Breaking the Barrier: A Computation of the Ninth Dedekind Number

Christian Jäkel

Dresden University of Technology

ICFCA 2023
• based on the preprint: *A computation of the ninth Dedekind number* by C. Jäkel, 3. April 2023
• a paper is currently in review
Dedekind numbers are the solution to a counting problem, that determines...

- fast growing integer sequence
- very difficult to compute
- introduced in 1897 by Richard Dedekind
Introduction

- fast growing integer sequence
- very difficult to compute
- introduced in 1897 by Richard Dedekind

Dedekind numbers are the solution to a counting problem, that determines...
The Number of Monotone Boolean Functions on n Variables

$f : \{0, 1\}^n \rightarrow \{0, 1\}$, monotone w.r.t. $0 \leq 1$

Example $n = 2$:

- $f(x, y) = 0$, $f(x, y) = 1$
- $f(x, y) = x$, $f(x, y) = y$
- $f(x, y) = x \land y$, $f(x, y) = x \lor y$

The monotonic Boolean functions are precisely those that can be defined by combining the inputs using only the operators \land and \lor.
The Number of Monotone Boolean Functions on n Variables

\[f : \{0, 1\}^n \rightarrow \{0, 1\}, \text{ monotone w.r.t. } 0 \leq 1 \]

Example $n = 2$:

- $f(x, y) = 0, \ f(x, y) = 1$
- $f(x, y) = x, \ f(x, y) = y$
- $f(x, y) = x \land y, \ f(x, y) = x \lor y$

The monotonic Boolean functions are precisely those that can be defined by combining the inputs using only the operators \land and \lor.
The Number of Antichains in the Powerset Lattice with \(n \) Generators

- powerset lattice \(\mathcal{P}^X := (2^X, \subseteq) \), with \(\# X = n \)
- collection of subsets \(\Sigma \subseteq 2^X \):
 \[
 \forall \sigma, \tau \in \Sigma : \sigma \not\subseteq \tau \text{ and } \tau \not\subseteq \sigma
 \]

Example \(X = \{x, y\} \):

\[
\emptyset, \{\{x, y\}\}, \{\{x\}\}, \{\{y\}\}, \{\{x\}, \{y\}\}, \{\emptyset\}
\]

Antichains are elements of the space \(\mathcal{P}^{2^X} \).
The Number of Antichains in the Powerset Lattice with \(n \) Generators

- powerset lattice \(\mathcal{P}^X := (\mathcal{P}^X, \subseteq) \), with \(\#X = n \)
- collection of subsets \(\Sigma \subseteq \mathcal{P}^X \):
 \[
 \forall \sigma, \tau \in \Sigma : \sigma \nsubseteq \tau \text{ and } \tau \nsubseteq \sigma
 \]

Example \(X = \{x, y\} \):

\[
\emptyset, \{\{x, y\}\}, \{\{x\}\}, \{\{y\}\}, \{\{x\}, \{y\}\}, \{\emptyset\}
\]

Antichains are elements of the space \(\mathcal{P}^{\mathcal{P}^X} \).
The Number of Elements of the Free Distributive Lattice with \(n \) Generators

Let \(\mathbb{D}_n = (D(n), \leq) \) denote the free distributive lattice with \(n \) generators.

Example with generators \(x \) and \(y \):

![Diagram of a distributive lattice with generators \(x \) and \(y \)]
Dedekind’s Problem

The determination of \mathbb{D}_n’s cardinality is known as *Dedekind’s Problem*.

Berman, J., Köhler, P.: (1976):

“... probably the oldest unsolved problem in lattice theory.”

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed form, but it can only be applied to small values of n.
Dedekind’s Problem

The determination of \mathbb{D}_n’s cardinality is known as Dedekind’s Problem.

Berman, J., Köhler, P.: (1976):

“... probably the oldest unsolved problem in lattice theory.”

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed form, but it can only be applied to small values of n.
Dedekind’s Problem

The determination of \mathbb{D}_n’s cardinality is known as Dedekind’s Problem.

Berman, J., Köhler, P.: (1976):

“... probably the oldest unsolved problem in lattice theory.”

Kisielewicz Andrzej (1988):

Provided an arithmetic formula for the Dedekind numbers in closed form, but it can only be applied to small values of n.
Dedekind Numbers

Let $d(n) := \#D_n$ denote the n-th Dedekind number.

<table>
<thead>
<tr>
<th>n</th>
<th>$d(n)$</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1897, Dedekind</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1940, Church</td>
</tr>
<tr>
<td>4</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7581</td>
<td>1946, Ward</td>
</tr>
<tr>
<td>6</td>
<td>7828354</td>
<td>1965, Church</td>
</tr>
<tr>
<td>7</td>
<td>2414682040998</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>56130437228687557907788</td>
<td>1991, Wiedemann</td>
</tr>
</tbody>
</table>

2023: $d(9) = 286386577668298411128469151667598498812366$
Shifting Theorem

• let $2^n := (2^n, \subseteq)$ denote the powerset lattice with n generators
• it holds that $D_{n+k} \cong D_{2^k}$

Theorem

The Dedekind number $d(n + k)$ is equal to the number of monotone mappings from 2^k into D_n.
Shifting Theorem

• let \(2^n := (2^n, \subseteq)\) denote the powerset lattice with \(n\) generators
• it holds that \(D_{n+k} \cong D_{2^k}\)

Theorem

The Dedekind number \(d(n + k)\) is equal to the number of monotone mappings from \(2^k\) into \(D_n\).
Corollary

There is a one to one correspondence of elements from \mathbb{D}_{n+1} and pairs (x, y) of elements x, y from \mathbb{D}_n, such that $x \leq y$.

\[
\begin{array}{c}
\{0\} \\
\emptyset \\
x \\
y
\end{array}
\]
The integer values define a linear order, denoted by \sqsubseteq.
The integer values define a linear order, denoted by \sqsubseteq.

The image shows a diagram with nodes labeled with binary numbers, illustrating the generation and numerical representation. Each node represents a digit in a sequence, and the arrows indicate the order or transformation between these numbers. The diagram helps to visualize how the integers are ordered and how they can be represented numerically.
Equivalent Lattices

- finite lattice $\mathbb{L} = (L, \lor, \land, \bot, \top)$ or $\mathbb{L} = (L, \leq)$
- $\varphi : \mathbb{L}_1 \to \mathbb{L}_2$ is isomorphism $: \iff x \leq y \iff \varphi(x) \leq \varphi(y)$
- $\varphi : \mathbb{L}_1 \to \mathbb{L}_2$ is anti isomorphism $: \iff x \leq y \iff \varphi(y) \leq \varphi(x)$

Definition
Two lattices \mathbb{L}_1 and \mathbb{L}_2 are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{L}_1 \equiv \mathbb{L}_2$. It holds that \equiv is an equivalence relation.
Equivalent Lattices

- finite lattice $\mathbb{I} = (L, \vee, \wedge, \bot, \top)$ or $\mathbb{I} = (L, \leq)$
- $\varphi : \mathbb{I}_1 \rightarrow \mathbb{I}_2$ is isomorphism $: \iff x \leq y \iff \varphi(x) \leq \varphi(y)$
- $\varphi : \mathbb{I}_1 \rightarrow \mathbb{I}_2$ is anti isomorphism $: \iff x \leq y \iff \varphi(y) \leq \varphi(x)$

Definition
Two lattices \mathbb{I}_1 and \mathbb{I}_2 are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{I}_1 \equiv \mathbb{I}_2$. It holds that \equiv is an equivalence relation.
Equivalent Lattices

• finite lattice $\mathbb{L} = (L, \lor, \land, \bot, \top)$ or $\mathbb{L} = (L, \leq)$

• $\varphi : \mathbb{L}_1 \to \mathbb{L}_2$ is isomorphism $\iff x \leq y \iff \varphi(x) \leq \varphi(y)$

• $\varphi : \mathbb{L}_1 \to \mathbb{L}_2$ is anti isomorphism $\iff x \leq y \iff \varphi(y) \leq \varphi(x)$

Definition
Two lattices \mathbb{L}_1 and \mathbb{L}_2 are equivalent iff they are isomorphic or anti isomorphic. We write $\mathbb{L}_1 \equiv \mathbb{L}_2$. It holds that \equiv is an equivalence relation.
Equivalent Intervals

- for $a, b \in L$, $a \leq b$: interval $[a, b] := \{ x \mid x \in L, a \leq x \leq b \}$
- set of all intervals $\text{Int}(\mathbb{L})$
- $I, J \in \text{Int}(\mathbb{L})$ are equivalent iff they are (anti) isomorphic
- factorization $\text{Int}(\mathbb{L})/\equiv$
Equivalent Intervals

- for $a, b \in L, a \leq b$: interval $[a, b] := \{x \mid x \in L, a \leq x \leq b\}$
- set of all intervals $\text{Int}(\mathbb{L})$
- $I, J \in \text{Int}(\mathbb{L})$ are equivalent iff they are (anti) isomorphic
- factorization $\text{Int}(\mathbb{L})/\equiv$
Equivalent Intervals of \mathbb{D}_2

\[
\{[0, 0], [1, 1], [3, 3], [5, 5], [7, 7], [15, 15]\}, \\
\{[0, 1], [1, 3], [1, 5], [3, 7], [5, 7], [7, 15]\}, \\
\{[0, 3], [0, 5], [3, 15], [5, 15]\}, \\
\{[1, 7]\}, \\
\{[0, 7], [1, 15]\}, \\
\{[0, 15]\}
\]
For $I \in \text{Int}(\mathbb{L})$ and every $x \in I$, let:

$$\bot_I(x) := \#[\bot_I, x],$$

$$\top_I(x) := \#[x, \top_I].$$

Subscript I can be omitted.
Enumeration of D_{n+1}, via $\mathcal{P}^1 \xrightarrow{\leq} D_n$

$$d(n + 1) = \# \text{Int}(D_n)$$

$$= \sum_{[I] \in \text{Int}(D_n) / \equiv} \#[I]$$
Enumeration of \mathbb{D}_{n+1}, via $\mathcal{P}^1 \xrightarrow{\leq} \mathbb{D}_n$

\[
d(n + 1) = \# \text{Int}(\mathbb{D}_n)
= \sum_{[I] \in \text{Int}(\mathbb{D}_n)/\equiv} \#[I]
\]
Enumeration of \mathbb{D}_{n+2}, via $2^2 \xrightarrow{\leq} \mathbb{D}_n$

$$d(n+2) = \sum_{a,b \in \mathbb{D}(n)} \bot (a \land b) \cdot \top (a \lor b)$$
Enumeration of \mathbb{D}_{n+2}, via $\mathbb{P}^2 \xrightarrow{\leq} \mathbb{D}_n$

\[d(n + 2) = \sum_{I \in \text{Int}(\mathbb{D}_n)} (#I)^2 = \sum_{[I] \in \text{Int}(\mathbb{D}_n)/\equiv} (#I)^2 \cdot \#[I] \]
Enumeration of \mathbb{D}_{n+4}, via $\mathcal{P}^4 \xrightarrow{\leq} \mathbb{D}_n$

$$d(n + 4) = \sum_{[I] \in \text{Int}(\mathbb{D}_n)/\equiv} \#[I] \cdot \sum_{a,b,c,d,e,f \in I} X, \text{ with:}$$

$$X = \bot (a \land c \land d) \land \top (b \lor c \lor d) \land \\
\cdot \bot (b \land c \land e) \land \top (a \lor c \lor e) \land \\
\cdot \bot (a \land e \land f) \land \top (b \lor e \lor f) \land \\
\cdot \bot (b \land d \land f) \land \top (a \lor d \lor f).$$
Enumeration of \mathbb{D}_{n+4}, via $\mathcal{P}^4 \xrightarrow{\leq} \mathbb{D}_n$

Theorem

For $I \in \text{Int}(\mathbb{D}_n)$ and $a, b, c, d \in I$, we define matrices:

\[
\alpha_{ab}(c, d) := \bot(a \land c \land d) \cdot \top(b \lor c \lor d), \\
\beta_{ab}(c, d) := \bot(b \land c \land d) \cdot \top(a \lor c \lor d), \\
\gamma_{ab} := \alpha_{ab} \cdot \beta_{ab}.
\]

It holds that:

\[
d(n + 4) = \sum_{[I] \in \text{Int}(\mathbb{D}_n)/\equiv} \#[I] \cdot \sum_{a, b \in I} \text{Tr}(\gamma_{ab}^2).
\]
Proof.

\[d(n + 4) = \]

\[\sum_{[I] \in \text{Int}(\mathbb{D}_n) / \equiv} \#[I] \cdot \sum_{a,b \in I} \sum_{c,d \in I} \sum_{e,f \in I} \alpha_{ab}(c, d) \beta_{ab}(c, e) \alpha_{ab}(e, f) \beta_{ab}(d, f) \]

\[\gamma_{ab}(d, e) = \sum_{c \in I} \alpha_{ab}(d, c) \beta_{ab}(c, e) \] and \[\gamma_{ab}(e, d) = \sum_{f \in I} \alpha_{ab}(e, f) \beta_{ab}(f, d) \]

\[\sum_{d,e \in I} \gamma_{ab}(d, e) \gamma_{ab}(e, d) = \sum_{d \in I} \gamma_{ab}^2(d, d) = \text{Tr}(\gamma_{ab}^2) \]
Proof.

\[d(n + 4) = \sum_{[I] \in \text{Int}(\mathbb{D}_n) / \equiv} \# [I] \cdot \sum_{a, b \in I} \sum_{c, d \in I} \sum_{e, f \in I} \alpha_{ab}(c, d) \beta_{ab}(c, e) \alpha_{ab}(e, f) \beta_{ab}(d, f) \]

\[\gamma_{ab}(d, e) = \sum_{c \in I} \alpha_{ab}(d, c) \beta_{ab}(c, e) \text{ and } \gamma_{ab}(e, d) = \sum_{f \in I} \alpha_{ab}(e, f) \beta_{ab}(f, d) \]

\[\sum_{d, e \in I} \gamma_{ab}(d, e) \gamma_{ab}(e, d) = \sum_{d \in I} \gamma_{ab}^2(d, d) = \text{Tr}(\gamma_{ab}^2) \]
Proof.

\[d(n + 4) = \]

\[\sum_{[I] \in \text{Int} \left(\mathbb{D}_n \right) / \equiv} \# [I] \cdot \sum_{a, b \in I} \sum_{c, d \in I} \sum_{e, f \in I} \alpha_{ab}(c, d) \beta_{ab}(c, e) \alpha_{ab}(e, f) \beta_{ab}(d, f) \]

\[\gamma_{ab}(d, e) = \sum_{c \in I} \alpha_{ab}(d, c) \beta_{ab}(c, e) \text{ and } \gamma_{ab}(e, d) = \sum_{f \in I} \alpha_{ab}(e, f) \beta_{ab}(f, d) \]

\[\sum_{d, e \in I} \gamma_{ab}(d, e) \gamma_{ab}(e, d) = \sum_{d \in I} \gamma_{ab}^2(d, d) = \text{Tr} \left(\gamma_{ab}^2 \right) \]
Matrix Multiplication

- standard algorithmic problem
- a lot of specialized libraries
- high performance on GPUs can be achieved
- to compute $d(5 + 4)$, maximal matrix dimension is 7581×7581
Symmetry w.r.t. a and b

I: $a \vdash b$

$\top (a \lor c \lor d)$
$\top (b \lor c \lor d)$

$\bot (a \land c \land d)$
$\bot (b \land c \land d)$
Symmetry w.r.t. a and b

\[(a, b) \in I \times I \mid \sqsubseteq: \quad \omega(a, b) := \begin{cases} 1, & a = b \\ 2, & a \sqsubseteq b \end{cases}\]

Let $\varphi : I \to I$ be an (anti) isomorphism and $(a, b), (\tilde{a}, \tilde{b}) \in I \times I \mid \sqsubseteq$:

\[(a, b) \sim (\tilde{a}, \tilde{b}) : \iff \exists \varphi : I \to I, \varphi(a) = \tilde{a} \text{ and } \varphi(b) = \tilde{b}.\]
Symmetry w.r.t. a and b

$$(a, b) \in I \times I \mid \subseteq : \quad \omega(a, b) := \begin{cases} 1, & a = b \\ 2, & a \sqsubseteq b \end{cases}$$

Let $\varphi : I \to I$ be an (anti) isomorphism and $(a, b), (\tilde{a}, \tilde{b}) \in I \times I \mid \subseteq$:

$$(a, b) \sim (\tilde{a}, \tilde{b}) : \iff \exists \varphi : I \to I, \varphi(a) = \tilde{a} \text{ and } \varphi(b) = \tilde{b}.$$
Enumeration of \(\mathbb{D}_{n+4} \), via \(2^4 \xrightarrow{\leq} \mathbb{D}_n \)

Theorem

For \(I \in \text{Int}(\mathbb{D}_n) \) and \(a, b, c, d \in I \), we define matrices:

\[
\alpha_{ab}(c, d) := \bot (a \land c \land d) \cdot \top (b \lor c \lor d),
\]
\[
\beta_{ab}(c, d) := \bot (b \land c \land d) \cdot \top (a \lor c \lor d),
\]
\[
\gamma_{ab} := \alpha_{ab} \cdot \beta_{ab}.
\]

It holds that \(d(n + 4) = \)

\[
\sum_{[I] \in \text{Int}(\mathbb{D}_n)/\equiv} \# [I] \cdot \sum_{[(a,b)] \in (I \times I|\subseteq)/\sim} \omega(a, b) \cdot \# [(a, b)] \cdot \text{Tr}(\gamma_{ab}^2).
\]
Proof.

\[
\sum_{z \in I} T(a \lor z) \bot (a \land z)
\]

\[
\sum_{z \in I} T(\varphi(a \lor z)) \bot (\varphi(a \land z))
\]

\[
\sum_{\tilde{z} \in I} T(\tilde{a} \lor \tilde{z}) \bot (\tilde{a} \land \tilde{z})
\]
Proof.

\[
\sum_{z \in I} \top(a \vee z) \perp (a \land z)
\]

\[
\sum_{z \in I} \top(\varphi(a \vee z)) \perp (\varphi(a \land z))
\]

\[
\sum_{\tilde{z} \in I} \top(\tilde{a} \vee \tilde{z}) \perp (\tilde{a} \land \tilde{z})
\]
Proof.

\[
\sum_{z \in I} \top(a \lor z) \bot (a \land z)
\]

\[
\sum_{z \in I} \top(\phi(a \lor z)) \bot (\phi(a \land z))
\]

\[
\sum_{\tilde{z} \in I} \top(\tilde{a} \lor \tilde{z}) \bot (\tilde{a} \land \tilde{z})
\]
Computation of $d(n + 4)$

1. generate elements and intervals of \mathbb{D}_n
2. compute equivalence classes $\text{Int}(\mathbb{D}_n)/\equiv$, save one representative for each class, save the cardinality of each class
3. for every equivalence class representative I of $\text{Int}(\mathbb{D}_n)/\equiv$, compute equivalence classes of $(I \times I |\subseteq)/\sim$, save one representative and the cardinality
4. run the computation according to the last theorem
Computation of $d(n + 4)$

1. generate elements and intervals of \mathbb{D}_n
2. compute equivalence classes $\text{Int}(\mathbb{D}_n)/\equiv$, save one representative for each class, save the cardinality of each class
3. for every equivalence class representative I of $\text{Int}(\mathbb{D}_n)/\equiv$, compute equivalence classes of $(I \times I |\equiv)/\sim$, save one representative and the cardinality
4. run the computation according to the last theorem
Computation of $d(n + 4)$

1. generate elements and intervals of \mathbb{D}_n
2. compute equivalence classes $\text{Int}(\mathbb{D}_n)/\equiv$, save one representative for each class, save the cardinality of each class
3. for every equivalence class representative I of $\text{Int}(\mathbb{D}_n)/\equiv$, compute equivalence classes of $(I \times I |_{\equiv})/\sim$, save one representative and the cardinality
4. run the computation according to the last theorem
Computation of $d(n + 4)$

1. generate elements and intervals of \mathbb{D}_n
2. compute equivalence classes $\text{Int}(\mathbb{D}_n)/\equiv$, save one representative for each class, save the cardinality of each class
3. for every equivalence class representative I of $\text{Int}(\mathbb{D}_n)/\equiv$, compute equivalence classes of $(I \times I |_{\equiv})/\sim$, save one representative and the cardinality
4. run the computation according to the last theorem
Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L} = (L, \leq)$
- *join irreducibles* $J(\mathbb{L})$ and *meet irreducibles* $M(\mathbb{L})$
- formal context $\mathbb{K} := (J(\mathbb{L}), M(\mathbb{L}), R)$ with $R := \leq | J(\mathbb{L}) \times M(\mathbb{L})$

- $\mathbb{K}^d := (M, J, R^d)$ dual context to $\mathbb{K} = (J, M, R)$
- $\mathbb{K}_1 = (J_1, M_1, R_1), \mathbb{K}_2 = (J_2, M_2, R_2)$, context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2$, with $j R_1 m \iff \alpha(j) R_2 \beta(m)$
- lattice isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism: $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2$ exists
- lattice anti isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2^d$ exists
Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L} = (L, \leq)$
- *join irreducibles* $J(\mathbb{L})$ and *meet irreducibles* $M(\mathbb{L})$
- formal context $\mathbb{K} := (J(\mathbb{L}), M(\mathbb{L}), R)$ with $R := \leq | J(\mathbb{L}) \times M(\mathbb{L})$

- $\mathbb{K}^d := (M, J, R^d)$ dual context to $\mathbb{K} = (J, M, R)$
- $\mathbb{K}_1 = (J_1, M_1, R_1), \mathbb{K}_2 = (J_2, M_2, R_2),$ context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2,$ with $j R_1 m \Leftrightarrow \alpha(j) R_2 \beta(m)$
- lattice isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism: $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2$ exists
- lattice anti isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2^d$ exists
Lattice \rightarrow Formal Context

- consider a finite lattice $\mathbb{L} = (L, \leq)$
- join irreducibles $J(\mathbb{L})$ and meet irreducibles $M(\mathbb{L})$
- formal context $\mathbb{K} := (J(\mathbb{L}), M(\mathbb{L}), R)$ with $R := \leq|_{J(\mathbb{L}) \times M(\mathbb{L})}$

- $\mathbb{K}^d := (M, J, R^d)$ dual context to $\mathbb{K} = (J, M, R)$
- $\mathbb{K}_1 = (J_1, M_1, R_1), \mathbb{K}_2 = (J_2, M_2, R_2)$, context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2$, with $j R_1 m \Leftrightarrow \alpha(j) R_2 \beta(m)$
- lattice isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism: $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2$ exists
- lattice anti isomorphism $\varphi : \mathbb{L}_1 \rightarrow \mathbb{L}_2$ exists \iff context isomorphism $(\alpha, \beta) : \mathbb{K}_1 \rightarrow \mathbb{K}_2^d$ exists
Formal Context \rightarrow Bipartite Graph

$$K^s = (J^s, M^s, R^s) := K \cup K^d := (J \cup M, J \cup M, R \cup R^d)$$
Context (Anti) Isomorphism \rightarrow Graph Isomorphism
Equivalent Lattices

- given: $\mathcal{L} = \{ L \mid \text{finite lattice } L \}$
- task: compute \mathcal{L}/\equiv
- special case: $\text{Int}(L)$ defines set of sublattices

- $\mathcal{K} = \{ K \mid \text{formal context } K \}$
- task: compute equivalence classes w.r.t. context (anti) isomorphisms

- $\mathcal{K}^s = \{ K^s \mid \text{symmetrization of formal context } K^s \}$
- task: compute equivalence classes w.r.t. graph isomorphisms
Equivalent Lattices

• given: $\mathcal{L} = \{ \mathbb{L} \mid \text{finite lattice } \mathbb{L} \}$
• task: compute \mathcal{L}/\equiv
• special case: $\text{Int}(\mathbb{L})$ defines set of sublattices

• $\mathcal{K} = \{ \mathbb{K} \mid \text{formal context } \mathbb{K} \}$
• task: compute equivalence classes w.r.t. context (anti) isomorphisms

• $\mathcal{K}^s = \{ \mathbb{K}^s \mid \text{symmetrization of formal context } \mathbb{K}^s \}$
• task: compute equivalence classes w.r.t. graph isomorphisms
Equivalent Lattices

- given: $\mathcal{L} = \{\mathbb{L} \mid \text{finite lattice } \mathbb{L}\}$
- task: compute \mathcal{L}/\equiv
- special case: $\text{Int}(\mathbb{L})$ defines set of sublattices

- $\mathcal{K} = \{\mathbb{K} \mid \text{formal context } \mathbb{K}\}$
- task: compute equivalence classes w.r.t. context (anti) isomorphisms

- $\mathcal{K}^s = \{\mathbb{K}^s \mid \text{symmetrization of formal context } \mathbb{K}^s\}$
- task: compute equivalence classes w.r.t. graph isomorphisms
• canonical form $\text{Canon}(G)$, of a graph G, is a labeled graph that is isomorphic to G

• $G_1 \cong G_2 \iff \text{Canon}(G_1) = \text{Canon}(G_2)$

• complexity of determining isomorphism classes grows linearly with the number of graphs

• software nauty (No AUTomorphisms, Yes?), by Brendan McKay, can compute a canonical string of a given colored graph

• for example: $G_1, G_2, G_3 \rightarrow ":\text{DgXI}@G ", ":\text{DgWCgCb}"$, $":\text{DgXI}@G "$
Canonical Labeling / Graph Canonization

- canonical form $\text{Canon}(G)$, of a graph G, is a labeled graph that is isomorphic to G
- $G_1 \cong G_2 \iff \text{Canon}(G_1) = \text{Canon}(G_2)$
- complexity of determining isomorphism classes grows linearly with the number of graphs

- software nauty (No AUTomorphisms, Yes?), by Brendan McKay, can compute a canonical string of a given colored graph
- for example: $G_1, G_2, G_3 \rightarrow ":\text{DgXI}@G", ":\text{DgWCgCb}, ":\text{DgXI}@G "$
Algorithm to Compute Equivalent Intervals

Data: \(\text{Int}(\mathbb{D}_n) \)

Result: \(\text{Int}(\mathbb{D}_n)/\equiv \)

for \([x, y] \in \text{Int}(\mathbb{D}_n)\) **do**

- compute a formal context that represents \([x, y]\);
- transform the context to a colored bipartite graph;
- compute a canonical string with "nauty";

end

- count occurrences of each string;
Number of Equivalent Intervals

<table>
<thead>
<tr>
<th>n</th>
<th>$# \text{Int}(\mathbb{D}_n)$</th>
<th>$# \text{Int}(\mathbb{D}_n)/\equiv$</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>18</td>
<td>10%</td>
</tr>
<tr>
<td>4</td>
<td>7581</td>
<td>134</td>
<td>1.77%</td>
</tr>
<tr>
<td>5</td>
<td>7828354</td>
<td>9919</td>
<td>0.13%</td>
</tr>
<tr>
<td>6</td>
<td>2414682040998</td>
<td>175396936</td>
<td>0.0073%</td>
</tr>
</tbody>
</table>
Equivalent \((a, b)\) Values from \(I \times I\)

- for every \([I] \in \text{Int}(\mathbb{D}_n)/\equiv\), compute the the bipartite colored graph as before
- iterate over every \((a, b) \in (I \times I) \mid \subseteq\)
- extend the bipartite colored graph with data about \(a\) and \(b\)
- compute a canonical string with "nauty"
- count occurrences of each string
Largest interval of \mathbb{D}_5 is $[0, 4294967295]$. There, we get a reduction $57471561 \rightarrow 140736$, or 34 days to 2 hours on an A100 GPU.

<table>
<thead>
<tr>
<th>n</th>
<th>pairs treated</th>
<th>equivalence classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>1127</td>
<td>446</td>
</tr>
<tr>
<td>4</td>
<td>274409</td>
<td>80741</td>
</tr>
<tr>
<td>5</td>
<td>8646896880</td>
<td>4257682565</td>
</tr>
</tbody>
</table>
Algorithm to Compute $d(n + 4)$

Data: $\text{Int}(\mathcal{D}_n)/\equiv$ and $\forall[I] \in \text{Int}(\mathcal{D}_n)/\equiv : (I \times I |\subseteq)/\sim$

Result: $d(n + 4)$

for $[I] \in \text{Int}(\mathcal{D}_n)/\equiv$ do
 for $[(a, b)] \in (I \times I |\subseteq)/\sim$ do
 - generate the matrices α_{ab} and β_{ab};
 - compute the matrix product $\gamma_{ab} = \alpha_{ab} \cdot \beta_{ab}$;
 - compute the trace of γ_{ab}^2;
 - multiply the trace with $\omega(a, b)$ and $\#[a, b]$;
 end
 - sum up each value from above;
 - multiply the sum with $\#[I]$;
end
The Computation

- $\bot(\cdot)$ and $\top(\cdot)$ are computed by the CPU host and transferred to a GPU device.
- Matrix generation, matrix product, and trace computation are done on a GPU device.
- Nvidia CUDA’s "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices.
- Sanity check GPU vs. CPU.
- Estimating maximal values for matrix multiplication and trace computation.

- $d(8)$ in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8s on Intel Core i7-7920HQ single thread.
- $d(9)$ took 5311 A100 hours, or 27.6 days real time.
The Computation

• $\bot(\cdot)$ and $\top(\cdot)$ are computed by the CPU host and transferred to a GPU device

• matrix generation, matrix product and trace computation are done on a GPU device

• Nvidia CUDA’s "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices

• sanity check GPU vs. CPU

• estimating maximal values for matrix multiplication and trace computation

• $d(8)$ in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8s on Intel Core i7-7920HQ single thread

• $d(9)$ took 5311 A100 hours, or 27.6 days real time
The Computation

- $\bot(\cdot)$ and $\top(\cdot)$ are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA’s "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation

- $d(8)$ in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8s on Intel Core i7-7920HQ single thread
- $d(9)$ took 5311 A100 hours, or 27.6 days real time
The Computation

- \(\bot(\cdot) \) and \(\top(\cdot) \) are computed by the CPU host and transferred to a GPU device
- matrix generation, matrix product and trace computation are done on a GPU device
- Nvidia CUDA’s "cublasDgemmStridedBatched" kernel is used to multiply a batch of matrices
- sanity check GPU vs. CPU
- estimating maximal values for matrix multiplication and trace computation

- \(d(8) \) in about 3s on a A10/A100, or 9s on a Nvidia Quadro M2200, or 8s on Intel Core i7-7920HQ single thread
- \(d(9) \) took 5311 A100 hours, or 27.6 days real time
Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of D(9) using FPGA Supercomputing.

$$d(n + 2) = \sum_{a,b\in D_n} \perp(a) \cdot 2^{\#C_{a,b}} \cdot \top(b)$$

It took 47000 FPGA hours, or about 3 month real time.
Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass and Christian Plessl:

A computation of D(9) using FPGA Supercomputing.

\[d(n + 2) = \sum_{a,b \in D_n} \perp(a) \cdot 2^\#C_{a,b} \cdot \top(b) \]

It took 47000 FPGA hours, or about 3 month real time.
Thank you for your attention!

28638657766829841111284691516675984988812366