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Abstract

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures
called folksonomies. Unlike ontologies, shared conceptualisations are not formalised, but rather implicit. We present a new data
mining task, the mining of all frequent tri-concepts, together with an efficient algorithm, for discovering these implicit shared
conceptualisations. Our approach extends the data mining task of discovering all closed itemsets to three-dimensional data
structures to allow for mining folksonomies. We provide a formal definition of the problem, and present an efficient algorithm
for its solution. Finally, we show the applicability of our approach on three large real-world examples.
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1. Introduction

Social resource sharing systems on the web, such
as the shared photo gallery Flickr 1 or the bookmark-
ing system del.icio.us, 2 have acquired large numbers
of users within a few years. Flickr is known to have
more than 1.5 million users, 3 while del.icio.us has cel-
ebrated crossing the 1 million users threshold in 2006. 4

The reason for their immediate success is the fact that

Email addresses: jaeschke@cs.uni-kassel.de (Robert
Jäschke), hotho@cs.uni-kassel.de (Andreas Hotho),
schmitz@cs.uni-kassel.de (Christoph Schmitz),
bernhard.ganter@tu-dresden.de (Bernhard Ganter),
stumme@cs.uni-kassel.de (Gerd Stumme).
1 http://www.flickr.com
2 http://del.icio.us
3 http://money.cnn.com/magazines/business2/business2 archive/
2005/12/01/8364623/
4 http://blog.del.icio.us/blog/2006/09/million.html

no specific skills are needed for participating, and that
these tools yield immediate benefit for each individ-
ual user (e.g. organizing ones bookmarks in a browser-
independent, persistent fashion) without too much over-
head.

The core data structure of a social resource sharing
system is a folksonomy. It consists of assignments of
arbitrary keywords – called ’tags’ – to resources by
users. Folksonomies are thus a lightweight knowledge
representation for sharing knowledge on the web.

1.1. Discovering shared conceptualisations

Unlike ontologies, folksonomies do not suffer from
the knowledge acquisition bottleneck, as the significant
provision of content by many people shows. On the
other hand, folksonomies – unlike ontologies [29] – do
not explicitly state shared conceptualisations, nor do
they force users to use the same tags. However, the us-
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age of tags of users with similar interests tends to con-
verge to a shared vocabulary. Our intention is to dis-
cover these shared conceptualisations that are hidden in
a folksonomy. To this end, we present in this paper an al-
gorithm, TRIAS, for discovering subsets of folksonomy
users who implicitly agree (on subsets of resources) on
a common conceptualization.

Our algorithm will return a tri-ordered 5 set of triples,
where each triple (A,B, C) consists of a set A of users,
a set B of tags, and a set C of resources. These triples
– called tri-concepts in the sequel – have the property
that each user in A has tagged each resource in C with
all tags from B, and that none of these sets can be ex-
tended without shrinking one of the other two dimen-
sions. Each retrieved triple indicates thus a set A of
users who (implicitly) share a conceptualisation, where
the set B of tags is the intension of the concept, and
the set C of resources is its extension. We can addi-
tionally impose minimum support constraints on each
of the three dimensions ‘users’, ‘tags’, and ‘resources’,
to retrieve the most significant shared concepts only.

1.2. The problem of closed itemset mining in triadic
data

From a data mining perspective, the discovery of
shared conceptualisations opens a new research field
which may prove interesting also outside the folkson-
omy domain: ‘Closed itemset mining in triadic data’,
which is located on the confluence of the research areas
of association rule mining and Formal Concept Analy-
sis.

Formal Concept Analysis (FCA) [74,25] is a mathe-
matical theory that formalizes the concept of ‘concept’,
and allows for computing concept hierarchies out of data
tables. At the end of last century, one discovered that it
also provides an elegant framework for significantly re-
ducing the effort of mining association rules [50,78,64].
A new research area emerged which became known as
closed itemset mining in the data mining community
and as iceberg concept lattices [68] in FCA.

Independent of this development, Formal Concept
Analysis has been extended about ten years ago to deal
with three-dimensional data [40]. This line of Triadic
Concept Analysis did not receive a broad attention up
to now. With the rise of folksonomies as core data struc-
ture of social resource sharing systems, however, the
interest in Triadic Concept Analysis increased again.

5 See Section 2.4 for details.

Fig. 1. History of iceberg tri-lattices

With this paper, we initiate the confluence of both
lines of research, Triadic Concept Analysis and closed
itemset mining (see Figure 1). In particular, we give
a formal definition of the problem of mining all fre-
quent tri-concepts (in other terms: the three-dimensional
version of mining all frequent closed itemsets), and
present our algorithm TRIAS for mining all frequent tri-
concepts of a given dataset.

With its sets of users, tags, and resources, folk-
sonomies have one additional dimension compared to
typical basket analysis datasets (which consist of the
two dimensions ‘items’ and ‘transactions’). Informally
spoken, the task of mining all frequent tri-sets is to
discover all triples of sets of users, tags, and resources,
resp., such that, for each triple of sets, all users in the
first set have assigned all tags in the second set to all
resources in the third set, and that the cardinalities of
the three sets are above predefined minimum support
thresholds. 6

As in the classical case, the resulting set of all fre-
quent tri-sets is usually too large, and can be condensed
without any loss of information. To this end, we adapt
the notion of iceberg concept lattices (aka closed item-
sets) to the three-dimensional nature of folksonomies.
With our TRIAS algorithm, we provide an efficient
method for computing all frequent tri-concepts.

1.3. Contribution and organisation of the paper

In this paper, we present the following contributions:
– a formal definition of the problem of mining frequent

tri-concepts,
– TRIAS, an efficient algorithm for solving the problem,

6 In classical association rule mining, the thresholds equal the min-
imum support and minimal length thresholds.



– and a conceptual analysis of two social bookmarking
systems and an IT security manual by means of this
algorithm.

The paper is organized as follows. In the next section,
we introduce folksonomies and social resource shar-
ing systems in more detail and motivate the need of a
conceptual clustering approach for this kind of data. In
Section 2, we discuss the state of the art and related
work in the research areas of folksonomies, Ontology
Learning, Formal Concept Analysis, and closed itemset
mining. In Section 3.1, we provide the formal definition
of the problem of mining all frequent tri-concepts; in
Section 3.2, we introduce our TRIAS algorithm; and in
Section 3.3, we evaluate its performance. In Section 4,
we apply our approach on three large-scale real-world
applications: the folksonomy of the popular bookmark
sharing system del.icio.us, the collection of publications
in our social reference management system BibSonomy,
and a manual for protecting IT infrastructure. Section 5
concludes with an outlook on future work. Parts of this
article have been presented as a short paper at the Intl.
Conf. on Data Mining 2006 [35] and at the Intl. Conf.
on Conceptual Structures 2007 [36].

2. Basic Notions and State of the Art

In this section, we recall the basic notions and discuss
the state of the art of the research areas relevant to
this article: Folksonomies, Ontology Learning, Formal
Concept Analysis and its triadic version, and the mining
of closed itemsets.

2.1. Social Resource Sharing Systems and
Folksonomies

Social resource sharing systems are web-based sys-
tems that allow users to upload their resources, and to la-
bel them with arbitrary words, so-called tags. Each sys-
tem has a specific type of resources it supports. Flickr,
for instance, enables the sharing of photos, del.icio.us
the sharing of bookmarks, CiteULike 7 and Connotea 8

the sharing of bibliographic references, and 43Things 9

even the sharing of goals in private life. Our own system,
BibSonomy 10 ([33], see Figure 2), allows the sharing
of bookmarks and BIBTEX entries simultaneously.

In their core, these systems are all very similar. Once
a user is logged in, he can add a resource to the system,

7 http://www.citeulike.org
8 http://www.connotea.org
9 http://www.43things.com
10http://www.bibsonomy.org

Fig. 2. Bibsonomy displays bookmarks and (BIBTEX-based) biblio-
graphic references simultaneously.

and assign arbitrary tags to it. The collection of all his
assignments is his personomy, the collection of all per-
sonomies constitutes the folksonomy. The user can ex-
plore his personomy, as well as the personomies of the
other users, in all dimensions: for a given user one can
see all resources he has uploaded, together with the tags
he has assigned to them (see Figure 2); when clicking
on a resource one sees which other users have uploaded
this resource and how they tagged it; and when clicking
on a tag one sees who assigned it to which resources.

The word “folksonomy” is a blend of the words “tax-
onomy” and “folk”, and stands for conceptual struc-
tures created by the people [73]. Folksonomies are thus
a bottom-up complement to more formalized Seman-
tic Web technologies, as they rely on emergent seman-
tics [61,62] which result from the converging use of the
same vocabulary. The main difference to “classical” on-
tology engineering approaches is their aim to respect
to the largest possible extent the request of non-expert
users not to be bothered with any formal modeling over-
head. Intelligent techniques may well be inside the sys-
tem, but should be hidden from the user.

A folksonomy describes the users, resources, and
tags, and the user-based assignment of tags to re-
sources. We recall here our formal definition of folk-
sonomies [34], which is also underlying our BibSonomy
system.
Definition 1 A folksonomy is a tuple
F := (U, T,R, Y,≺) where
– U , T , and R are finite sets, whose elements are called

users, tags, and resources, resp.,
– Y is a ternary relation between them, i. e., Y ⊆ U ×

T × R, whose elements are called tag assignments
(tas for short), and

– ≺ is a user-specific subtag/supertag-relation, i. e., ≺
⊆ U × T × T , called is-a relation.

The personomy Pu of a given user u ∈ U is the restric-



tion of F to u, i. e., Pu := (Tu, Ru, Iu,≺u) with Iu :=
{(t, r) ∈ T ×R | (u, t, r) ∈ Y }, Tu := π1(Iu), Ru :=
π2(Iu), and≺u := {(t1, t2) ∈ T×T | (u, t1, t2) ∈ ≺},
where πi denotes the projection on the ith dimension.

Users are typically described by their user ID, and
tags may be arbitrary strings. What is considered as a
resource depends on the type of system. For instance,
in del.icio.us, the resources are URLs, in flickr, the re-
sources are pictures, and in BibSonomy they are either
URLs or publication entries.

As the is-a relation ≺ was only implemented in a
rudimentary way (so-called ‘bundles’ in del.icio.us) in
one of the systems considered in our paper at the time
of writing, 11 we will ignore it for the purpose of this
paper. Therefore, we will consider a folksonomy as a
four-tuple F := (U, T,R, Y ), without the ≺ relation.

Related Work. While the scientific community has
only begun to explore folksonomies as a knowledge
representation mechanism as well as a source of data
which can be mined for different purposes, there is a
growing number of publications concerned with the
various aspects of this new phenomenon. Overviews
of social bookmarking tools with special emphasis on
folksonomies are provided by [31] and [43], as well
as [46] and [60] who discuss strengths and limitations
of folksonomies. Recent papers include [28] and [21]
which focus on analyzing and visualizing the structure
of folksonomies. The knowledge discovery, informa-
tion retrieval, and knowledge engineering communities
are currently becoming involved in this development,
e. g., by enhancing recommendations given by the sys-
tems, to improving search and ranking, and structuring
the knowledge in a systematic way.

Cattuto et al. [17] investigate statistical properties
of tagging systems and introduce a stochastic model
of user behaviour; [30] analyses the dynamics and se-
mantics of tagging systems, and [39] introduces further
techniques to structure the tripartite network of folk-
sonomies. Recently, work on more specialized topics
such as structure mining on folksonomies – e. g. to vi-
sualize trends [21] has been presented.

In [34], we presented FolkRank, a differential ver-
sion of the PageRank algorithm [11] for computing
topic-specific rankings of users, tags, and resources in
a folksonomy. In [57], we computed association rules
on del.ico.us data.

11BibSonomy now provides the ≺ hierarchy as ‘relations’.

2.2. Ontology Learning

The term ontology learning was first introduced by
Mädche and Staab in [44]. It stands for the task of
(semi-)automatically constructing an ontology or a do-
main model. Usually machine learning or data mining
algorithms are applied mostly on textual data to extract
the hidden conceptualization from the data and to make
it explicit. Revealing the hidden conceptualization of an
author partially written in a text document can be seen
as a kind of reverse engineering task (cf. [18]). All on-
tology learning approaches try to support the knowledge
engineer by setting up the ontology. Recent advances in
ontology learning are described in [12].

In this paper, we describe one step for learning on-
tologies from folksonomies. Other approaches are dis-
cussed in the next paragraph.

Related Work. Approaches trying to analyze the
weakly structured information of folksonomies and use
this to learn conceptualization or ontologies are still
rare. Among them is the work of Mika [47], who de-
fines a model of semantic-social networks for extracting
lightweight ontologies from del.icio.us. Besides calcu-
lating measures like the clustering coefficient, (local)
betweenness centrality or the network constraint on the
extracted one-mode network, Mika uses co-occurrence
techniques for clustering the folksonomy.

Paul Heymann and Hector Garcia-Molina [32] pro-
pose a new clustering algorithm to construct a tag hi-
erarchy. Schmitz proposes in [58] the construction of a
subsumption tree consisting of Flickr tags based on the
tag co-occurrence network of tags. Both approaches are
showing ways to construct an ontology, but both are us-
ing only parts of the information of an folksonomy as
they are based on an aggregated graph rather than the
full folksonomy.

2.3. Formal Concept Analysis

Formal Concept Analysis (FCA) is a conceptual clus-
tering technique that formalizes the concept of ‘concept’
as established in the international standard ISO 704: a
concept is considered as a unit of thought constituted of
two parts: its extension and its intension [74,25]. This
understanding of ‘concept’ is first mentioned explicitly
in the Logic of Port Royal [4]. To allow a formal de-
scription of extensions and intensions, FCA starts with
a (formal) context:
Definition 2 ([74]) A formal context is a triple K :=
(G, M, I) which consists of a set G of objects [German:



Gegenstände], a set M of attributes [Merkmale], and
a binary relation I ⊆ G × M . (g,m) ∈ I is read as
“object g has attribute m”.

This data structure equals the set of transactions used
for association rule mining, if we consider M as the set
of items and G as the set of transactions.
Definition 3 ([74]) For A ⊆ G, let

AI := {m ∈ M | ∀g ∈ A: (g,m) ∈ I} ;

and dually, for B ⊆ M , let

BI := {g ∈ G | ∀m ∈ B: (g,m) ∈ I} .

Now, a formal concept is a pair (A,B) with A ⊆ G,
B ⊆ M , AI = B and BI = A. A is called extent and
B is called intent of the concept.

This is equivalent to saying that A×B ⊆ I such that
neither A nor B be can be enlarged without violating
this condition.
Definition 4 ([74]) The set B(K) of all concepts of
a formal context K together with the partial order
(A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2 (which is equiv-
alent to B1 ⊇ B2) is a complete lattice, called the
concept lattice of K.

The concept lattice is a hierarchical conceptual clus-
tering of the data which can be visualised by a Hasse
diagram. This visualisation technique has been used in
many applications for qualitative data analysis [24]. An
example of a Hasse diagram is given in Figure 6 and
described in more detail in Section 4.1.

Related Work. FCA has grown over the years to a
powerful theory for data analysis, information retrieval,
and knowledge discovery [65]. In Artificial Intelli-
gence (AI), FCA is used as a knowledge representation
mechanism [66] and as conceptual clustering method
[63,15,48]. In database theory, FCA has been exten-
sively used for class hierarchy design and management
[49,77,20,72,56,27].

The amount of publications on Formal Concept Anal-
ysis is abundant. A good starting point for the lecture
are the textbooks [25,16,24], the collection of FCA pub-
lications in BibSonomy, 12 and the proceedings of the
Intl. Conference on Formal Concept Analysis 13 and the
Intl. Conference on Conceptual Structures 14 series.

12http://www.bibsonomy.org/tag/fca
13http://www.informatik.uni-trier.de/∼ley/db/conf/icfca/
14http://www.informatik.uni-trier.de/∼ley/db/conf/iccs/

2.4. Triadic Concept Analysis

Inspired by the pragmatic philosophy of Charles S.
Peirce with its three universal categories [54], Rudolf
Wille and Fritz Lehmann extended Formal Concept
Analysis in 1995 with a third category:
Definition 5 ([40]) A triadic formal context is a
quadruple F := (G, M, B, Y ) where G, M , and B are
sets, and Y is a ternary relation between G, M , and B,
i. e., Y ⊆ G×M × B. The elements of G, M , and B
are called (formal) objects, attributes, and conditions,
resp, and (g,m, b) ∈ Y is read “object g has attribute
m under condition b”.
A triadic formal context models exactly the structure of
a folksonomy F := (U, T,R, Y ) without tag hierarchy
≺.
Definition 6 ([40]) A triadic concept of F is a triple
(A1, A2, A3) with A1 ⊆ G, A2 ⊆ M , and A3 ⊆ B with
A1 ×A2 ×A3 ⊆ Y such that none of its three compo-
nents can be enlarged without violating this condition.

From each of the three dimensions one obtains
a quasi-order .1, .2, and .3, resp., on the set of
all tri-concepts: For i = 1, 2, 3, let (A1, A2, A3) .i

(B1, B2, B3) iff Ai ⊆ Bi.
The definition of a triadic concept is the natural exten-
sion of the definition of a formal concept to the triadic
case. Alternatively the definition can be described with
·I operators similar to the dyadic case, but as there are
now three dimensions involved, the notation (which we
omit here, cf. [40]) becomes more complex.
Lemma 1 ([40]) For two tri-concepts a and b, and for
i 6= j 6= k 6= i, a .i b and a .j b implies b .k a.

This implication is the triadic version of the dyadic
proposition that for two dyadic concepts (A1, A2) and
(B1, B2) holds A1 ⊆ B1 iff B2 ⊆ A1. In the dyadic
case, the two orders induced by the concept extents and
the concept intents, resp. are thus dually isomorphic.
This allows for visualising the concept lattice in just
one diagram and is at the same time the justification
for the famous support pruning strategy in the Apriori
algorithm. In the triadic case, the relationship between
the three quasi-orders is unfortunately weaker (as seen
above), which makes both the mining (see Section 3.2)
and the visualisation (see Section 4.2) more complex.
Figures 7 – 9 show examples of diagrams of triadic con-
cept lattices; they are discussed in detail in Section 4.

Lehmann and Wille present in [40] an extension of the
theory of ordered sets and (concept) lattices to the triadic
case, and discuss structural properties. This approach
initiated research on the theory of concept trilattices.



Whereas there have been some significant publica-
tions on the mathematical properties of trilattices (see
below), this approach had no large impact on real-world
applications up to now. This is mainly due to its above-
mentioned resistance to scalable visualisations. With the
rise of social resource sharing systems on the web, tri-
adic data move again in the focus of many researchers.
In this setting, one needs – beside a more scalable vi-
sualisation paradigm – knowledge discovery and infor-
mation retrieval methods and algorithms that are able
to handle very large datasets.

Related Work. Following the initial paper [40] by
Lehmann and Wille, several researchers started to anal-
yse the mathematical properties of trilattices, e. g., [7–
9,19,23,75,76]. [40] and [19] present several ways to
project a triadic context to a dyadic one. [67] presents
a model for navigating a triadic context by visualising
concept lattices of such projections. In [57], we dis-
cussed how to compute association rules from a triadic
context, based on these (and other) projections. A first
step towards truly ‘triadic association rules’ has been
done in [23].

2.5. Closed Itemset Mining

In terms of Formal Concept Analysis, the task of min-
ing frequent itemsets [1] can be described as follows:
Given a formal context K = (G, M, I) and a threshold
minsupp ∈ [0, 1], determine all subsets B of M where
the support supp(B) := card(BI)

card(G)
(with BI as defined

above) is larger than the threshold minsupp. In ware-
house basket analysis, M is the set of items and G is
the set of transactions.

The set of these so-called frequent itemsets itself is
usually not considered as a final result of the mining pro-
cess, but rather an intermediate step. Its most prominent
use are association rules [1]. Association rules are for
instance used in warehouse basket analysis, where the
warehouse management is interested in learning about
products that are frequently bought together.

Since determining the frequent itemsets is the com-
putationally most expensive part, most research has fo-
cused on this aspect. Most algorithms follow the way of
the well-known Apriori algorithm [2], which is travers-
ing iteratively the set of all itemsets in a levelwise man-
ner. Algorithms based on this approach have to extract
the supports of all frequent itemsets from the database.
However, this is by no means necessary.

It turned out that FCA can significantly improve both
the efficiency and the effectiveness of frequent item-

set mining. [50,78,64] discovered independently that it
is sufficient to consider the intents of those concepts
where the cardinality of their extent is above the mini-
mum support threshold. These frequent concept intents
are called closed itemsets in association rule mining,
because the set of all concept intents is a closure sys-
tem (i. e., it is closed under set intersection). The corre-
sponding closure operator is the consecutive application
of the two ·I operators defined in the previous subsec-
tion. I. e., for an itemset B, the set BII is the smallest
concept intent containing B. This closure operator will
be used in the TRIAS algorithm in Section 3.2.

In FCA, the equivalent notion is that of an ice-
berg concept lattice [68], which is the

∨
–semi-lattice

{(A,B) ∈ B(K) | card(A)
card(G) ≥ minsupp} with the order

defined in Section 2.3. The iceberg concept lattice vi-
sualises the most frequent concepts of a dataset [68],
and allows for an efficient visualisation of a basis
(condensed set) of association rules [69,52]. These
bases allow to reduce the number of rules significantly
without losing any information.

Related Work. The problem of mining frequent item-
sets arose first as a sub-problem of mining associa-
tion rules [1], but it then turned out to be present in
a variety of problems: mining sequential patterns [3],
episodes [45], association rules [2], correlations [59],
multi-dimensional patterns [37,41], maximal itemsets
[6,79,42], closed itemsets [71,50,51,53].

The first algorithm based on the combination of asso-
ciation rule mining with FCA was Close [50], followed
by A-Close [51], ChARM [78], Pascal [5], Closet [53],
and Titanic [68], each having its own way to exploit the
closure operator which is hidden in the data. Many al-
gorithms can be found at the Frequent Itemset Mining
Implementations Repository. 15

Beside closed itemsets, other condensed representa-
tions have been studied: key sets [5]/free sets [10], δ-
free sets [10], non-derivable itemsets [14], disjunction
free sets [13], and k-free sets [55]. Closed itemsets and
other condensed representations can be used for defin-
ing bases of association rules [69,52].

3. Mining all Frequent Tri-Concepts of a
Folksonomy

In this section we formalize the problem of mining
all frequent tri-concepts of a folksonomy, present the

15http://fimi.cs.helsinki.fi/



TRIAS algorithm for its efficient solution, and discuss
its performance.

3.1. The Problem of Mining all Frequent Tri-Concepts

We will now formalize the problem of mining all
frequent tri-concepts. We start with an adaptation of the
notion of ‘frequent itemsets’ to the triadic case.
Definition 7 Let F := (U, T,R, Y ) be a folkson-
omy/triadic context. A tri-set of F is a triple (A,B,C)
with A ⊆ U , B ⊆ T , C ⊆ R such that A×B×C ⊆ Y .

As folksonomies have three dimensions which are
completely symmetric, one can establish minimum sup-
port thresholds on all of them. The general problem of
mining frequent tri-sets is then the following:
Problem 1 (Mining all frequent tri-sets) Let F :=
(U, T,R, Y ) be a folksonomy/triadic context, and let
u-minsupp, t-minsupp, r-minsupp ∈ [0, 1]. The task
of mining all frequent tri-sets consists in determin-
ing all tri-sets (A,B,C) of F with |A|

|U | ≥ u-minsupp,
|B|
|T | ≥ t-minsupp, and |C|

|R| ≥ r-minsupp.
This is actually a harder problem than the direct adap-

tation of frequency to one more dimension: In classical
frequent itemset mining, one has a constraint – the fre-
quency – only on one dimension (the number of trans-
actions). Thus the equivalent triadic version of the prob-
lem would need two minimum support thresholds only
(say u-minsupp and t-minsupp). However, this seems
not natural as it breaks the symmetry of the problem.
Hence we decided to go for the harder problem directly
(which equals in the dyadic case the addition of a min-
imal length constraint on the itemsets). The lighter ver-
sion with only two constraints is then just a special case
(e. g., by letting r-minsupp := 0).

As in the dyadic case, our thresholds are mono-
tonic/antimonotonic constraints: If (A1, B1, C1) with
A1 being maximal for A1 × B1 × C1 ⊆ Y 16 is not
u-frequent, then all (A2, B2, C2) with B1 ⊆ B2 and
C1 ⊆ C2 are not u-frequent either. The same holds
symmetrically for the other two dimensions.

With the step from two to three dimensions, however,
the direct symmetry between monotonicity and anti-
monotonicity (which results in the dyadic case from the
dual order isomorphism between the set of concept ex-
tents and the set of concept intents) breaks. All we have
in the triadic case is the following lemma which results
(via the three quasi-orders defined in Section 2.4) from

16In the dyadic case this condition is implicitly covered by the use
of BI in the definition of the support since, for any given B ⊆ M ,
the set BI is always maximal with BI ×B ⊆ I .

the triadic Galois connection [8] induced by a triadic
context.
Lemma 2 (cf. [40]) Let both (A1, B1, C1) and
(A2, B2, C2) be tri-sets with Ai being maximal for
Ai × Bi × Ci ⊆ Y , for i = 1, 2. 17 If B1 ⊆ B2 and
C1 ⊆ C2 then A2 ⊆ A1. The same holds symmetrically
for the other two directions.

As the set of all frequent tri-sets is highly redundant,
we will in particular consider a specific condensed rep-
resentation, i. e., a subset which contains the same in-
formation, namely the set of all frequent tri-concepts.
Definition 8 A tri-set is a frequent tri-concept if it is
both a tri-concept and a frequent tri-set.
Problem 2 (Mining all frequent tri-concepts) Let
F := (U, T,R, Y ) be a folksonomy/triadic context,
and let u-minsupp, t-minsupp, r-minsupp ∈ [0, 1]. The
task of mining all frequent tri-concepts consists in de-
termining all tri-concepts (A,B, C) of F with |A|

|U | ≥
u-minsupp, |B|

|T | ≥ t-minsupp, and |C|
|R| ≥ r-minsupp.

Sometimes it is more convenient to use absolute
rather than relative thresholds. For this case we let
τu := |U | · u-minsupp, τt := |T | · t-minsupp, and
τr := |R| · r-minsupp.

Once Problem 2 is solved, we obtain the answer
to Problem 1 in a straightforward enumeration as
{(A,B,C) | ∃ frequent tri-concept (Â, B̂, Ĉ):A ⊆
Â, B ⊆ B̂, C ⊆ Ĉ, |A| ≥ τu, |B| ≥ τt, |C| ≥ τr}.

3.2. The TRIAS Algorithm for Mining all Frequent
Tri-Concepts

Our algorithm for mining all frequent tri-concepts
of a folksonomy F := (U, T,R, Y ) is listed as Algo-
rithm 3.1. A prior version was used for analysing psy-
chological studies [38]. That application varied from
TRIAS as it aimed at an iterative pruning of the data set.
Furthermore, it did not take into account any frequency
constraints.

We let Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }, and
we identify the elements of U , T , and R with nat-
ural numbers, i. e. U = {1, . . . , |U |} (and sym-
metrically for T , R). In both its outer and its inner
loop, TRIAS calls the pairs of subroutines FirstFre-
quentConcept((G, M, I), τ) and NextFrequentCon-
cept((A,B), (G, M, I), τ). These two routines provide
an enumeration of all frequent dyadic concepts (A,B)
of the formal (dyadic) context (G, M, I). The context is
passed over as input parameter. FirstFrequentConcept

17This holds in particular if the tri-sets are tri-concepts, see
Lemma 1.



TRIAS(U, T, R, Y, τu, τt, τr)
1. begin
2. Ỹ := {(u, (t, r)) | (u, t, r) ∈ Y }
3. (A, I) := FirstFrequentConcept((U, T ×R, Ỹ ), τu)
4 repeat
5. if |I| ≥ τt · τr then begin
6. (B, C) := FirstFrequentConcept((T, R, I), τt)
7. repeat
8. if |C| ≥ τr then
9. if A = (B × C)Ỹ then output(A, B, C)
10. until not NextFrequentConcept((B, C), (T, R, I), τt)
11. endif
12. until not NextFrequentConcept((A, I), (U, T ×R, Ỹ ), τu)
13.end
Algorithm 3.1: The TRIAS algorithm for mining all fre-
quent tri-concepts

FirstFrequentConcept((G, M, I), τ)
1. begin
2. A := ∅I

3. B := AI

4. if |A| < τ then
5. NextFrequentConcept((A, B), (G, M, I), τ)
6. endif
7. return (A, B)
8. end
Algorithm 3.2: The FirstFreqentConcept function of the
TRIAS algorithm

NextFreqentConcept((A, B), (G, M, I), τ)
1. begin
2. while defined(i) begin
3. A := (B ⊕ i)I

4. if |A| ≥ τ then
5. D := AI

6. if B <i D then
7. B := D
8. return true
9. endif
10. endif
11. i := max(M \B ∩ {1, . . . , i− 1}
12. end
13. return false
14.end
Algorithm 3.3: The NextFreqentConcept function of the
TRIAS algorithm

returns in (A,B) the first concept of the enumeration.
NextFrequentConcept takes the current concept (A,B)
and modifies it to the next concept of the enumeration.
This way, we compute all frequent maximal cuboids
in the relation Y by consecutively computing maximal
rectangles in the binary relations Ỹ and I , resp, where
the condition in line 9 of Algorithm 3.1 checks if the
rectangle layers form a maximal cuboid. Note that
A ⊆ (B×C)Ỹ trivially holds, because of A = I Ỹ and
(B × C) ⊆ I . Hence only “⊇” has to be checked.

For computing all (frequent) maximal rectangles in
a binary relation, one can resort to any algorithm for
computing (iceberg) concept lattices. The enumeration
can be done in any convenient way. For the inner and

the outer loop, one could use different algorithms for
that task.

In our implementation we equipped the NEXT-
CLOSURE algorithm [22,25] of the fourth author with
frequency pruning for implementing the FirstFrequent-
Concept and NextFrequentConcept routines (see Al-
gorithms 3.2 and 3.3, resp.) for both the outer and the
inner loop. This algorithm has the advantage that it
needs almost no space in main memory.

NEXTCLOSURE computes the concepts of a dyadic
formal context (G, M, I) in a particular order, starting
with the concept (∅I , ∅II). For a given concept (A,B),
NEXTCLOSURE computes the concept (C,D) whose
intent D is the next set after B in the so-called lectic
order. The lectic order on sets is a total order and is
equivalent to the lexicographic order of bit vectors rep-
resenting those sets.

To find the next concept we define, for B ⊆ M and
i ∈ M ,

B ⊕ i := (B ∩ {1, . . . , i− 1}) ∪ {i}.

By applying the closure operator X 7→ XII to B ⊕ i,
the algorithm computes, for a given B, the set D :=
(B ⊕ i)II . This is the lectically next intent, if B <i D
holds, meaning that i is the smallest element in which
B and D differ, and i ∈ D.

The method NextFrequentConcept adopts this idea
and additionally checks if the computed extent A :=
(B ⊕ i)I fulfills the minimal support criterion before
computing the intent D := AI . This is done in line 4
of Algorithm 3.3 by considering the extent A only if it
is large enough.

Taking a closer look on the function ·I revealed that it
demands the computation of several set intersections at
a time. Since profiling showed that this is the main bot-
tleneck of the algorithm, we optimized this by first or-
dering the sets to be intersected by size (with the small-
est set first). Then the algorithm recursively intersects
them with a procedure used for merge-sort. This is pos-
sible, since every itemset of the binary context can be
accessed as ordered list in the data structure described
in the following.

Because two sortings of Y are needed, instead of
storing both, we just store the permutations for every
order and an additional offset table which allows con-
stant time access to the triples of a given tag, user, or re-
source. The chosen approach is exemplified in Figure 3.
The table on the left contains the unsorted triples Y of
which only the values from U are shown here. The table
in the middle describes the permutation which allows
to access the triples in lexicographic order. Finally, the
right table contains, for every element u ∈ U , an offset



Fig. 3. Accessing triples in sorted order

which points to the position in the second table, which
points to the first triple of that user in the Y list. To-
gether, all this allows constant time access to the sorted
tag-resource set of every user.

3.3. Performance of the TRIAS Algorithm

As in the dyadic case, the number of (frequent) tri-
concepts may grow exponentially in the worst case. Bie-
dermann has shown in [9] that the concept tri-lattice of
the triadic context of size n × n × n where only the
main diagonal is empty has size 3n. In typical applica-
tions, however, one is far from this theoretical bound-
ary. Therefore we focus on empirical evaluations on a
large scale real-world dataset.

For measuring the runtime and the number of fre-
quent concepts we have evaluated the performance of
TRIAS on a snapshot of the del.icio.us system (which
is described in more detail in Section 4.1). It consists
of all users, tags, resources and tag assignments we
could download that were entered to the system on or
before June 15, 2004. From this base set we created
monthly snapshots as follows. F0 contains all tag as-
signments performed on or before Dec 15, 2003, to-
gether with the involved users, tags, and resources; F1

all tag assignments performed on or before Jan 15, 2004,
together with the involved users, tags, and resources;
and so on until F6 which contains all tag assignments
performed on or before June 15, 2004, together with
the involved tags, users, and resources. This represents
seven monotonously growing contexts describing the
del.icio.us folksonomy at different points in time. For
mining frequent tri-sets and frequent tri-concepts we
used minimum support values of τu := τt := τr := 2
and measured the run-time of our Java implementations
on a dual-core Opteron system with 2 GHz and 8 GB
RAM.
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Fig. 5. Runtime of triadic NEXT CLOSURE and TRIAS algorithm
on del.icio.us datasets

Figure 4 shows the number of frequent tri-concepts
versus the number of frequent tri-sets on the logarithmi-
cally scaled y-axis, whereas the x-axis depicts the num-
ber of triples in Y – which grows from 98,870 triples in
Dec 2003 to 616,819 in June 2004. It shows a massive
increase of frequent tri-sets in June 2004 with only a
modest growth of the number of frequent tri-concepts.
This difference results from the fact that more and more
users appear and start to agree on a common vocabulary,
which leads to more frequent tri-concepts with larger
volumes from June 2004 on. Such large concepts (like
those shown in Table 1) contain combinatorially many
frequent tri-sets.

One can observe that the number of frequent tri-sets
of every snapshot is always at least one magnitude of
size larger than the number of frequent tri-concepts.
Consequently, computing frequent tri-sets is much more
demanding than computing frequent tri-concepts – with-
out providing any additional information.

A comparison of the speed improvement gained
from not computing all tri-concepts with an algorithm
like NEXT CLOSURE and afterwards pruning the non-
frequent concepts but using the TRIAS algorithm for
directly mining frequent tri-concepts is shown in Fig-



ure 5. The logarithmically scaled y-axis depicts the
runtime of the algorithms in seconds while the x-axis
shows again the size of the Y relation. One can see
that computing all tri-concepts is more than one mag-
nitude more expensive than mining only the frequent
tri-concepts one is interested in.

With these observations we conclude that the TRIAS
algorithm provides an efficient method to mine frequent
tri-concepts in large scale conceptual structures.

4. Applications

We have applied the algorithm on three real-world
data sets: the social bookmarking system del.icio.us,
the IT Baseline Security Manual of the German Federal
Office for Information Security, and the collection of
publications in our social reference management system
BibSonomy.

4.1. The Social Bookmarking System del.icio.us

First, we have analyzed the popular social bookmark-
ing sytem del.icio.us with our approach. Del.icio.us is a
server-based system with a simple-to-use interface that
allows users to organize and share bookmarks on the
internet. It is able to store for each URL, in addition to
the tags assigned to it, a description and a note.

For detecting communities of users which have the
same tagging behaviour (an thus share their conceptu-
alisations), we ran the TRIAS algorithm on a del.icio.us
snapshot consisting of all users, resources, tags and
tag assignments we could download that were entered
to the system on or before June 15, 2004 [34]. The
resulting folksonomy consists of |U | = 3, 301 users,
|T | = 30, 416 different tags, |R| = 220, 366 resources
(URLs), which are linked by |Y | = 616, 819 triples.

As a first step, we ran TRIAS on the dataset without
restricting the minimum supports (i. e., τu := τt :=
τr := 0). The resulting concept tri-lattice consists of
246, 167 tri-concepts. We then investigated the concepts
which contain two or more users, tags and resources,
i. e., with τu := τt := τr := 2. There were 1, 062 such
tri-concepts. 18

Figure 1 shows three examples. The first of them
shows that the two users bibi and poppy have assigned
the three tags women, cinema, and film to all the ten

18Larger thresholds did not provide any results any more. This comes
from the fact that we took a rather early snapshot of del.icio.us,
where the numbers of users, tags, and resources were still rather
small. See also Section 3.3.

Table 1
Examples of frequent tri-concepts of del.icio.us

A bibi poppy

B women cinema film

C http://www.reelwomen.org/
http://www.people.virginia.edu/∼pm9k/libsci/womFilm.html
http://www.lib.berkeley.edu/MRC/womenbib.html
http://www.beaconcinema.com/womfest/
http://www.widc.org/
http://www.wftv.org.uk/home.asp
http://www.feminist.com/resources/artspeech/media/femfilm.htm
http://www.duke.edu/web/film/pioneers/
http://www.womenfilmnet.org/index.htm#top
http://208.55.250.228/

A fischer gnat

B css design web

C http://www.quirksmode.org/
http://webhost.bridgew.edu/etribou/layouts/
http://www.picment.com/articles/css/funwithforms/
http://www.alistapart.com/articles/sprites/

A angusf carlomazza

B css design web

C http://www.positioniseverything.net/index.php
http://www.fu2k.org/alex/css/layouts/3Col NN4 FMFM.mhtml
http://glish.com/css/home.asp
http://www.maxdesign.com.au/presentation/process/index.cfm
http://unraveled.com/projects/css tabs/

listed web pages, which are all about women in movies
or women in the movie industry.

The two lower tri-concepts show that different tri-
concepts with the same extent can co-exist. 19 The first
of them shows that the two users fischer and gnat agree
(implicitly) in their assignments of the tags css, web,
and design to the four listed URLs, while the users an-
gusf and carlomazza agree in assigning the same tags
to five completely different URLs. When inspecting the
corresponding web pages, one finds out that the content
of all resources is indeed very much related. These two
related tri-concepts may be exploited further for extract-
ing relations between tags or for recommending to all
of the four users to study the posts of the other three.

Next, we wanted to study in more detail shared con-
ceptualisations around the tags css, web, and design.
To this end, we computed the concept lattice that is
shown in Figure 6. Its formal context (G, M, I) was
constructed as follows. Its set G of objects was ex-
tracted from the set of all resources by selecting all

19This is in contrast to the situation in the dyadic case, where
equality in one dimension implies equality in the other one.



those resources which were tagged with at least one
of these three tags by at least k1 ∈ N users. The
set M contains all tags. A tag t ∈ M is defined to
be related to a resource r ∈ G (i. e., (r, t) ∈ I) iff

|{u∈U |(u,t,r)∈Y }|
|{u∈U |∃r′∈R:(u,t,r′)∈Y }| ≥ k2, for a given k2 ∈ [0, 1].

In this analysis, we have set k1 = 5 . This means that
a resource was considered only if at least five users as-
signed it to at least one of the tags css, web, and design.
This resulted in 575 resources. The second pruning pa-
rameter was set to k2 = 0.5, i. e., at least half of the
users who considered a resource had to use a particular
tag, otherwise the tag was not assigned to the resource.
This resulted in a relatively sparse assignment which re-
flects only rather strong shared conceptualisations. This
way, only 22 tags were assigned to at least one resource;
and only 297 out of the 575 resources received at least
one tag.

The resulting concept lattice is displayed in Figure 6.
Because of space restrictions, we pruned from it the tags
rest, cms, wiki, xml, fonts, wordpress, google, search,
color, art, and music. These tags formed singletons (i. e.,
separate nodes that were connected only to the top and
to the bottom element of the lattice) with one or two
resources each.

Each node in the diagram is a formal concept accord-
ing to the definition in Section 2.3, i. e., a pair (A,B)
where A is its extent (all resources belonging to it),
and B is its intent (all tags belonging to it). In the di-
agram, the extent of a concept consists of all resources
attached to the concepts or to any of its sub-concepts;
and the intent consists of all tags that are attached to
the concept or to any of its super-concepts. The left-
most concept, for instance, has the two URLs starting
with “www.fiftyfoureleven. . . ” as extent, and the set
{php, css} of tags as intent. The top node represents
the concept (G, GI), and the bottom node the concept
(M I ,M).

The diagram shows that most agreement exists for the
usage of the tag css, as it was assigned (according to our
majority vote with the k2 threshold) to 235 resources,
while web was assigned to only 14 resources, and design
to 31 resources. Apparently, the latter are too general
or polysemous terms to reach a large agreement about
their usage.

The resulting concept lattice could now be used for
building a concept hierarchy. It suggests to the ontology
engineer, e. g., to model architecture as a sub-concept of
design. Another use of the concept lattice is a collabora-
tive filtering approach to web search. When a user is for
instance searching for “web design”, the system could
recommend him the web pages http://www.alistapart.
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Fig. 7. All frequent tri-concepts of the IT Baseline Security Manual
for τu = τt = τr = 3.

com/articles/elastic and http://9rules.com/version2/.

4.2. IT Baseline Protection Manual

To illustrate another use of iceberg tri-lattices, we fo-
cus now on a non-folksonomy application. The IT Base-
line Security Manual [26] of the German Federal Of-
fice for Information Security provides a description of a
threat scenario and standard security measures for typ-
ical IT systems, and detailed descriptions of safeguards
to assist with their implementation. 20

Unlike a folksonomy, this manual has not been set
up by an open group of users, but by a closed group of
experts of the federal office. The manual has thus care-
fully been designed by domain specialists, and can be
considered as an ontology (a formal specification of the
shared conceptualisation of the experts of the federal of-
fice) – structured in form of a triadic context. Here, we
use our knowledge discovery approach not for discov-
ering a shared conceptualisation, but for analysing it.
Even though the manual is smaller than a typical folk-
sonomy resulting from a social bookmarking system, it
is still by far too large to be analysed without technical
support.

The core data of the manual forms a triadic context
(U, T,R, Y ). We consider as objects U the 66 IT com-
ponents, as attributes T the 377 listed threats, and as
conditions R the 912 safeguards. They are related by
5, 680 triples. 21

From this dataset, we have computed the iceberg con-
cept lattice for τu = τt = τr = 3. Its visualisation
in Figure 7 follows the conventions introduced in [40].
The five nodes in the middle are the five resulting fre-
quent tri-concepts. The sets of users, tags, and resources

20The online version of the manual is available at http://www.bsi.
de/gshb/.
21See [19,70,76] for other analyses of this dataset.



Fig. 6. Most relevant tags and resources related to css, web, and design.

composing a tri-concept can be read off the three sides
of the triangle. There, three Hasse diagrams display the
three quasi-orders .1, .2, and .3 as introduced in Sec-
tion 2.4. The arrows guide the reader to the larger el-
ements of each quasi-order. Each node in a hierarchy
represents the set containing the labels attached to it
plus all labels below. The empty nodes are not part of
the quasi-order. They are just used to be able to place
each label once only. In the IT components hierarchy on
the right, for instance, the leftmost node represents the
set {Computer Centres, Data Media Archives, Server
Room, Technical Infrastructure Room}.

A node in the middle of the diagram represents
then the tri-concept consisting of the three components
it projects to. The left-most tri-concept, for instance,
is the tri-concept ({Computer Centres, Server Room,
Data Media Archives, Technical Infrastructure Room},
{Unauthorised entry into a building, Theft, Vandal-
ism}, {Locked doors, Entry regulations and controls,
Closed windows and doors}).

The three corners of the inner triangle are not realised
(as there are no nodes on them). They stand for the tri-
sets (∅, T, R), (U, ∅, R), and (U, T, ∅), resp., and are
only realised if the first, second, or third threshold is set
to zero.

The manual distinguishes seven classes of IT com-
ponents, like Networked Systems and Telecommunica-
tions. The fact that all components that occur in the
most frequent tri-concepts (i. e., the six components in
the right-most hierarchy) are of the Infrastructure class
indicates that this class was modeled with the highest
level of detail. Surprisingly it surpasses more typical IT
classes like the two mentioned above.

For having a closer look, we decrease the minimum
thresholds, e. g., to τu = 3, τt = τr = 2. The result-

ing tri-lattice is shown in Figure 8. It contains the pre-
vious five tri-concepts plus five new ones. We see that
again the major contribution comes from the Infrastruc-
ture class, which is now extended by Protective cab-
inets. Additionally some more of the combinations of
these components became frequent, indicated by the ad-
ditional nodes in the right hierarchy.

With the decreasing thresholds, the lower left hier-
archy grew as well. It contains now additionally four
threats in two separated nodes. These nodes are not
comparable (in terms of set inclusion) with the already
existing nodes. The threats in the lower one of them –
Failure of internal supply networks, Fire – are extend-
ing the list of threats against the Infrastructure class via
the IT component Building. The upper hierarchy shows
the safeguards against these new threats: Hand-held fire
extinguishers and Adapted segmentation of circuits.

The threats in the uppermost isolated node of the
lower left hierarchy – Misuse of administrator rights
[. . . ] and Unauthorised acquisition [. . . ] – belong to
a new class of IT components, as they are related to
the new isolated node with three Windows operating
systems in the right diagram. The safeguards against
these threats are listed at the isolated node in the upper
diagram. The IT components that seem to be endangered
secondmost are thus – after IT infrastructure rooms –
Windows operating systems. At least they are modeled
with greater detail as other operating systems that show
up when decreasing the thresholds further.

If we decrease the minimum thresholds further, we
can discover this way more and more details, until we
finally reach with τu = τt = τr = 0 all 3, 751 tri-
concepts of this dataset.
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4.3. Conceptual Analysis of the BibSonomy
Publication Data

We conclude the list of applications with another so-
cial resource sharing system. BibSonomy 22 is a social
bookmark and publication management system that is
run by the Knowledge & Data Engineering Group at the
University of Kassel. Beside sharing bookmarks, Bib-
Sonomy enables the sharing of publication lists. It pro-
vides several output formats, including BIBTEX, format-
ted HTML, RTF, EndNote, XML, RDF, and RSS-Feeds.
BibSonomy can thus be used for generating reference
lists for scientific publications and annual reports, as
well as for personal, group, and project homepages –
supporting researchers in their everyday business. As a
folksonomy offers the possibility to add more than one
tag to a resource, documents can be found following
different search paths, unlike books in a library which
can only be placed in one physical location.

For our analysis we focused on the publication man-
agement part of BibSonomy. We first made a snapshot
of BibSonomy’s publication entries, including all pub-
lication posts made until November 23, 2006 at 13:30
CET. From the snapshot we excluded the publication
posts from the DBLP computer science bibliography 23

since they are automatically inserted and all owned by
one user and all tagged with the same tag (dblp). There-

22http://www.bibsonomy.org
23http://www.informatik.uni-trier.de/∼ley/db/

fore they do not provide meaningful information about
shared conceptualisations. Similarly we excluded all tag
assignments with the tag imported and all publication
posts which exclusively have this tag, because it is au-
tomatically assigned to all posts which were added by
one of the import functions. The resulting snapshot con-
tains |Y | = 44, 944 tag assignments built by |U | = 262
users, containing |R| = 11, 101 publication references
tagged with |T | = 5, 954 distinct tags. 24

The TRIAS algorithm needed 75 minutes on a 2
GHz AMD Opteron machine to compute all 13,992 tri-
concepts of this dataset. Among those there are 12,659
tri-concepts which contain only one user, representing
the individual conceptualisations of the users. (These
could be used to present personal concept hierarchies
by means of dyadic Hasse diagrams.) The remaining
1,333 tri-concepts thus all contain at least two users
and therefore represent shared concepts. To further
analyse these concepts, we next take a closer look on
the tri-concepts which contain at least three users, two
tags and two publication entries (i. e., with minimal
support values τu = 3, τt = 2, τr = 2). Each of these
21 tri-concepts expresses the fact that all of its users
tagged all its publications with all its tags.

The diagram in Figure 9 on the following page shows
the triadic concept lattice of all these 21 tri-concepts.
The titles of the publications in the figure are substi-

24BibSonomy benchmark datasets are available for scientific pur-
poses, see http://www.bibsonomy.org/faq.
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Fig. 9. All frequent tri-concepts of the BibSonomy publications for τu = 3, τt = 2, τr = 2.

tuted by numbers for space reasons. The correspond-
ing titles can be found in Table 2, the full bibliographic
information was tagged in BibSonomy (after the eval-
uation) with the tag trias example. 25 As in Figures 7
and 8, the 21 nodes in the center of the triangle repre-
sent the 21 frequent tri-concepts. The sets of users, tags,
and resources composing a tri-concept can be read off
the three sides of the triangle.

For instance, the lower-most node in the triangle rep-
resents the tri-concept consisting of the set {jaeschke,
schmitz, stumme} of users, the set {fca, triadic} of tags,
and the set {1, 37} of resources. Similarly, the node
in the user hierarchy labelled brotkasting represents not

25http://www.bibsonomy.org/group/kde/trias example?items=50

only the user brotkasting but also all users in nodes lay-
ing below this node. Therefore the users jaeschke and –
since it is located below both brotkasting and jaeschke –
stumme also belong to this node. Note that it fulfills thus
the minimal support constraint τu = 3 for the users.

A closer look on the tag hierarchy reveals the content
of the most central publications in the system. The tag
social co-occurs with most of the tags. On the level of
generality defined by the τ thresholds, this tag is (to-
gether with the tags ai (meaning Artificial Intelligence),
. . . , tags) assigned by the users lkl kss and yish to the
publications 19 and 30, (together with the tag bookmark-
ing) by the users hotho, jaeschke, stumme to the publi-
cations 4 and 28, and (again together with the tag book-
marking) by the users brotkasting, jaeschke, stumme to



Table 2
The mapping of publication IDs to publication titles.
ID Publication Title

1 A Finite-State Model for On-Line Analytical Processing in
Triadic Contexts

2 Annotation and Navigation in Semantic Wikis
3 A Semantic Wiki for Mathematical Knowledge Management
4 BibSonomy: A Social Bookmark and Publication Sharing Sys-

tem
5 Bringing the ”Wiki-Way” to the Semantic Web with Rhizome
6 Building and Using the Semantic Web
7 Conceptual Clustering of Text Clusters
8 Content Aggregation on Knowledge Bases using Graph Clus-

tering
9 Creating and using Semantic Web information with Makna

10 Emergent Semantics in BibSonomy
11 Explaining Text Clustering Results using Semantic Structures
12 Harvesting Wiki Consensus - Using Wikipedia Entries as

Ontology Elements
13 Information Retrieval in Folksonomies: Search and Ranking
14 KAON – Towards a Large Scale Semantic Web
15 Kaukolu: Hub of the Semantic Corporate Intranet
16 Kollaboratives Wissensmanagement
17 Learning with Semantic Wikis
18 Mining Association Rules in Folksonomies
19 On Self-Regulated Swarms, Societal Memory, Speed and Dy-

namics
20 Ontologies improve text document clustering
21 Proceedings of the First Workshop on Semantic Wikis – From

Wiki To Semantics
22 Proc. of the European Web Mining Forum 2005
23 Semantic Network Analysis of Ontologies
24 Semantic Resource Management for the Web: An ELearning

Application.
25 Semantic Web Mining
26 Semantic Web Mining and the Representation, Analysis, and

Evolution of Web Space
27 Semantic Web Mining for Building Information Portals (Po-

sition Paper)
28 Social Bookmarking Tools (I): A General Review
29 Social Bookmarking Tools (II). A Case Study – Connotea
30 Social Cognitive Maps, Swarm Collective Perception and Dis-

tributed Search on Dynamic Landscapes
31 SweetWiki : Semantic Web Enabled Technologies in Wiki
32 Text Clustering Based on Background Knowledge
33 The ABCDE Format Enabling Semantic Conference Proceed-

ings
34 The Courseware Watchdog: an Ontology-based tool for Find-

ing and Organizing Learning Material
35 Towards a Wiki Interchange Format (WIF) – Opening Se-

mantic Wiki Content and Metadata
36 Towards Semantic Web Mining
37 TRIAS - An Algorithm for Mining Iceberg Tri-Lattices
38 Usage Mining for and on the Semantic Web (Book)
39 Usage Mining for and on the Semantic Web (Workshop)
40 Wege zur Entdeckung von Communities in Folksonomies
41 WordNet improves text document clustering

the publications 28 and 29. The tags as well as the corre-
sponding publication titles indicate that the two sets of
users {lkl kss, yish} and {brotkasting, hotho, jaeschke,
stumme} form two sub-communities which both work
on social phenomena in the Web 2.0, but from different
perspectives.

A second topical group is spanned by the tag seman-
tic, which occurs in three different contexts. The first
is on semantic wikis, which correlates with the isolated
group {2, . . . , 31, 12, 33, 35} of publications, and the
– equally isolated – group {lysander07, xamde, dey-
nard, langec} of users. The second context in which the
tag semantic occurs is on Semantic Web Mining, be-
ing connected by the users {grahl, hotho, stumme} with
different combinations of the additional tags web and
mining to the publications 6, 14, 22, 25, 26, 27, 36, 38,
and 39. These assignments are witnessed by the three
tri-concepts in the very middle of the diagram. On the
same line are two more tri-concepts, which indicate that
these users are also interested in text clustering and in
nepomuk (the acronym of a European project). The third
context in which the tag semantic occurs is in combina-
tion with folksonomy. This provides a link to the group
{2006, myown, nepomuk, bibsonomy, folksonomy} of
tags which are used by the authors of this paper and
by other researchers from the European project Nepo-
muk 26 to describe their own publications.

Two more topical groups can be found at the top and
bottom of the tags quasi-order. One is related to a Peer-
to-Peer eLearning application, and the other to triadic
Formal Concept Analysis.

Since the diagram shows the frequent tri-concepts
only, we cannot deduce from the absence of a relation-
ship that two objects are not related at all. When the
thresholds are lowered, links between the topical islands
discussed above will show up.

Concluding we see that iceberg tri-concept lattices
provide a means for exploring the flat structure of folk-
sonomies – just as iceberg concept lattices in the dyadic
case. One may be surprised by the relatively small num-
bers of frequent tri-concepts. This shows – just as in
the dyadic case – that the closeness condition provides
a strong criterion for pruning the result set without loss
of information.

5. Conclusion and Outlook

In this paper, we have presented a formal definition
of the problem of mining all frequent tri-concepts, and

26http://nepomuk.semanticdesktop.org/



have presented an efficient algorithm for its solution. We
have empirically studied the performance of the algo-
rithm, and have presented two real-world applications.

This work opens a series of challenging tasks for fu-
ture research. (i) An important issue for the presenta-
tion of the results is the development of a visualisation
metaphor to display small, medium, and large (frequent)
concept tri-lattices, and to provide efficient means for
navigating and browsing them. (ii) Continuing the re-
search on association rules, a natural next step would
be the development of ‘triadic association rules’, com-
bining thus the developments in triadic FCA and asso-
ciation rule mining. (iii) The natural next step after dis-
covering shared conceptualisations would be to formal-
ize them in an ontology. We plan thus to extend our ap-
proach to an ontology learning application. (iv) These
steps together lead to a development which is currently
undertaken in the European project ‘Nepomuk – The
Social Semantic Desktop’: the exploitation of TRIAS
for discovering and managing communities in a peer to
peer network of semantic desktops.
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> Recommendations 

> ~~~~~~~~~~~~~~~ 

> The overall recommendations (meaning much rather reviewer's suggestions 

> mainly wrt. future work, than mandatory remarks on the submission's 

> modification) are related to one general issue, which I found kind of 

> missing in the paper. However, it is better to split the remarks into 

> two dual dimensions of motivation and evaluation...

[...]

We would like to thank Reviewer #2 for the helpful suggestions for future 

work. Since he named them non-mandatory and they span a broad field, we see 

them as guide for next steps of our work. Given that we want to apply the 

proposed methods in our own folksonomy system, we have a chance to evaluate 

them in a real live scenario, as proposed by the reviewer.

Reviewer #3 comments:

> > - in 3.2, the description of FirstFrequentConcept takes a triple (G,M,I) as

> > first argument; in Algorithm 3.2, it is a single argument "K".

We have normalized this such that both algorithms now take (G,M,I) as argument

instead of K.

> > "K" has been

> > defined in Definition 5 some pages earlier as a quadruple, and in Definition

> > 2 as a triple; which of the definitions hold, and why do you hide the actual

> > arguments in K instead of naming them directly? Also, (G,M,I) are not

> > defined in Section 3.2, where we have a folksonomy F as a quadruple U,T,R,Y

Now dyadic contexts are named with K and triadic contexts with F. This way it is

always clear, which type of context is meant.

> > - the connection between the two is not made in the textual

> > description (one can quess from Algorithm 3.1, though); why don't you just
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> > use (G,M,I) directly in the

This is now solved by using (G,M,I) instead of K in the algorithm description,

as explained above.

> > - Algorithm 3.2 defines A as the empty set and

> > then later checks whether abs(A) < tau; but abs(A) is always 0 as it is

> > defined

A was defined as \emptyset' (note the prime), which typically differs from the

empty set. We have changed the notation to clarify this (see next remark).

> > - Algorithm 3.2 uses A' which I originally thought of as an undefined

> > variable/parameter "A prime", but reading the text later revealed that .' is

> > a function; I consider this a very unfortunate naming for a function in a

> > code example, even though it is pseudo-code; please rename this function to

> > avoid confusion!

Using ' for this function is very common in Formal Concept Analysis (FCA).

Nevertheless, to avoid confusion we introduced now another notation and thus

changed Definition 3 from "A' := ..." to "A^I := ...". This is another common

notation from FCA that clarifies which relation is used. It also helps to

understand "(B \times C)^{\tilde{Y}}" which is now properly defined.

Additionally, we removed some typos, fitted the paper to the JWS layout, added

two sentences for better understanding and removed two other sentences, and

improved figures 1 and 2.

We would like to thank the reviewers for the very helpful comments!


