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® based on the preprint: A computation of the ninth Dedekind
number by C. Jakel, 3. April 2023

® 3 paper is currently in review
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Introduction

e fast growing integer sequence
® very difficult to compute
® introduced in 1897 by Richard Dedekind
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Introduction

e fast growing integer sequence
® very difficult to compute
® introduced in 1897 by Richard Dedekind

Dedekind numbers are the solution to a counting problem, that
determines...
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The Number of Monotone Boolean
Functions on n Variables

f:{0,1}" — {0,1}, monotone w.r.t.0 <1
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The Number of Monotone Boolean
Functions on n Variables

f:{0,1}" — {0,1}, monotone w.r.t. 0 <1

Example n = 2:
* f(z,y) =0, f(z,y) =1
* flz,y) ==z flz,y) =y
* flmy) =z Ay, flz,y)=2Vy

The monotonic Boolean functions are precisely those that can be
defined by combining the inputs using only the operators A and V.
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The Number of Antichains in the Powerset
Lattice with n Generators

® powerset lattice 2% := (2%, C), with #X =n
e collection of subsets ¥ C 2X:
VYo,reX¥: cZrtandT Lo
Example X = {z,y}:

0, {{z, 3}, {{=}}, {Huth Hah {u} ) {0}
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The Number of Antichains in the Powerset
Lattice with n Generators

® powerset lattice 2% := (2%, C), with #X =n
e collection of subsets ¥ C 2X:
VYo,reX¥: cZrtandT Lo

Example X = {z,y}:
0, {{z,u3}, {3}, Huth o, {93}, {0}

Antichains are elements of the space 22"
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The Number of Elements of the Free

Distributive Lattice with n Generators

Let D,, = (D(n), <) denote the free distributive lattice with n
generators.

zVy

Example with generators x and y:

TAY
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Dedekind’'s Problem

The determination of ID,,'s cardinality is known as Dedekind'’s
Problem.
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The determination of ID,,'s cardinality is known as Dedekind'’s
Problem.

Berman, J., Kéhler, P.: (1976):

“... probably the oldest unsolved problem in lattice theory.”
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Dedekind’'s Problem

The determination of ID,,'s cardinality is known as Dedekind'’s
Problem.

Berman, J., Kéhler, P.: (1976):

“... probably the oldest unsolved problem in lattice theory.”

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed
form, but it can only be applied to small values of n.
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Dedekind Numbers
Let d(n) := #D,, denote the n-th Dedekind number.

n d(n) Year

0 2

1 3

2 6 1897, Dedekind

3 20

4 168

) 7581 1940, Church

6 7828354 1946, Ward

7 2414682040998 1965, Church

8 56130437228687557907788 1991, Wiedemann

2023 : d(9) = 286386577668298411128469151667598498812366
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Shifting Theorem

e let 2" := (2", C) denote the powerset lattice with n generators
e it holds that I, = D"
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Shifting Theorem

e let 2" := (2", C) denote the powerset lattice with n generators
e it holds that I, = D"

Theorem
The Dedekind number d(n + k) is equal to the number of
monotone mappings from 2 into D,,.
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Generation and Numerical Representation

Corollary

There is a one to one correspondence of elements from Dy, 11 and
pairs (x,y) of elements x,y from D, such that x < y.

{0) oF

[ |

0 oF
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Generation and Numerical Representation
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Generation and Numerical Representation

11
1
— 01 —
0
00

The integer values define a linear order, denoted by C.
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Equivalent Lattices

e finite lattice L = (L, V,A, L, T) or L = (L, <)
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Equivalent Lattices

e finite lattice L = (L, V,A, L, T) or L = (L, <)
® v:L; — Ly is isomorphism & x <y < p(z) < p(y)
® p:L; — Ly is anti isomorphism :< z <y < ¢(y) < ¢(z)
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Equivalent Lattices

e finite lattice L = (L, V,A, L, T) or L = (L, <)
® v:L; — Ly is isomorphism & x <y < p(z) < p(y)
® p:L; — Ly is anti isomorphism :< z <y < ¢(y) < ¢(z)

Definition
Two lattices IL; and ILs are equivalent iff they are isomorphic
or anti isomorphic. We write [L; = ILs. It holds that = is an

equivalence relation.
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Equivalent Intervals

e fora,be L, a<b: interval [a,b] :=={x |z € L, a <x <b}
e set of all intervals Int(IL)
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Equivalent Intervals

for a,b e L, a <b: interval [a,b] :={z |z € L, a <z <b}
set of all intervals Int(IL)

I,J € Int(IL) are equivalent iff they are (anti) isomorphic
factorization Int(IL)/=
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15

Equivalent Intervals of Dy

{[0,01, [1,1], 13, 3], [5, 5], [7, 7], [15, 15]},
{[0,1], [1, 3], [1, 5], [3, 71, 5, 7], [7, 15]},
{[0,3],10,5], [3,15], [5, 15]},

{1,713,

{[0, 7], [1,15]},

{[0,15]}
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Notation

For I € Int(IL) and
every x € I, let:

Subscript I can be
omitted.
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. . <
Enumeration of D, 1, via 2! = D,,

d(n + 1) = # Int(D,)
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. . <
Enumeration of D, 1, via 2! = D,,

d(n + 1) = # Int(D,)

= >, #l

[[]€Int(Dy,)/=

17/43



. . <
Enumeration of D,, .9, via 22 = D,,

dn+2)= > L(aAb)-T(aVb)
a,beD(n)
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. . <
Enumeration of D,, .9, via 22 = D,,

dn+2)= Y #D*= > (#I)*-#]

I€Int(Dy,) [I1€nt(Dy)/=
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. . <
Enumeration of D, 44, via 2* — D,

d(n+4) =

X =

#1] - Z X, with:
[I€lnt(Dy,)/= a,b,c,d,e, fel

LanecAd)-T(bVeVd)
L(bAcAe)-T(aVeVe)
Llanenf)-T(bVeVf)
LOAAANf)-T(aVdVf).
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. . <
Enumeration of D, 44, via 2* — D,

Theorem
For I € Int(D,,) and a,b,c,d € I, we define matrices:

agp(c,d) == LaNeNnd)-T(bVceVad),
Bap(c,d) == L(bAeAd)-T(aVeVd),
Yab = Qab * Bab-

It holds that:

din+d)= > #U]- D Tr(va)-

[I€ent(Dy)/= a,bel
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>

[[]€lnt(Dy)/=

#[I] Z Z Z aab(c7 d)/Bab(C? e)aab(evf)ﬂab(dv f)

a,bel c,del e, fel
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Proof.

din+4) =
Z #[I] Z Z Z aab(c7 d)/Bab(Ca e)aab(ea f)ﬁab(da f)
[I1€Int(Dy)/= a,bel c,del e, fel

’Yab d 6 Zaab d C)/Bab(c 6) and ’Yab €, d Zaab /Bab f d)

cel ferl
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Proof.

din+4) =
Z #[I] Z Z Z aab(c7 d)/Bab(Ca e)aab(ea f)ﬁab(da f)
[I1€Int(Dy)/= a,bel c,del e, fel

’Yab d 6 Zaab d C)/Bab(c 6) and ’Yab €, d Zaab /Bab f d)

cel ferl

Z ’Yab d € fVab ¢, d nyab d d (’Yab)
d,ecl del
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Matrix Multiplication

standard algorithmic problem

a lot of specialized libraries

high performance on GPUs can be achieved

to compute d(5 + 4), maximal matrix dimension is 7581 x 7581
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Symmetry w.r.t. a and b

\( L{ancnd)

L(bAcAd)

() )=
(8
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Symmetry w.r.t. a and b

1, a=b

(a,b) e I xI|c: w(a,b) ::{ 9 aCh

26 /43



Symmetry w.r.t. a and b

1, a=b

(a,b) e I xI|c: w(a,b) ::{ 9 ach

Let ¢ : I — I be an (anti) isomorphism and (a,b), (a,b) € I x I |c:
(a,b) ~ (a,b) =

Jp: I — I, pla) =aand @(b) = b.
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. . <
Enumeration of D, 44, via 2* — D,

Theorem
For I € Int(D,,) and a,b,c,d € I, we define matrices:

agp(c,d) == LaNeNnd)-T(bVeVad),
Bap(c,d) == L(bAecAd)-T(aVeVd),

VYab = Qqap * Bab-

It holds that d(n +4) =

> #- > w(a,b) - #[(a,0)] - Tr(v3,).

[[]€nt(Dy)/= [(a,b)]e(IXI]2)/~
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Proof.

Z T(aVz)L(anz)

zel
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Proof.

Z T(aVz)L(anz)
zel

ZT (aVz))L(p(aA z))
zel
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Proof.

Z T(aVz)L(anz)

zel

> T(plaVz))Liplahz))
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Computation of d(n + 4)

@ generate elements and intervals of D,
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Computation of d(n + 4)

@ generate elements and intervals of D,

@® compute equivalence classes Int(D,,)/=, save one
representative for each class, save the cardinality of each class
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Computation of d(n + 4)

@ generate elements and intervals of D,

@® compute equivalence classes Int(D,,)/=, save one
representative for each class, save the cardinality of each class

© for every equivalence class representative I of Int(D,,)/=,

compute equivalence classes of (I x I |)/~, save one
representative and the cardinality
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Computation of d(n + 4)

@ generate elements and intervals of D,

@® compute equivalence classes Int(D,,)/=, save one
representative for each class, save the cardinality of each class

© for every equivalence class representative I of Int(D,,)/=,
compute equivalence classes of (I x I |)/~, save one
representative and the cardinality

@ run the computation according to the last theorem
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Lattice — Formal Context

® consider a finite lattice L = (L, <)
e join irreducibles J(IL) and meet irreducibles M (L)
® formal context K := (J(L), M (L), R) with R :=<|yw)xm(w)
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Lattice — Formal Context

® consider a finite lattice L = (L, <)
e join irreducibles J(IL) and meet irreducibles M (L)
® formal context K := (J(L), M (L), R) with R :=<|yw)xm(w)

e K:= (M, J, R?) dual context to K = (J, M, R)
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Lattice — Formal Context

® consider a finite lattice L = (L, <)
e join irreducibles J(IL) and meet irreducibles M (L)
® formal context K := (J(L), M (L), R) with R :=<|yw)xm(w)

e K¢:= (M, .J, R dual context to K = (.J, M, R)

e Ky = (J1, M1, Ry), Ko = (Jo, Ms, Ry), context isomorphism
(o, B) : Ky — Ky, with jRym < a(j)R23(m)

® |attice isomorphism ¢ : [L; — Ly exists <= context
isomorphism: («, 3) : K; — Ky exists

® |attice anti isomorphism ¢ : L1 — Ly exists <= context
isomorphism (a, ) : K; — K¢ exists
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Formal Context — Bipartite Graph

KS = (J%, M5, R®) := KUK? := (JUM, JUM, RUR?)
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Context (Anti) Isomorphism — Graph
Isomorphism
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Equivalent Lattices

e given: £ = {L | finite lattice L}
® task: compute L/=

¢ special case: Int(LL) defines set of sublattices
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Equivalent Lattices

given: £ = {L | finite lattice L}
task: compute £/=

special case: Int(L) defines set of sublattices

K = {K | formal context K}

task: compute equivalence classes w.r.t. context (anti)
isomorphisms
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Equivalent Lattices

given: £ = {L | finite lattice L}
task: compute £/=

special case: Int(L) defines set of sublattices

K = {K | formal context K}

task: compute equivalence classes w.r.t. context (anti)
isomorphisms

K5 = {KK® | symmetrization of formal context K°}

task: compute equivalence classes w.r.t. graph isomorphisms
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Canonical Labeling / Graph Canonization

e canonical form Canon(G), of a graph G, is a labeled graph
that is isomorphic to G

® G; = Gy <= Canon(G;) = Canon(G2)

® complexity of determining isomorphism classes grows linearly
with the number of graphs
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Canonical Labeling / Graph Canonization

canonical form Canon(G), of a graph G, is a labeled graph
that is isomorphic to G

G1 = Gy <= Canon(G;) = Canon(Go)

complexity of determining isomorphism classes grows linearly
with the number of graphs

software nauty (No AUTomorphisms, Yes?), by Brendan McKay,
can compute a canonical string of a given colored graph

for example: G1,Go, Gg — ":DgXIQG ", ":DgWCgCb",
":DgXIQG "
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Algorithm to Compute Equivalent Intervals

Data: Int(Dy)
Result: Int(Dy)/=

for [z,y] € Int(Dy) do
- compute a formal context that represents [z, y];

- transform the context to a colored bipartite graph;
- compute a canonical string with "nauty";

end
- count occurrences of each string;
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Number of Equivalent Intervals

#Int(Dy)  #Int(Dy)/=  reduction |

O ULk W NS

20 6 30%

168 18 10%
7581 134 1.77%
7828354 9919 0.13%

2414682040998 175396936  0.0073%
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Equivalent (a,b) Values from I x [

for every [I] € Int(D,,)/=, compute the the bipartite colored
graph as before

iterate over every (a,b) € (I x I) |
extend the bipartite colored graph with data about a and b
compute a canonical string with "nauty"

count occurrences of each string
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n pairs treated equivalence classes
2 56 33
3 1127 446
4 274409 80741
5 8646896880 4257682565

Largest interval of D5 is [0,4294967295]. There, we get a reduction
57471561 — 140736, or 34 days to 2 hours on an A100 GPU.
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Algorithm to Compute d(n + 4)

Data: Int(Dy)/= and V[I] € Int(Dy)/=: (I x I |c)/~
Result: d(n +4)
for [I] € Int(Dy)/= do
for [(a,b)] € (I x I |c)/~ do
- generate the matrices ayy, and By,
- compute the matrix product Y. = aap - Bab;
- compute the trace of 73{;;
- multiply the trace with w(a,b) and #[(a,b)];
end
- sum up each value from above;
- multiply the sum with #[I];
end
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The Computation

® 1(-) and T(-) are computed by the CPU host and transferred
to a GPU device
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The Computation

1(-) and T(-) are computed by the CPU host and transferred
to a GPU device

matrix generation, matrix product and trace computation are
done on a GPU device

Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used
to multiply a batch of matrices

sanity check GPU vs. CPU

estimating maximal values for matrix multiplication and trace
computation
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The Computation

1(-) and T(-) are computed by the CPU host and transferred
to a GPU device

matrix generation, matrix product and trace computation are
done on a GPU device

Nvidia CUDA's "cublasDgemmStridedBatched" kernel is used
to multiply a batch of matrices

sanity check GPU vs. CPU

estimating maximal values for matrix multiplication and trace
computation

d(8) in about 3s on a A10/A100, or 9s on a Nvidia Quadro
M2200, or 8s on Intel Core i7-7920HQ single thread

d(9) took 5311 A100 hours, or 27.6 days real time
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Confirmation

Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere,
Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of D(9) using FPGA Supercomputing.
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Confirmation

Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere,

Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of D(9) using FPGA Supercomputing.

dn+2)= > L(a)-2#C%t.T(b)
a,beDy,

It took 47000 FPGA hours, or about 3 month real time.
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Thank you for your attention!

286386577668298411128469151667598498812366
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