
Under review

FORMAL CONCEPTUAL VIEWS IN NEURAL NETWORKS

Johannes Hirth
Knowledge and Data Engineering Group
University of Kassel
Kassel
hirth@cs.uni-kassel.de

Tom Hanika
Knowledge and Data Engineering Group
University of Kassel
Kassel
hanika@cs.uni-kassel.de

ABSTRACT

Explaining neural network models is a challenging task that remains unsolved in
its entirety to this day. This is especially true for high dimensional and complex
data. With the present work, we introduce two notions for conceptual views of
a neural network, specifically a many-valued and a symbolic view. Both provide
novel analysis methods to enable a human AI analyst to grasp deeper insights into
the knowledge that is captured by the neurons of a network. We test the conceptual
expressivity of our novel views through different experiments on the ImageNet
and Fruit-360 data sets. Furthermore, we show to which extent the views allow to
quantify the conceptual similarity of different learning architectures. Finally, we
demonstrate how conceptual views can be applied for abductive learning of human
comprehensible rules from neurons. In summary, with our work, we contribute to
the most relevant task of globally explaining neural networks models.

1 INTRODUCTION

Neural networks (NN) are known for their great performance in solving learning problems. However,
these excellent results are almost always achieved at the price of human explainability. This problem
is addressed in research and practice from different standpoints. There are calls to refrain from using
NN for important problems and to rely on explainable methods, even if they give worse results in
terms of accuracy (Rudin, 2019). The second major direction is to develop methods for explaining
NN models. Such explanations can be classified as local explanations, i.e., why a particular data point
was treated in a specific manner (Ribeiro et al., 2016), and global explanations, i.e., approaches for
explaining the whole NN model. The latter can be achieved, e.g., by mapping the NN to an explainable
surrogate. A common approach for locally explaining NN models is to highlight activation at some
hidden layer (Fong & Vedaldi, 2018) or, if possible, project this inversely. For flat data, e.g., images,
this is a viable approach since an essential explanatory component, the human, can be integrated into
the process. This is not the case for high-dimensional or complex data. Global approaches are more
difficult and therefore less frequent. A typical idea is to find an (explainable) surrogate for a NN, e.g.,
symbolic regression (Alaa & van der Schaar, 2019).

We answer to the still growing interest for global explanations procedures for NN models by intro-
ducing a novel intermediate space, called (symbolic) conceptual views. We demonstrate how NN
models can represented in these views and how surrogate training, e.g., with decision trees, can profit
from this. We further demonstrate how to compare NN models, e.g., when derived from diverse
architectures, using Gromov-Wasserstein (Mémoli, 2011) distance within the views. Moreover, we
demonstrate how symbolic conceptual views can be used to represent NN models with formal concept
lattices (Ganter & Wille, 1999) and profit from its human-centered approach for explainable data
analysis. Finally, we show by an application of subgroup discovery how human-comprehensible
propositional statements can be derived from NN models with the use of background knowledge.
This allows us to extract global rules in form of propositional statements using the neurons of the NN.

2 RELATED WORK

Several approaches aim to provide insights or explanations into neural networks. Many of them
highlight parts of the input that were relevant for a particular prediction (Ribeiro et al., 2016), so
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called local explanations. Those however, rely on the user’s capability to comprehend input data
representations. Hence, this approach is infeasible for higher dimensional learning problems. To
overcome this limitation, the SOTA is to interpret models using symbolic concepts, an approach of
neuro→symbolic AI(Sarker et al., 2022). For example, Mao et al. (2019), Asai & Fukunaga (2018)
and Fong & Vedaldi (2018) introduce methods which classify the inputs of a model to pre-defined
concepts. Hence, they require manually created input representations for all pre-defined concepts,
in contrast of extracting them automatically. Particularly successful is TCAV (Kim et al., 2018),
which predicts the importance of user-defined concepts. The above are complemented by methods
that automatically detect concepts for a given set of input/output pairs through identifying similar
patterns of input samples at a given layer, e.g., ACE (Ghorbani et al., 2019). So far these methods do
detect only particularly outstanding concepts. Recent works try to estimate to which extent a detected
set of concepts is capable to approximate the model (Yeh et al., 2020). This approach, however,
emphasizes classification performance and not explainability, i.e., concepts that are important for
explanations may be omitted. This is in general true for surrogate based procedures that were not
designed towards human comprehensibility (Alaa & van der Schaar, 2019). Moreover, a recent
study shows that the translation of initial layers does often correlate with random layers or gradient
detectors in the input (Adebayo et al., 2018). The most crucial downside of the automatic detection
methods above is that although they provide symbolic concepts, these do not have to be interpretable.
The overall principle of our approach is based on the fact that a substantial portion of the input data is
aggregated and represented in the last hidden layer (Clark et al., 2019; Korbar et al., 2017).

A global interpretation of the NN needs a decoding into a human comprehensible symbolic view. A
mathematical method for human comprehensible conceptualizations in the language of algebra is
formal concept analysis (FCA) (Ganter & Wille, 1999; Wille, 1982). In particular its well-elaborated
conceptual scaling theory (Ganter & Wille, 1989) provides an extensive tool-set to analyze NNs.
This tool-set enables both the translation of neural representations into a symbolic space and further
on the translation of this space into a human explainable space (Hanika & Hirth, 2022; 2021).

3 THE VIEWS OF NEURAL NETWORKS

We introduce in the following two notions of conceptual view of a neural network, in detail a many-
valued and a symbolic view. Both provide novel methods to enable a human AI analyst to grasp
deeper insights into the knowledge that is captured by the neurons. In addition to that the symbolic
view facilitates the application of abductive learning procedures. This results in rules that allow to
explain a NN by means of human comprehensible terminology, as well as, in terms of the neurons.

Let N be the set of neurons of the last hidden layer of a NN. We interpret NNs as a function that
maps input objects g ∈ G, that are represented as g = (v1, . . . , vm) ∈ Rm, to outputs in [0, 1]|C| for
classes C. The parameter m specifies the number of input features (see Figure 1). Naturally, we can
interpret each neuron n ∈ N as a function by itself from the input layer up to the activation of n, i.e.,
n : Rm → R. The output neurons can be characterized analogously by a map c : R|N | → R. With
wi,j we address the weights connecting the output neuron ci ∈ C with hidden neuron nj ∈ N .

Definition 1 (Many-Valued Conceptual View) Let NN be a neural network, C its output classes
and N = {n1, . . . , nh} the neurons of the last hidden layer. We define the many-valued conceptual
view as V = (O,W), where O ∈ R|G|×|N | with value at (i, j) equal to the activation nj(gi), called
Object View, and W ∈ R|C|×|N | with value at (i, j) equal to the weight wi,j , called Class View.

To give a short motivation: With the object view O, we want to study the activation of the neurons
N given an object g. Complementary, with the class view W, we investigate the relation of the
neurons N to the outputs c ∈ C by their corresponding weights wi,j . For example, we refer
the reader to Figure 1, which depicts the object and class view (right) of the network (left). In
this, we find that nk(ot) is greater than n1(ot), from which we infer that the relation of ot to nk
is greater then n1. We want to employ the just introduced views to comprehend the complete
classification that is captured by a NN model. We can represent any object g as a row in the
object view matrix, i.e., O(g) := (n1(g), . . . , nh(g)). Analogously, we can represent any class
ci as a row in the class view matrix, i.e., W (ci) := (wi,1, . . . , wi,h). The outputs of the NN for
class ci follows from the term O(g) · W (ci) + b, where b is a bias. This can be rewritten as∣∣O(g)

∣∣ · ∣∣W (ci)
∣∣ cos(O(g),W (ci)) + b where cos(O(g),W (ci)) is the cosine value of the angle

2



Under review

between O(g) and W (ci). Thus, to understand the inner representation of the classes C within the
NN, it may be reasonable to grasp the objects and classes in the same space and classify objects
using similarity measures. Using this approach we can introduce an object-class distance map
dV : G × C → R, (g, c) 7→ d(O(g),W (c)), where a sensible choice for d is cosine similarity or
Euclidean distance. We will investigate both in Section 4.1. Hence, using dV and similar distance
maps forG×G andC×C, on can derive a pseudo metric space (G∪C, d̂V). From this representation
of G and C one can infer a simple classification map, e.g., by applying 1-NN classification.

Similarity of neural networks Conceptual views enable a direct comparison of NNs. One can
employ the Gromov-Wasserstein distance (Mémoli, 2011), as experimentally demonstrated in Sec-
tion 4.2. We contrast our results with a baseline of model fidelity. We may note two important facts.
First, our approach for similarity is comparable to the recent idea of relating neural networks to
particular kernel spaces (Shankar et al., 2020; Lee et al., 2019). This enables us to study how objects
are hierarchically clustered in such a space. We may stress that our notion does not consider how
objects are mapped into this (kernel) space, but rather investigates the space itself. Second, the used
GW distance is invariant with respect to permutations of the many-valued conceptual views.

3.1 SYMBOLIC VIEW

The next step is to scale the many-valued conceptual view into a symbolic space. We employ
conceptual scaling (Ganter & Wille, 1989) from formal concept analysis (FCA), where data is
represented in a formal context K = (G,M, I). There, G is a set of objects, M a set of attributes
and I ⊆ G×M is an incidence relation, where (g,m) ∈ I indicates that g has attribute m. From I
arise two derivation operators (·)I : P(G)→ P(M), with AI = {m ∈M | ∀g ∈ A : (g,m) ∈ I},
and analogously (·)I : P(M) → P(G), with BI = {g ∈ G | ∀m ∈ B : (g,m) ∈ I}. Applying
many-valued conceptual scaling to a many-valued data set yields a formal context. In this first attempt,
we decided for dichotomic scaling, using thresholds for the object view δO and the class view δW (see
Figure 1). As a final remark before we introduce the symbolic conceptual view on NN we want to
point out a simple but powerful observation. The to be employed relational structure is invariant with
respect to row- or column permutations in the related many-valued conceptual view ( Definition 1).
Definition 2 (Symbolic Conceptual View) Let V = (O,W) the many-valued conceptual view of a
NN and let δO, δW be threshold values. We define the symbolic conceptual view VD = (OD,WD) by

OD := (G,N ∪ N̄ , IO), with (g, nj) ∈ IO :⇐⇒ nj(g) > δO and
(g, n̄j) ∈ IO :⇐⇒ nj(g) ≤ δO

(Symbolic Object View)

WD := (C,N ∪ N̄ , IW), with (ci, nj) ∈ IW :⇐⇒ wi,j > δW and
(ci, n̄j) ∈ IW :⇐⇒ wi,j ≤ δW.

(Symbolic Class View)

We introduced with N̄ := {n̄ | n ∈ N} a set of artificial symbols and used them as defined above.

This definition allows for constructing human comprehensible explanations given a background
ontology, e.g., in form of human annotations of the objects or classes. We exemplify that in Figure 1

Neural Network
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. . .
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. . .
ot ×
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. . . Sml
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. . .
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Figure 1: A simplified neural network drawing (left), its many-valued conceptual view (middle) and
its symbolic conceptual view (right).
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using the formal context SN that employs interpretable features Sm1
, . . . , Sml

. We provide more
details in Section 5. Suitable threshold values δW, δO depend on the architecture of the to be analyzed
NN model. For example, if the activation function is ReLu, the neuron’s co-domain is positive. Thus
it becomes difficult to determine a reasonable δ for negative symbols N̄ , as studied in Section 4.3.

4 EXPERIMENTAL STUDY

We support our theoretical modeling of conceptual views, in particular the symbolic conceptual
view through an experimental study using common an well known data sets and NN models. First,
we evaluate the suitability of the in Section 3 introduced pseudo metric space by a classification
task. Second, we show how one may compare many-valued conceptual views (different NN models).
Third, we demonstrate how to derive a human comprehensible representation for a NN model, that
we can employ for explanations in Section 5. The code and trained models are available at GitHub.1

4.1 MANY-VALUED CONCEPTUAL VIEWS ON IMAGENET

We demonstrate that many-valued conceptual views are capable of capturing a large share of a
NN model. For this, we use all twenty-four NN models from tensorflow that are trained on the
ImageNet (Deng et al., 2009) data set. The object view is calculated using the test set, i.e., 100k
images, of ImageNet set used in the ILSVRC (Russakovsky et al., 2015) challenge. In Appendix,
Table 6 we compiled basic statistics on these networks and our views. Although we report in columns
two and four mean values and their standard deviation, we may stress that we do not consider the
individual values to be normal distributed.

Evaluate ImageNet Views To evaluate the quality of our views, we compare a one-nearest-
neighbor classifier on the in Section 3 introduced pseudo matric space (G ∪N, d̂V) directly with the
NN classification function on all 100,000 test images. In detail, we use model fidelity, i.e., we count
the instances where the 1NN outputs the same class label as the NN and normalize this number by
the cardinality of the test set. The results are depicted in Table 1. We differentiate in our experiments
between using cosine similarity and Euclidean distance within d̂V .

Observations We find that the view model is capable of achieving high fidelity (see Table 1). The
MobilNetV1 model is the only exception. Moreover, we can state that using the Euclidean distance
is superior to the cosine similarity in all instances. This is in particular true for the ResNet models,
where the difference is up to 0.6. Furthermore, for the EfficientNets we notice that there is an almost
monotone relation between the number of neurons N (last hidden layer) and the fidelity. All this
together suggests that the many-valued conceptual view is meaningful and that classification functions
that are based on the resulting psuedo metric space may be used as surrogates for the NN model.

4.2 SIMILARITY OF NEURAL NETWORKS

Based on many-valued conceptual view, we can derive for all NN models a pseudo metric space as
introduced in Section 3. Hence, given the theory about metric spaces there are different approaches
for comparing them. For example, one could compute the Gromov-Hausdorff (Mémoli, 2011)
distance. However, due to the vast number of data points, any direct computation of the GH distance

1https://github.com/FCA-Research/Formal-Conceptual-Views-in-Neural-Networks

Table 1: The fidelity between a NN model their MV conceptual view using 1-NN classifier. Find all
twenty-four results in Appendix, Table 5

Model Euclidean Cosine
VGG16 0.945 0.841
DenseNet201 0.972 0.728
MobilNetV1 0.575 0.449
ResNet152V2 0.999 0.314
EffB0 0.944 0.933
EffB7 0.985 0.979

4
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Figure 2: The similarity of twenty-four neural networks trained on the ImageNet data set. The
base-line (left) is pair-wise fidelity between the employed models compared to a similarity using
Gromov-Wasserstein distance on class view (right). Find the object view in Appendix, Figure 6.

is infeasible. A different approach, which is still costly, but can be performed for a subset of the data,
is the Gromov-Wasserstein (Mémoli, 2011) distance. In Figure 2 (right) we depict the individual
distances for all considered models with respect to the class and object view. We employed ten
percent of the test data set and applied a uniform probability measure on the data points, i.e., a
normalized counting measure. We compare our analysis to a baseline that is derived from the fidelity
measure (Figure 2, left).

Observations From the pairwise fidelity diagram (Figure 2, left), we can infer that almost all
models are very distinct with the exception of VGG16, VGG19, ResNet50 and the EfficientNet
instances. In addition we find that the later models become more similar with increasing number
of neurons. The similarity plot for the views are different from the fidelity plot. We can visually
identify clusters of models. These clusters do often correspond with similar networks architectures.
For example in the object view we observe two clusters. In the class view this clustering is finer.

4.3 SYMBOLIC CONCEPTUAL VIEW

In this section we study thoroughly the activation functions and the number of neurons for a reasonable
determination of threshold values in order to compute meaningful symbolic conceptual views.

Ablation Study To evaluate the influence of the choice of the activation function as well as the
number of neurons, we trained one NN architecture several times on the Fruits-360 (Mureşan &
Oltean, 2017) data set. The used data set contains 67,692 images of 131 types of fruits or vegetables.
The test set contains an additional 22,688 images. We train the architecture from the Fruits-360
experiment2 using all procedure parameters from Mureşan & Oltean (2017) and modified the last two
hidden layers. For the (last) hidden layer N we vary the size 2n between 24 and 29 with powers of
two. For the layer before that we follow the common approach for smooth decrease in dimension,
i.e., we chose 2

10+n
2 with 4 ≤ n < 10 dependent on the last hidden layer. For activation functions,

we studied the impact of ReLu, Linear, Swish and Tanh in all layers. For each parameter setting we
trained ten models and computed their respective views for the test data set, see their distributions
in Figure 3. Statistics on the quality of the computed views can be seen in Table 2. We tested these
distributions against normalization of the column vectors in the views and can report that the reported
results are invariant.

Observations In general, we observe that the distributions for the object views differ quite largely
among the different activation functions. From these we found that Tanh causes the most notable
seperation of positive and negative values. We depicted the results for TanH in Figure 3 and for
all other activation functions in Figure 7. Furthermore, we find that splitting with δO = 0 seems to
be meaningful for all examples with respect to separation and symmetry. This split into two set of
almost equal size. The same is true for δW. Apart from these values, we experimented in this and

2https://github.com/Horea94/Fruit-Images-Dataset
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O

W

Figure 3: The value distributions for the object (O) and class (W) view for ten runs using the Fruits-
360 data set and the Tanh activation function. The last hidden layer of size 24 (first column) to 29

(last column). The reader may find the plot for all activation functions in Appendix, Figure 7.

all following experiments with different approaches to determine thresholds, such as mean values,
median values, median per neuron, as well as kernel-density estimation for bi-variate Gaussians.
However, the split at 0 was favorable with respect to the achieved model fidelity. We report these
scores for Tanh inTable 2 and for all activation functions in Appendix, Table 7. We conclude from
our ablation study that the use of Tanh is suggested as well as δO, δW = 0. We acknowledge that the
used data set might influence this choice (Bellido & Fiesler, 1993).

Symbolic Conceptual Views of ImageNet Based on the just found parameters we computed the
symbolic conceptual views for the ImageNet models. We report the results in Table 3. We found
that the classes are uniquely represented (class separation equals 1), thus a perfection classification
procedure is theoretically possible using the symbolic view. However, we observe that a direct
application of 1-NN procedure using the binary vectors that arise from the symbolic view does
result in very poor classification performance for ReLu. In contrast to that, the Swish based models
achieved from mediocre to good results. Especially the larger (EfficientNet) NN models resulted in
better symbolic views. A reason for the unfavorable results with ReLu might esteem from its positive
co-domain, which hinders the construction of negated attributes N̄ in our approach.Some selected
distributions can be found in Appendix, Figure 8.

Symbolic Conceptual Views on Fruit-360 The twenty-four models in ImageNet employ ReLu
and Swish activation functions only. Thus, we want to complement our experimental study on s.c.
views with results for using Tanh, which we conduct again on the Fruits-360 data set. Hence, we
trained five models, namely the base-line model from Mureşan & Oltean (2017), VGG16, ResNet50,
IncV3, and EffB0, the latter initialized with the original ImageNet weights. With exception of the
baseline, we added to each model three dense layers (including dropout layers with p=0.2) on top,
that are sized 1024, 256, and 32. To all models we also added an additional layer of size 16. This
reduction in size added in order to enable human explainability. The baseline model as well as all
added layers employ the Tanh activation. The output (prediction) layer is a dense layer using softmax

Table 2: Results for the ablation study on the influence of the activation function and number of
neurons on the quality of the (Symbolic) object/class view. We measure the quality in terms of fidelity
of 1-NN to the original model, see V-Fid and SV-Fid for the symbolic case. Find the full table in
Appendix, Table 7.

24 25 26 27 28 29

Tanh
δO = 0 Split 49.7/50.3 49.7/50.3 49.8/50.2 49.9/50.1 50.0/50/0 49.9/50.1
δW = 0 Split 49.9/50.1 49.8/50.2 49.8/50.2 50.0/50.0 49.9/50.1 50.0/50.0
Model Acc 90.5± 0.8 94.3± 0.5 94.7± 0.5 94.9± 0.4 95.0± 0.4 94.8± 0.3
V-Fid 98.3± 0.5 99.5± 0.1 99.7± 0.0 99.7± 0.0 99.8± 0.0 99.8± 0.0
SV-Fid 94.3± 1.4 97.4± 0.4 97.7± 0.4 97.6± 0.1 97.8± 0.2 97.6± 0.2
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Table 3: The fidelity between six NN models and their symbolic conceptual view using 1-NN for
classification. Find all values in Appendix, Table 8.

Euclidean Cos Class Sep Activation
VGG16 0.552 0.552 1.0 ReLu
DenseNet201 0.000 0.000 1.0 ReLu
MobilNetV1 0.036 0.036 1.0 ReLu
ResNet152V2 0.000 0.000 1.0 ReLu
EffB0 0.758 0.758 1.0 Swish
EffB7 0.957 0.957 1.0 Swish

activation without bias. We used sparse categorical crossentropy as the loss function. All other
relevant parameters for reproducing our results are drawn from the published baseline model.

The results in Table 4 show that all models have high accuracy on the test data set, while the four
transfer learned models outperform the baseline. We want to stress that our predictive results are only
used to demonstrate that the model did fit to the classification problem. We find that both, Euclidean
and cosine based 1-NN did perform well on the MV as well as the symbolic conceptual view spaces.
In detail, we could not find significant difference between the representations. Moreover, we cannot
identify significant differences in the classification performance with respect to the NN model. We
also observed that an additionally trained decision tree classifier was unable to learn within the MV
conceptual view representation. However, the same procedure applied to the symbolic view was
capable of producing competitive classification results, a surrogate for the NN with very high fidelity.

Symbolic Conceptual Views through FCA Each algebraic relation involves exactly one natural
order structuring of the data involved by means of the underlying Galois connections. Through FCA
one can reveal this order by means of formal concepts, i.e., all (A,B) ∈ P(G)× P(M) such that
AI = B and BI = A. The sets A and B are called extent and intent, respectively. The reader may
notice a strong resemblance to maximal bi-cliques. The set of all formal concepts of a context K is
denoted by B(K) and its elements are ordered by inclusion ⊆ on the extent sets. The resulting order
structure B(K) := (B(K),⊆) constitutes a complete lattice that can be visualized as a line diagram.
Hence, applied to our analysis of NNs one may visualize the conceptual hierarchy learned by the
network and its size serves as an upper bound for the number of learned concepts.

Observations We computed the concept lattices for Base, ResNet, VGG16, IncV3, and EffB0 and
find, that their sizes vary between 126487 (VGG16) and 134100 (IncV3) for |N | = 16, and between
3,498,829 (VGG16) and 3,803,799 (ResNet50). If we restrict our computation to N , i.e., omitting
the artificially introduced negations N̄ , we find the concept lattice sizes decrease by one magnitude.
In detail, between 5200 (VGG16) and 6573 (EffB0) for |N | = 16, and 150884 (EffB0) and 198152
(IncV3) for3 |N | = 32. We compiled all values in Appendix, Table 9 Overall, we observe that all are
similar in size and large and therefore cannot be visualized using a line diagram. We note that formal
concepts are composed of combinations of features. The minimum number of encoded features is
present in so called meet-irreducible (MI) elements, i.e., concepts where the extent of (A,B) cannot
be written as an intersection of extents from B(K) \ {(A,B)}. Hence, the number of MI elements is
bound by the number of attributes in the context, which serves as a lower bound the concepts captured
by the NN model.

Independent of the size does this translation to the realm of FCA enable the application of vari-
ous knowledge-based methods, such as Description logic or Subgroup discovery, as investigated
in Section 5. Within FCA we might consider to analyze cuts of the lattice, in particular those where
we suspect problems in the representation. As we discovered in previous experiments, that Apple
Red, Pink Lady, Plum and Cherry are indistinguishable by some symbolic representations (Table 4),
one might want to “zoom” into those. We did this statistically with Figure 4 (top) and structurally
with Figure 4 (bottom). In the former on can identify formal concept based similarities among the
selected fruits and the number of their shared concepts. In the latter figure the reader can infer the
hierarchical dependencies between the different fruits (objects) indicated in color.

3In this experiment we also studied the influence of omitting the layer of size 16.
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Figure 4: FCA results for Apple Red, Pink Lady, Plum and Cherry using views with positive attributes.
Top: The columns labels of each heatmap displays the number of form. concepts. The number within
a cell is the number of shared concepts between the related row/column fruits. Heat indicates its
fraction. Bottom: Order-structured representation of the selected fruits. Formal concepts containing
Apple Pink Lady and Apple Red 1 are highlighted in Orange and Cherry 1 is highlighted in blue.

5 ABDUCTIVE LEARNING OF PARTIAL EXPLANATIONS

Symbolic conceptual views enable the application of various logical methods to derive human-
comprehensible (partial) explanations. We draw from this correspondence and construct a formal
context C = (C, SM , IC), where SM = {Sm1

, . . . , Sml
} is a set of human-interpretable features

that are known about the classes C, i.e., background knowledge.

Definition 3 (Symbolic Interpretation) Given the s.c. view VD = (OD,WD) of a NN, background
knowledge C, and a similarity relation ∼ on the classes P(C). Then is the formal context S =
(N,SM , R) with (n, Sm) ∈ R :⇐⇒ {n}IW ∼ {Sm}IC the symbolic interpretation of the NN with
respect to C and ∼.

We require ∼ to be reflexive and symmetric but not necessarily transitive. The task for symbolic
interpreting a NN is to deduce or infer ∼ using background knowledge, which is done in the next
section. Given a symbolic interpretation for a NN we are able to express neurons in terms of the
human-interpretable features SM by applying the incidence relation in S, i.e., for all n ∈ N one can
compute {n}R. Furthermore, if S is additionally equipped with propositional logic L(SM , {∨,∧,¬})
then FCA (Hanika & Hirth, 2022) also provides the means for expressing neurons in terms of
propositional statements.

8
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Figure 5: Exemplary results of the subgroup detection. Width indicates subgroup-size.

Evaluate the Symbolic View Interpretation We want to motivate how symbolic interpretations can
be used to interpret neuron in terms of (human-comprehensible) features SM and vice versa. To
demonstrate both cases, we analyze the symbolic view of the Fruit-360. The attributes SM we use
visual features (1), such as shapes or colors, and we used the Scientific classification taxonomy (2)
published in Wikipedia4 for each fruit/vegetable. We combined the German and English Wikipedia
articles in order to derive a data set as complete as possible. We infer the similarity relation in our
experiment using subgroup detection (Herrera et al., 2010), as implemented in pysubgroup.

We depict four example results in Figure 5, where the taxons are given in the respective diagram
titles, e.g., Apple, Orange. Diagrams on the left depict subgroups in terms of neurons, and, vice versa,
on the right in terms of interpretable features. For both sides we find on the abscissa propositional
statement combining the respective features.

From the high share (see ordinate) of the respective subgroups we can infer, that the propositional
statements using the neurons or SM features describe the taxons from adequately up to very good. In
particular for the latter case (right) we see that the subgroups are pure, yet, not complete. To give two
concrete statements: first, fruits that are not brown and not stained and not orange and not star shaped
will use neuron 1̄3 from N̄ . Second, if the neuron 1̄3 and 1̄4 and 9̄ are used by the NN this implies
that the fruit is orange with confidence about 0.54. Using this method one can infer the similarity
relation ∼ and provide an explanation framework.

6 LIMITATIONS AND CONCLUSION

The presented approach is novel and different former ideas with respect to three properties: first, we
do not employ further hardly explainable methods, such as autoencoders. Second, our method is
global by design. Third, conceptual views, as introduced in our work, do not require pre-defined
concepts and their related input representations. We accomplished this by decoding both, the weights
of all output neurons and the activations of the last hidden layer using symbolic conceptual views.

Our approach is limited by the necessary existence of multiple outputs. However, there are common
approaches for splitting single outputs. Yet, a more significant limitation concerns the restriction
to non-recursive architectures. Adapting our approach to such settings is probably possible, but
requires a substantial adjustment to the definition of views. Finally, our method requires for human-
comprehensible explanations the existence of domain-specific background knowledge.

4See for example https://en.wikipedia.org/wiki/Apple in the right box.
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Apart from this we envision that the presented link of NN models to FCA using symbolic conceptual
views allows for both the explainability of NNs as well as increasing the performance of NN surrogate
learning procedures. Therefore, this beneficial research line should be further investigated and tested.
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A APPENDIX

In this appendix we provide more figures and table data for our experimental study.
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Table 4: Five neural networks (using Tanh activation) and their (symbolic) conceptual views were
captured by different surrogates (decision tree, 1-NN). We report their fidelity and accuracy. In
symbolic conceptual view: IncV3 was unable to distinguish Cherry 1 and Plum; EffB0 was unable to
distinguish Apple Red 1 and Apple Pink Lady.

Model Model DTree Euclidean Cos
ACC ACC Fid ACC Fid ACC Fid

Baseline 0.936 0.017 0.017 0.935 0.989 0.935 0.988
VGG16 0.988 0.017 0.018 0.988 0.998 0.988 0.997
ResNet50 0.989 0.018 0.018 0.989 0.998 0.989 0.997
IncV3 0.983 0.013 0.013 0.983 0.999 0.984 0.999
EffB0 0.984 0.007 0.007 0.984 0.998 0.983 0.984
Symbolic Class Sep
Baseline 0.936 0.857 0.879 0.927 0.964 0.927 0.964 1.0
VGG16 0.988 0.972 0.977 0.988 0.994 0.988 0.994 1.0
ResNet50 0.989 0.952 0.957 0.988 0.996 0.988 0.996 1.0
IncV3 0.983 0.975 0.988 0.984 0.997 0.984 0.997 0.992
EffB0 0.984 0.938 0.934 0.984 0.996 0.984 0.996 0.992

Table 5: The fidelity between twentyfour neural networks and their object/class view using 1-NN for
classification.

Model Euclidean Cosine
VGG16 0.945 0.841
VGG19 0.942 0.842
IncV3 0.990 0.753
DenseNet121 0.978 0.737
DenseNet169 0.989 0.843
DenseNet201 0.972 0.728
MobilNetV1 0.575 0.449
MobilNetV2 0.947 0.925
NasNetMobile 0.935 0.808
NasNetLarge 0.880 0.831
ResNet50 0.954 0.800
ResNet50v2 0.995 0.734

Model Euclidean Cosine
ResNet101V2 0.995 0.466
ResNet152V2 0.999 0.314
IncResNetV2 0.999 0.983
XCeption 0.977 0.792
EffB0 0.944 0.933
EffB1 0.960 0.946
EffB2 0.969 0.957
EffB3 0.974 0.961
EffB4 0.981 0.972
EffB5 0.979 0.972
EffB6 0.982 0.976
EffB7 0.985 0.979
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Table 6: The average weights wi,j , object values ni(g) and the number of neurons |N | and activation
function f of the last hidden layer of tensorflow imagenet models.

Model W - values Bias O - values |N | f

VGG16 -5.359e-07 ± 0.008 1.404e-06 ± 0.191 0.679 ± 1.514 4096 ReLu
VGG19 -6.707e-07 ± 0.008 -1.287e-05 ± 0.192 0.613 ± 1.402 4096 ReLu
IncV3 -3.808e-05 ± 0.034 -0.0099 ± 0.308 6.025 ± 15.13 2048 ReLu
DenseNet121 2.139e-08 ± 0.049 -1.014e-07 ± 0.012 1.731 ± 4.603 1024 ReLu
DenseNet169 1.456e-08 ± 0.039 -1.038e-07 ± 0.012 1.675 ± 5.529 1664 ReLu
DenseNet201 1.019e-08 ± 0.036 -1.178e-07 ± 0.011 1.146 ± 4.167 1920 ReLu
MobilNetV1 -0.0001 ± 0.081 -0.005 ± 0.744 0.435 ± 0.838 1024 ReLu
MobilNetV2 -3.138e-05 ± 0.041 0.0002 ± 0.319 0.358 ± 0.747 1280 ReLu
NasNetLarge -2.080e-07 ± 0.026 4.424e-05 ± 0.040 0.198 ± 0.533 4032 ReLu
NasNetMobile -3.336e-07 ± 0.039 0.0001 ± 0.066 0.382 ± 4.389 1056 ReLu
ResNet50 3.774e-07 ± 0.033 -4.881e-08 ± 0.009 0.546 ± 0.871 2048 ReLu
ResNet101V2 6.668e-06 ± 0.027 0.0016 ± 0.292 39.97 ± 167.8 2048 ReLu
ResNet152V2 1.038e-05 ± 0.026 0.0016 ± 0.287 94.08 ± 187.4 2048 ReLu
ResNet50V2 8.014e-07 ± 0.028 0.0011 ± 0.292 19.91 ± 74.65 2048 ReLu
IncResNetV2 -3.060e-05 ± 0.037 -0.0012 ± 0.230 106.8 ± 124.9 1536 ReLu
XCeption -3.246e-06 ± 0.055 0.0008 ± 0.281 2.974 ± 13.41 2048 ReLu
EffB0 -7.495e-05 ± 0.068 -5.143e-05 ± 0.058 0.065 ± 0.321 1280 Swish
EffB1 -5.647e-05 ± 0.063 -4.343e-05 ± 0.045 0.056 ± 0.313 1280 Swish
EffB2 -7.152e-05 ± 0.059 -4.153e-05 ± 0.054 0.019 ± 0.260 1408 Swish
EffB3 -6.323e-05 ± 0.054 -3.547e-05 ± 0.046 0.010 ± 0.252 1536 Swish
EffB4 -3.106e-05 ± 0.050 -3.138e-05 ± 0.057 -0.039 ± 0.194 1792 Swish
EffB5 -2.043e-05 ± 0.049 -2.738e-05 ± 0.055 -0.036 ± 0.170 2048 Swish
EffB6 -8.656e-06 ± 0.046 -2.691e-05 ± 0.071 -0.043 ± 0.135 2304 Swish
EffB7 -9.562e-06 ± 0.041 -2.441e-05 ± 0.060 -0.041 ± 0.136 2560 Swish
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Figure 6: The similarity of twenty-four neural networks trained on the ImageNet data set. The
base-line (left) is pair-wise fidality between the employed models compared to a similarity using
Gromov-Wasserstein distance on the object (top right) and class (bottom right) view.
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Figure 7: These are the value distributions for the object (O) and class (W) view for ten run using the
Fruits-360 data set and the swish, relu, linear and tanh activation functions. The last hidden layer of
size 24 (first column) to 29 (last column).

15



Under review

Table 7: Results for the ablation study on the influence of the activation function and number of
neurons on the quality of the (Symbolic) object/class view. The measure the quality in terms of
fidelity of nearest neighbor classification to the original model, see V-Fid and SV-Fid for the symbolic
case.

24 25 26 27 28 29

Swish
δO = 0 Split 57.1/62.9 52.8/47.2 49.2/50.8 44.5/55.5 45.6/54.4 45.0/55.0
δW = 0 Split 65.4/44.6 65.0/35.0 62.0/38.0 60.1/39.9 57.2/43.8 56.5/43.5
Model Acc 93.5± 0.8 94.5± 0.5 95.3± 0.3 95.1± 0.3 95.4± 0.4 95.1± 0.5
V-Fid 99.5± 0.4 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0
SV-Fid 77.1± 9.2 88.8± 1.3 89.6± 1.6 88.8± 1.4 88.4± 0.9 86.7± 1.6
ReLu
δO = 0 Split 55.1/44.9 55.1/44.9 54.7/45.3 53.3/46.7 55.3/44.7 54.1/45.9
δW = 0 Split 66.3/33.7 66.7/33.2 64.0/36.0 61.6/38.4 58.9/41.1 58.2/41.8
Model Acc 93.7± 0.4 94.5± 0.5 94.9± 0.5 94.9± 0.5 95.0± 0.4 94.8± 0.6
V-Fid 99.7± 0.0 99.8± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0
SV-Fid 79.9± 3.7 89.0± 1.2 90.0± 1.2 89.5± 1.1 89.0± 1.5 88.2± 1.5

24 25 26 27 28 29

Linear
δO = 0 Split 49.8/50.2 49.6/50.4 49.5/50.5 49.9/50.1 49.9/50.1 49.9/50.1
δW = 0 Split 49.7/50.3 49.3/50.7 49.7/50.3 50.0/50.0 50.0/50.0 50.0/50.0
Model Acc 85.3± 0.6 88.8± 0.7 89.9± 1.0 92.0± 0.5 91.8± 0.9 91.5± 0.9
V-Fid 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0
SV-Fid 55.5± 1.9 64.7± 1.4 68.3± 2.6 74.8± 1.7 78.2± 2.1 81.5± 1.1
Tanh
δO = 0 Split 49.7/50.3 49.7/50.3 49.8/50.2 49.9/50.1 50.0/50/0 49.9/50.1
δW = 0 Split 49.9/50.1 49.8/50.2 49.8/50.2 50.0/50.0 49.9/50.1 50.0/50.0
Model Acc 90.5± 0.8 94.3± 0.5 94.7± 0.5 94.9± 0.4 95.0± 0.4 94.8± 0.3
V-Fid 98.3± 0.5 99.5± 0.1 99.7± 0.0 99.7± 0.0 99.8± 0.0 99.8± 0.0
SV-Fid 94.3± 1.4 97.4± 0.4 97.7± 0.4 97.6± 0.1 97.8± 0.2 97.6± 0.2

EffB7 VGG16

ResNet50 ResNet150V2

Figure 8: The value distributions for the object/class view for the EffB7, VGG16, ResNet50 and
Resnet150V2 Model.
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Table 8: The fidelity between twenty-four neural networks and their symbolic object/class view using
nearest neighbor and cosine similarity for classification.

1NN Cos Class Sep Activation
VGG16 0.552 0.552 1.0 ReLu
VGG19 0.5672 0.5672 1.0 ReLu
IncV3 0.000 0.000 1.0 ReLu

DenseNet121 0.000 0.000 1.0 ReLu
DenseNet169 0.001 0.001 1.0 ReLu
DenseNet201 0.000 0.000 1.0 ReLu
MobilNetV1 0.036 0.036 1.0 ReLu
MobilNetV2 0.305 0.305 1.0 ReLu

NasNetMobile 0.004 0.004 1.0 ReLu
NasNetLarge 0.009 0.009 1.0 ReLu

ResNet50 0.007 0.000 1.0 ReLu
ResNet50V2 0.001 0.003 1.0 ReLu

1NN Cos Class Sep Activation
ResNet101V2 0.012 0.012 1.0 ReLu
ResNet152V2 0.000 0.000 1.0 ReLu
IncResNetV2 0.000 0.000 1.0 ReLu

XCeption 0.220 0.220 1.0 ReLu
EffB0 0.758 0.758 1.0 Swish
EffB1 0.813 0.813 1.0 Swish
EffB2 0.869 0.869 1.0 Swish
EffB3 0.898 0.898 1.0 Swish
EffB4 0.929 0.929 1.0 Swish
EffB5 0.935 0.935 1.0 Swish
EffB6 0.951 0.951 1.0 Swish
EffB7 0.957 0.957 1.0 Swish

Table 9: The size of the concept lattices of the symbolic views in Table 4 (see |N | = 16) and for 32
neuron (see |N | = 32), for all (see All column) and only positive attributes (see Pos column).

Model |N | = 16 |N | = 32
All Pos All Pos

Base 130969 6517 3192044 155416
ResNet50 133130 5872 3803799 165009
VGG16 126487 5200 3498829 193516
IncV3 134100 5670 3782226 198152
EffB0 132403 6573 3767964 150884
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