, compute the the bipartite colored graph as before
- iterate over every $(a, b) \in(I \times I) \mid \sqsubseteq$
- extend the bipartite colored graph with data about a and b
- compute a canonical string with "nauty"
- count occurrences of each string

n	pairs treated	equivalence classes
2	56	33
3	1127	446
4	274409	80741
5	8646896880	4257682565

Largest interval of \mathbb{D}_{5} is $[0,4294967295]$. There, we get a reduction $57471561 \rightarrow 140736$, or 34 days to 2 hours on an A100 GPU.

Algorithm to Compute $\mathrm{d}(n+4)$

Data: $\operatorname{Int}\left(\mathbb{D}_{\mathrm{n}}\right) / \equiv$ and $\forall[I] \in \operatorname{Int}\left(\mathbb{D}_{\mathrm{n}}\right) / \equiv:\left(I \times\left. I\right|_{\underline{〔}}\right) / \sim$ Result: $\mathrm{d}(n+4)$
for $[I] \in \operatorname{Int}\left(\mathbb{D}_{\mathrm{n}}\right) / \equiv$ do for $[(a, b)] \in(I \times I \mid \sqsubseteq) / \sim$ do

- generate the matrices $\alpha_{a b}$ and $\beta_{a b}$;
- compute the matrix product $\gamma_{a b}=\alpha_{a b} \cdot \beta_{a b}$;
- compute the trace of $\gamma_{a b}^{2}$;
- multiply the trace with $\omega(a, b)$ and $\#[(a, b)]$;
end
- sum up each value from above;
- multiply the sum with $\#[I]$;
end

The Computation

- $\perp(\cdot)$ and $T(\cdot)$ are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation
- d(8) in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8 s on Intel Core i7-7920HQ single thread
- d(9) took 5311 A100 hours, or 27.6 days real time

The Computation

- $\perp(\cdot)$ and $T(\cdot)$ are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation
- d(8) in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8 s on Intel Core i7-7920HQ single thread
- d(9) took 5311 A100 hours, or 27.6 days real time

The Computation

- $\perp(\cdot)$ and $T(\cdot)$ are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation
- d(8) in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8 s on Intel Core i7-7920HQ single thread
- d(9) took 5311 A100 hours, or 27.6 days real time

The Computation

- $\perp(\cdot)$ and $T(\cdot)$ are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation
- $\mathrm{d}(8)$ in about 3 s on a $\mathrm{A} 10 / \mathrm{A} 100$, or 9 s on a Nvidia Quadro M2200, or 8 s on Intel Core i7-7920HQ single thread
- $\mathrm{d}(9)$ took 5311 A100 hours, or 27.6 days real time

Confirmation

Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of $\mathrm{D}(9)$ using FPGA Supercomputing.

It took 47000 FPGA hours, or about 3 month real time.

Confirmation

Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of $D(9)$ using FPGA Supercomputing.

$$
\mathrm{d}(n+2)=\sum_{a, b \in D_{n}} \perp(a) \cdot 2^{\# C_{a, b}} \cdot \top(b)
$$

It took 47000 FPGA hours, or about 3 month real time.

Thank you for your attention!

286386577668298411128469151667598498812366

