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Abstract. Recent work has shown improvements in text clustering and classifi-
cation tasks by integrating conceptual features extracted from ontologies. In this
paper we present text mining experiments in the medical domain in which the on-
tological structures used are acquired automatically in an unsupervised learning
process from the text corpus in question. We compare results obtained using the
automatically learned ontologies with those obtained using manually engineered
ones. Our results show that both types of ontologies improve results on text clus-
tering and classification tasks, whereby the automatically acquired ontologies yield
a improvement competitive with the manually engineered ones.

1 Introduction

Text clustering and classification are two promising approaches to help users
organize and contextualize textual information. Existing text mining sys-
tems typically use the bag–of–words model known from information retrieval
(Salton and McGill (1983)), where single terms or term stems are used as fea-
tures for representing the documents. Recent work has shown improvements
in text mining tasks by means of conceptual features extracted from ontolo-
gies (Bloehdorn and Hotho (2004), Hotho et al. (2003)). So far, however,
the ontological structures employed for this task are created manually by
knowledge engineers and domain experts which requires a high initial mod-
elling effort. Research on Ontology Learning (Maedche and Staab (2001))
has started to address this problem by developing methods for the automatic
construction of conceptual structures out of large text corpora in an unsuper-
vised process. Recent work in this area has led to improvements concerning
the quality of automatically created taxonomies by using natural language
processing, formal concept analysis and clustering (Cimiano et al. (2004),
Cimiano et al. (2005)).

In this paper we report on text mining experiments in which we use
automatically constructed ontologies to augment the bag–of–words feature
representations of medical texts. We compare results both (1) to the base-
line given by the bag–of–words representation alone and (2) to results based
on the MeSH Tree Structures as a manually engineered medical ontology.
We show that both types of conceptual feature representations outperform
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the Bag–of-Words model and that results based on the automatically con-
structed ontologies are highly competitive with those of the manually engi-
neered MeSH Tree Structures.

The rest of this paper is organized as follows. Section 2 reviews related
work. Section 3 describes our approach for automatically constructing ontol-
ogy structures. Section 4 reviews the concept extraction strategies used to
augment bag–of–words vectors. Section 5 finally reports on the results of the
text classification and clustering experiments. We conclude in section 6.

2 Related Work

To date, the work on integrating background knowledge into text classifica-
tion, text clustering or related tasks is quite heterogenous. Green (1999) uses
WordNet to construct chains of related synsets from the occurrence of terms
for document representation and subsequent clustering. We have reported
promising results when using additional conceptual features extracted from
manually engineered ontologies recently in Bloehdorn and Hotho (2004) and
in Hotho et al. (2003). Other results from similar settings are reported in
Scott and Matwin (1999) and Wang et. al (2003).

One of the earlier works on automatic taxonomy construction is reported
in Hindle (1990) in which nouns are grouped into classes. Hearst’s seminal
work on using linguistic patterns also aimed at discovering taxonomic rela-
tions (Hearst (1992)). More recently, Reinberger and Spyns (2005) present
an application of term clustering techniques in the biomedical domain. An
overview over term clustering approaches for learning ontological structures
as used in this paper is given in Cimiano et al. (2005).

Alternative approaches for conceptual representations of text documents
that do not require explicit manually engineered background knowledge are
for example Latent Semantic Analysis (Deerwester et al. (1990)) or Prob-
abilistic Latent Semantic Analysis (Cai and Hofmann (2003)). These ap-
proaches mainly draw from dimension reduction techniques, i.e. they com-
pute a kind of concepts statistically from term co-occurrence information. In
contrast to our approach, the concept-like structures are, however, not easily
human interpretable.

3 Ontology Learning as Term Clustering

In this paper we adopt the approach described in Cimiano et al. (2004) and
Cimiano et al. (2005) to derive concept hierarchies from text using clustering
techniques. In particular we adopt a vector-space model of the texts, but
using syntactic dependencies as features of the terms1 instead of relying only
on word co-occurrence. The approach is based on the distributional hypothesis
1 Here we also refer to multi-word expressions if detected from the syntax alone.
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(Harris (1968)) claiming that terms are semantically similar to the extent to
which they share similar syntactic contexts. For this purpose, for each term
in question we extract syntactic surface dependencies from the corpus. These
surface dependencies are extracted by matching text snippets tagged with
part–of–speech information against a library of patterns encoded as regular
expressions. In the following we list syntactic expressions we use and give
examples of the features extracted from these expressions, whereby a:b ++
means that the count for attribute b of instance a is incremented by 1:

adjective modifiers: alveolar macrophages
macrophages: alveolear++

prepositional phrase modifiers: a defect in cell function
defect: in cell function ++, cell function: defect in ++

possessive modifiers: the dorsal artery’s distal stump
dorsal artery: has distal stump ++

noun phrases in subject or object position:
the bacterium suppresses various lymphocyte functions
bacterium: suppress subj ++, lymphocyte function: suppress obj ++

prepositional phrases following a verb:
the revascularization occurs through the common penile artery
penile artery: occurs through ++

copula constructs: the alveolar macrphage is a bacterium
alveolar macrophage: is bacterium ++

verb phrases with the verb to have:
the channel has a molecular mass of 105 kDa
channel: has molecular mass ++

On the basis of these vectors we calculate the similarity between two terms
t1 and t2 as the cosine between their corresponding vectors: cos(^(t1, t2)) =

t1·t2
‖t1‖·‖t2‖ . The concept hierarchy is built using hierarchical clustering tech-
niques, in particular hierarchical agglomerative clustering (Jain et al. (1999))
and divisive Bi-Section KMeans (Steinbach et al. (2000)). While agglomera-
tive clustering starts with merging single terms each considered as one initial
cluster up to one single cluster Bi-Section KMeans repeatedly splits the ini-
tial cluster of all terms into two until every term corresponds to a leaf cluster.
The result is a concept hierarchy which we consider as a raw ontology. Due
to the repeated binary merges and splits the hierarchy typically has a higher
overall depth as manually constructed ones. For this reason we consider in our
experiments a reasonable higher number of superconcepts than with manu-
ally engineered ontologies. More details of the ontology learning process can
be found in Cimiano et al. (2004) and Cimiano et al. (2005).

4 Conceptual Document Representations

In our approach, we exploit the background knowledge given by the ontolo-
gies to extend the bag–of–words feature vector with conceptual features on a
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higher semantic level. In contrast to the simple term features, these concep-
tual features overcome a number of shortcomings of the bag–of–words feature
representation by explicitly capturing multi–word expressions and conceptu-
ally generalizing expressions through the concept hierarchy. In our approach
we only consider concepts which are labelled by noun phrases. As a lot of
additional information is still hidden in the standard bag–of–words model we
use a hybrid representation using concepts and the conventional term stems.

Concept Annotation. We describe here the main aspects of the con-
cept annotation steps, the interested reader is referred to the more detailed
description in Bloehdorn and Hotho (2004). (1) Candidate Term Detection:
due to the existence of multi-word expressions, the mapping of terms to the
initial set of concepts can not be accomplished directly by compiling concept
vectors out of term vectors. We use a candidate term detection strategy that
moves a window over the input text, analyzes the window content and either
decreases the window size if unsuccessful or moves the window further if a
valid expression is detected. (2) To avoid unnecessary queries to the ontology
we analyze the part–of–speech patterns in the window and only consider noun
phrases for further processing. (3) Morphological Transformations: typically
the ontology will not contain all inflected forms of its entries. Therefore we
use a fallback strategy that utilizes stem forms maintained in a separate index
for the ontology, if the search for a specific inflected form is unsuccessful2.

Generalization. The generalization step consists in adding more general
concepts to the specific concepts found in the text, thus leading to some kind
of ‘semantic smoothing’. The intuition behind this is that if a term like arry-
thmia appears, the document should not only be represented by the concept
[arrythmia], but also by the concepts [heart disease] and [cardiovascular disease]
etc. up to a certain level of generality. This thus increases the similarity with
documents talking about some other specialization of [cardiovascular disease].
We realize this by compiling, for every concept, all superconcepts up to a
maximal distance h into the concept representation.

The result of this process is a “concept vector” that can be appended to
the classical term vector representation. The resulting hybrid feature vectors
can be fed into any standard clustering or classification algorithm.

5 Experiments

We have conducted extensive experiments using the OHSUMED text collec-
tion (Hersh et al. (1994)) which was also used for the TREC-9 filtering track3.

2 Typically, the problem of disambiguating polysemous window content has to be
addressed properly (Hotho et al. (2003)). The ontologies we report on in this
paper, contained only concepts that were unambiguously referred to by a single
lexical entry thus eliminating the need for word sense disambiguation strategies.

3 http://trec.nist.gov/data/t9 filtering.html
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It consists of titles and abstracts from medical journals indexed with multiple
MeSH descriptors and a set of queries with associated relevance judgements.

Ontologies and Preprocessing Steps: In our experiments we used
domain ontologies that were extracted automatically from the text corpus
on the one hand and the Medical Subject Headings (MeSH) Tree Structures
Ontology as a competing manually engineered ontology on the other. The
automatically extracted ontologies were built according to the process de-
scribed in section 3 using the 1987 portion of the collection, i.e. a total of
54,708 documents. The actual concept hierarchy was built using hierarchi-
cal agglomerative clustering or divisive Bi-Section KMeans. In overview, we
performed experiments with the following configurations:

agglo-7000: automatically constructed ontology, linguistic contexts for the 7,000
most frequent terms4, taxonomy creation via agglomarative clustering;

bisec-7000: automatically constructed ontology, linguistic contexts for the 7,000
most frequent terms4, taxonomy creation via Bi-Section KMeans divisive clus-
tering;

bisec-14000: automatically constructed ontology, linguistic contexts for the 14,000
most frequent terms, taxonomy creation via Bi-Section KMeans divisive clus-
tering;

mesh: manually constructed ontology compiled out of the Medical Subject Head-
ings (MeSH)5 containing more than 22,000 concepts enriched with synonymous
and quasi-synonymous language expressions.

In all experiments, term stems6 were extracted as a first set of features
from the documents. Conceptual features were extracted as a second set of
features using the ontologies above and a window length of 3.

Text Classification Setting: For the experiments in the text classifi-
cation setting, we also used the 1987 portion of the OHSUMED collection.
Two thirds of the entries were randomly selected as training documents while
the remainder was used as test set, resulting in a training corpus containing
36,369 documents and a test corpus containing 18,341 documents. The as-
signed MeSH terms were regarded as categories for the documents and binary
classification was performed on the top 50 categories that contained the high-
est number of positive training documents. In all cases we used AdaBoost
(Freund and Schapire (1995)) with 1000 iterations as classification algorithm
and binary weighting for the feature vectors. As evaluation measures for text

4 More accurately, we used the intersection of the 10,000 most frequent terms with
the terms present in the MeSH Thesaurus, resulting in approx. 7,000 distinct
terms here.

5 The controlled vocabulary thesaurus of the United States National Library of
Medicine (NLM), http://www.nlm.nih.gov/mesh/

6 In these experiments, term stem extraction comprises the removal of the standard
stopwords for English defined in the SMART stopword list and stemming using
the porter stemming algorithm.
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Table 1. Performance Results in the Classification Setting.

macro-averaged (in %)
Ontology Configuration Error Prec Rec F1 BEP
[none] term 00.53 52.60 35.74 42.56 45.68
agglo-7000 term & concept.sc10 00.53 52.48 36.52 43.07 46.30
agglo-7000 term & concept.sc15 00.53 52.57 36.31 42.95 46.46
agglo-7000 term & concept.sc20 00.53 52.49 36.44 43.02 46.41
bisec-7000 term & concept.sc10 00.52 53.39 36.79 43.56 46.92
bisec-7000 term & concept.sc15 00.52 54.36 37.32 44.26 47.31
bisec-7000 term & concept.sc20 00.52 55.12 36.87 43.86 47.25
bisec-14000 term & concept.sc10 00.53 51.92 36.12 42.60 45.35
bisec-14000 term & concept.sc15 00.53 52.17 36.86 43.20 45.74
bisec-14000 term & concept.sc20 00.52 53.37 36.85 43.60 45.96
mesh term & concept 00.52 53.65 37.56 44.19 47.31
mesh term & concept.sc5 00.52 52.72 37.57 43.87 47.16

micro-averaged (in %)
Ontology Configuration Error Prec Rec F1 BEP
[none] term 00.53 55.77 36.25 43.94 46.17
agglo-7000 term & concept.sc10 00.53 55.83 36.86 44.41 46.84
agglo-7000 term & concept.sc15 00.53 55.95 36.67 44.30 46.99
agglo-7000 term & concept.sc20 00.53 55.76 36.79 44.33 46.97
bisec-7000 term & concept.sc10 00.52 56.59 37.25 44.92 47.49
bisec-7000 term & concept.sc15 00.52 57.24 37.71 45.46 47.76
bisec-7000 term & concept.sc20 00.52 57.18 37.21 45.08 47.68
bisec-14000 term & concept.sc10 00.53 54.88 36.52 43.85 45.86
bisec-14000 term & concept.sc15 00.53 55.27 37.27 44.52 46.27
bisec-14000 term & concept.sc20 00.52 56.39 37.27 44.87 46.44
mesh term & concept 00.52 56.81 37.84 45.43 47.78
mesh term & concept.sc5 00.52 55.94 37.94 45.21 47.63

classification we report classification error, precision, recall, F1-measure and
breakeven point7.

Table 1 summarizes some of the classification results. In all cases, the
integration of conceptual features improved the results, in most cases at a
significant level. The best results for the learned ontologies could be achieved
with the bisec-7000 ontology and a superconcept integration depth of 15
resulting in 44.26% macro-avg. F1 which is comparable to the results for the
MeSH ontology.

Text Clustering Setting: For the clustering experiments we first com-
piled a corpus which contains only one label per document. We used the 106
queries provided with the OHSUMED collection and regarded every answer
set of a query as a cluster. We extracted all documents for all queries which
occur in only one query. This results in a dataset with 4389 documents and
106 labels (clusters). Evaluation measures for Text Clustering are entropy,
purity, inverse purity, and F1-measure7.

Table 2 presents the results of the text clustering task, averaged over
20 repeated clusterings with random initialization. With respect to macro-
averaging, the integration of conceptual features always improves results and
also does so in most cases with respect to micro-averaging. Best macro-
averaged results were achieved for the bisec-14000 ontology with 20 super-

7 For a review of evaluation measures refer to Sebastiani (2002) in the text classi-
fication setting and to Hotho et al. (2003) in the text clustering setting.
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Table 2. Performance Results in the Clustering Setting.

macro-averaged (in %)
Ontology Configuration Entropy F1 Inv. Purity Purity
[none] terms 2,6674 19,41% 17,22% 22,24%
agglo-7000 term & concept.sc1 2,6326 19,47% 17,68% 21,65%
agglo-7000 term & concept.sc10 2,5808 19,93% 17,55% 23,04%
agglo-7000 term & concept.sc20 2,5828 19,88% 17,69% 22,70%
bisec-7000 term & concept.sc1 2,5896 19,84% 17,72% 22,53%
bisec-7000 term & concept.sc10 2,5361 20,17% 17,38% 24,02%
bisec-7000 term & concept.sc20 2,5321 20,01% 17,38% 23,59%
bisec-14000 term & concept.sc1 2,5706 19,96% 17,76% 22,80%
bisec-14000 term & concept.sc10 2,4382 21,11% 17,68% 26,18%
bisec-14000 term & concept.sc20 2,4557 20,77% 17,46% 25,67%
mesh term & concept.sc1 2,4135 21,63% 17,70% 27,78%
mesh term & concept.sc10 2,3880 21,93% 17,64% 28,98%

micro-averaged (in %)
Ontology Configuration Entropy F1 Inv. Purity Purity
[none] terms 3,12108 14,89% 14,12% 15,74%
agglo-7000 term & concept.sc1 3,1102 15,34% 14,56% 16,21%
agglo-7000 term & concept.sc10 3,1374 15,21% 14,43% 16,08%
agglo-7000 term & concept.sc20 3,1325 15,27% 14,62% 15,97%
bisec-7000 term & concept.sc1 3,1299 15,48% 14,84% 16,18%
bisec-7000 term & concept.sc10 3,1533 15,18% 14,46% 15,98%
bisec-7000 term & concept.sc20 3,1734 14,83% 14,23% 15,48%
bisec-14000 term & concept.sc1 3,1479 15,19% 14,63% 15,80%
bisec-14000 term & concept.sc10 3,1972 14,83% 14,33% 15,37%
bisec-14000 term & concept.sc20 3,2019 14,67% 14,07% 15,36%
mesh term & concept.sc1 3,2123 14,92% 14,91% 14,93%
mesh term & concept.sc10 3,2361 14,61% 14,64% 14,59%

concepts. These result is competitive to the one we obtained with the mesh
ontology. Surprisingly the best micro avg. results could be found for the
strategy adding a single superconcept only.

6 Conclusion

The contribution of this paper is twofold. We presented a novel approach
for integrating higher-level semantics into the document representation for
text mining tasks in a fully unsupervised manner that significantly improves
results. In contrast to other approaches, the discovered conceptual structures
are well understandable while not based on manually engineered resources.
On the other hand, we see our approach as a new way of evaluating learned
ontologies in the context of a given text clustering or classification applica-
tion. Further work is directed towards improving the automatically learned
ontologies on the one hand. On the other, it will aim at a tighter integration
of the conceptual knowledge, including the exploration of more fine-grained
and unparameterized generalization strategies.
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