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Abstract
The annual number of publications at scientific venues, for example, conferences and

journals, is growing quickly. Hence, even for researchers it becomes harder and harder to

keep track of research topics and their progress. In this task, researchers can be supported

by automated publication analysis. Yet, many such methods result in uninterpretable,

purely numerical representations. As an attempt to support human analysts, we present

topic space trajectories, a structure that allows for the comprehensible tracking of research

topics. We demonstrate how these trajectories can be interpreted based on eight different

analysis approaches. To obtain comprehensible results, we employ non-negative matrix

factorization as well as suitable visualization techniques. We show the applicability of our

approach on a publication corpus spanning 50 years of machine learning research from 32

publication venues. In addition to a thorough introduction of our method, our focus is on an

extensive analysis of the results we achieved. Our novel analysis method may be employed

for paper classification, for the prediction of future research topics, and for the recom-

mendation of fitting conferences and journals for submitting unpublished work. An

advantage in these applications over previous methods lies in the good interpretability of

the results obtained through our methods.

Keywords Topic Models � Non-Negative Matrix Factorization � Multidimensional

Scaling � Publication Dynamics � Interpretable Machine Learning

Introduction

The number of publications published in scientific venues, such as journals and confer-

ences, is vastly increasing. For instance, there were at least 5000 papers at major machine

learning conferences and journals in 2018, more than twice as many as in 2008 (Ammar

et al. 2018). Even though many venues emphasize a particular research field they do

exhibit a plurality of topics. This is a natural consequence observed when research fields

grow, which leads to new specializations and the emergence of new research topics. The

related advance in knowledge is, however, overshadowed by the increasing inability to
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maintain a comprehensive overview of a research field. Moreover, even for experts

understanding and tracking the topic dynamics of contemporary research fields is an

infeasible endeavor. Hence, the need for an automated approach to cope with the aforesaid

vast amount of publication data is pressing.

Answering to this we present a novel conceptualization for topic based analysis of

scientific publication venues. Our approach is based on topic models, a common class of

methods to analyze text corpora. By computing topic vectors for research papers we are

able to position the associated publication venues in a low-dimensional topic space. This

enables the comparison of conferences as well as journals and following their temporal

(topical) dynamics. A governing constraint in our work is to compute human inter-

pretable results. Thus, we employ non-negative matrix factorization (NMF), a model

whose topics are comparatively well comprehensible. In detail, we aggregate document

representations calculated by NMF over conferences/journals and years. This allows to

capture the temporal topical development of scientific venues. Moreover, we semi-auto-

matically select an appropriate number of topics based on a coherence measure. Addi-

tionally we take advantage of proper visualization techniques.

Altogether this results in the scientometric analysis of what we call topic space tra-
jectories (TST). Despite the availability of almost all the building blocks, no one, to the

best of our knowledge, has presented an akin notion for publication data analysis. We

demonstrate the applicability of our approach on a publication data set of the top tier

machine learning conferences covering the years from 1969 to 2018. In particular we track

32 publication venues in topic space and depict their topical drift. What is more, we

introduce topic densities (i.e., distributions) for publication venues. Besides scientometric

analysis we envision multiple applications of our work. First, we think that TST may be

employed in conference or reviewer recommendations for new research papers in classi-

fication based approaches. Second, one may extrapolate the topical drift of conferences

into the future. Third, our method may be transferred to the analysis of other text domains,

such as news articles or patent applications.

Our work is organized as follows: First, we present our method for obtaining document

and venue representations as well as their trajectories in topic space (‘‘Topic space tra-

jectories’’ section). In the subsequent (‘‘Case study on machine learning publications’’

section), we introduce our case study on a machine learning publication corpus. We

demonstrate for the resulting topic space a collection of interpretation approaches

in (‘‘Interpreting topic space trajectories‘‘ section). Before concluding our work

in ‘‘Conclusion’’ section). we give an overview of related work in (‘‘Related work’’

section).

Topic space trajectories

In this section we describe our overall method, which is depicted in Fig. 1. The essential

part is the publication corpus, from which we extract a subset of papers relevant for the

analysis, for example, the subset of machine learning papers of certain venues. From this

corpus we train a topic model using non-negative matrix factorization (NMF). Additionally

to topics, we obtain embeddings (i.e., representations) of papers and venues, which will

allow the definition of venue trajectories in topic space.
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Publication corpus

We consider a corpus of publications D as a set of papers, each of which appeared at a

certain venue (conference or journal) in a certain year. At this point we omit a thorough

discussion of preprocessing technicalities and defer the reader to (‘‘Case study on machine

learning publications’’ section). Equipped with this we may define what a publication

corpus is in this work.

Definition 2.1 (Publication Corpus) A publication corpus is a ternary relation

D � P � O � Y where P is a set of papers, O is a set of publication venues (outlets) and

Y � N is a set of natural number indicating the publication years. Furthermore, it holds

8ðp; o; yÞ 2 D : fðo; yÞ 2 O � Y j ðp; o; yÞ 2 Dgj ¼ 1, i.e., there is a unique venue and year

for each paper.

We may note that papers, venues, and year are just names. Hence, a publication corpus can

be substituted by any structure bearing the same construction, e.g., news articles in certain

newspapers on certain days.

Document representation in topic space

Say the number of papers (documents) in a publication corpus is d and the set of all words

from all these documents is of size n. There are various methods for embedding these

documents into a topic space (commonly referred to as topic models). Most of them

employ a real-valued word-document matrix as starting point. Hence, we need to represent

all elements p 2 P as elements of Rn
� 0. Therefore we consider in the following p to be an

element of Rn
� 0. In this representation each vector component denotes a word-weight.

Such a weight for a particular word can be, for example, the word-frequency (term-
frequency) or a more sophisticated approach like tf-idf (Ramos 2003). Having the vector

representations of all publications we can construct the word-document matrix V simply by

juxtaposing all those vectors. A topic model then finds a representation of that word-

document matrix V as a product of two or more matrices. These factors represent particular

structural elements of the resulting topic space, foremost the topics and some

Publication Corpus

NMF Topic ModelTopics Paper Embeddings

Venue EmbeddingsTopic TrajectoriesTopic Coherence

Training

Topic
Number

Fig. 1 Depiction of our method. Each box contains some data or (intermediate) result. Arrows indicate
where data or results are an input for the subsequent box
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representation for every document in this space, i.e., as a linear combination of topic
vectors. An obvious goal here is that the number of topics t is substantially smaller than d.

A very prominent topic model, called Latent Semantic Analysis (LSA) (Deerwester

et al. 1990), is based on the singular value decomposition of the word-document matrix.

This method has been proven to work well for various natural language processing tasks,

e.g., in Steinberger and Křišt’an (2007), in Pu and Yang (2006) or for recommendations of

scientific articles in Chughtai et al. (2020). Nonetheless, we decided against its application

in our work. The reason for this is that the results are difficult to comprehend or explain by

humans. This problem arises from the fact that topics in LSA can contribute positively and

negatively to the topical document representation. Another well-employed method is latent
Dirichlet allocation (LDA) from Blei et al. (2003). It is based on a probabilistic model

where documents are assumed to be generated from a distribution over topics, which

themselves are distributions over words. While LDA generally achieves very good results,

e.g., in text classification applications, it is known to fall short for small documents like

paper abstracts. This has for example been shown empirically on Twitter posts in Hong and

Davison (2010). Since we do prefer for our modeling a method that is able to cope with

small documents we discard using LDA. The same holds for well-known investigated

methods based on doc2vec (Le and Mikolov 2014). In doc2vec documents are embedded

together with words in a real valued vector space of a chosen dimensionality. This is done

such that related words and documents are mapped closely together and unrelated ones far

from each other, with respect to some metric in that vector space. This method, however,

does not directly result in a topic space representation of the documents. While nearby

words of a document give some idea of its topic, these words may be different for each

document. In contrast to this, we require that every document is represented by the same

consistent set of topics. This allows for a meaningful comparison of documents in terms of

their topics as well as the analysis of topic dynamics.

Non-Negative Matrix Factorization

We now explain the used topic model NMF in more detail. Readers already familiar with

or not concerned with the mathematical details of this method are advised to skip this

section. We employ non-negative matrix factorization (NMF) (Lee and Seung 1999) for

discovering paper topics and embedding papers into the topic space Rt for a chosen

dimensionality t 2 N[ 0. We start with a word-document matrix V 2 Rn�d
� 0 , with n being

the number of words and d the number of documents. In this matrix, each column is a

document vector in which each component is a word weight. A word weight can be, for

example, the term frequency in the document or the product of the term frequency and

inverted document frequency (tf-idf). NMF finds an approximate factorization V � WH.

The factorization is achieved through minimization of a distance d(V, WH), typically

achieved through multiplicative update rules. As a distance d we utilize (as commonly

applied) the Frobenius norm of the matrix difference V � WH, i.e.,

dðV;WHÞ:¼jjV � WHjjF . The Frobenius norm jjAjjF of an m � n matrix A with entries aij

is
Pm

i¼1

Pn
j¼1 jaijj2. In the following we will address this distance also by the name re-

construction error. After the minimization the left factor W 2 Rn�t
� 0 contains in each col-

umn a topic vector of word weights. The factor H 2 Rt�d
� 0 contains in each column a

representation of a document in topic space. Typically this representation is of much lower

dimensionality than the original document representation, i.e., t 	 n.
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The reason for the superior interpretability of topic models obtained by NMF is that all

elements in W and H are constrained to be positive. Hence, all components of a topic are

additive. Additionally, in the NMF variant we use the topic vectors in W as well as the

document vectors in H are constrained to have L1-norm 1. Therefore, a document V
i

(denoting the i-th column of V) can be (approximately) reconstructed as the weighted sum
Pt

j¼1 HjiW
j of the topic vectors tj:¼W
j found through NMF. More precisely, any docu-

ment is a convex combination of the topic vectors. The components Hji are interpretable as

the proportion of the topics j 2 f1. . .tg in the i-th document. The components of a topic

vector tj can be interpreted as the relative contribution of words to the topic. If the topic

vectors tj are linearly independent, they form a basis of the t-dimensional topic space.

Hence, the vector di:¼H
i contains the coordinates of the i-th document embedded into this

topic space.

Venue representation and trajectories in topic space

Since the ultimate goal of this work is to analyze the dynamics of publication venues in

topic space, we need to find a (computable) representation of such venues, based on the so-

far discussed document representations. Hence, we decided to represent publication venues

through the centroid of their document embeddings. Employing centroids appeared to us as

a natural modeling decision, since they represent the average of paper vectors, and thus the

main topical research focus of a venue. Formally, for an index set I � f1; . . .; dg let the set

DI :¼fdi j i 2 Ig be the representations of documents obtained through NMF, i.e., a set of

the columns from matrix H. We then represent this set through their centroid rI :

rI :¼
1

jDI j
X

i2I

di

A meaningful set I may index all documents from a specific venue from a specific year

y 2 Y or from a specific venue in a specific year. By abuse of notation we may refer to the

index set of a specific venue o and year y by I(o, y). Using this we may use the shorthand

rIðo;yÞ for the centroid of a specific venue o 2 O in a specific year. We note that this

centroid does exist if and only if the combination of y and o is present in the publication

corpus.

Definition 2.2 (Topic space trajectory (Venue)) For a publication corpus D � P � O �
Y and a venue o 2 O we call

sðoÞ :¼ fðrIðo;yÞ; yÞ j 9p 2 P : ðp; o; yÞ 2 Dg

the topic space trajectory (of venue o).

Hence, to obtain a trajectory of a venue, we calculate one centroid for each conference

year. The set sðoÞ can easily be linearly ordered using the second element of all pairs

ðrIðo;yÞ; yÞ and will therefore be considered a linearly ordered set in the following. This

order in time justifies the name trajectory. The idea of venue trajectory is obviously

adaptable to other entities, such as sets of venues or author trajectories in topic space.
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Calculating an optimal topic number

The utility of the just defined idea for topic space trajectories for analyzing a publication

corpus depends on the properties of the concrete topic space. Most important is the number

of topics. On the one hand this number has to be large enough to discriminate elements of

the topic space. At the same time we require this number to be small in order to maintain a

human interpretability. A general procedure to select an optimal topic number t̂, is to

calculate a topic model for different values of t as well as the value of a measure that rates

the quality of the resulting topic model. For the final model, one then chooses the t with the
maximum quality. In research on topic models and natural language processing in general,

an established family of quality measures is called coherence measures. As the name

suggests, the objective behind these is to evaluate the topical coherence of a set of words

(which, for example, represent a topic), i.e., how strongly the words are interconnected

semantically.

The concrete coherence measure we use is called the CV measure and has been

described in Rosner et al. (2014). The authors of that work have shown that amongst a

variety of coherence measures, CV has the highest correlation with topic interpretability

ratings from human annotators. Hence, employing this measure coincides with our goal of

selecting topics with good interpretability. We will now describe the measure in detail.

Although we did not invent it, our contribution here is a much more concise explanation of

how to calculate it. In the original work, CV is embedded into an abstract framework for

coherence measures. The explanation is therefore scattered in text and formulas across

many pages. We also give an interpretation of the measure, which has not been done in the

original work.

Generally speaking, the CV measure for a topic is determined from co-occurrence

statistics of the top-n terms (ranked by their weights). The overall coherence of a model is

calculated as the arithmetic mean of the topic coherences. The computation of the measure

for one topic is achieved as follows: For each of the top n words w in the topic, a so-called

context vector vw is created. The components of this context vector in the CV measure are

the normalized pointwise mutual information (NPMI) between w and all the top terms in

the topic (including w itself). As an example, let n:¼4 and let the top n terms of a topic be

the set fsearch; query; engine; userg. Then the context vector for the term search is

determined via

vsearch ¼

NPMIðsearch; searchÞc

NPMIðsearch; queryÞc

NPMIðsearch; engineÞc

NPMIðsearch; userÞc

0

B
B
B
@

1

C
C
C
A
:

The parameter c 2 ð0;1Þ is used to put more or less weight on higher values of the NPMI.

The NPMI between two words w and v is calculated as follows:

NPMIðw; vÞ ¼ PMIðw; vÞ
� log pðw; vÞ þ e

¼
log

pðw;vÞþe
pðwÞpðvÞ

� log pðw; vÞ þ e

In the formula above, p(w) is the probability of the word w and p(w, v) is the probability of

w and v occurring together. The value e is a small constant to avoid logarithms of zero. The

probabilities are determined from the same corpus on which the topic model is trained.

More specifically, a sliding window of size sw and step size 1 is put over each document.
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Each step of the window over all documents defines what we will call here a pseudo-
document. The probability of a word (or two words) is then calculated as the number of

pseudo-documents in which the term occurs (or both terms occur) divided by the total

number of pseudo-documents. More formally, let D be the set of pseudo-documents, and

each d 2 D a set of words w. Then pðwÞ:¼jfd 2 D j w 2 dgj=jDj and

pðw; vÞ:¼jfd 2 D j fw; vg � dgj=jDj. Once all context vectors have been determined, the

coherence measure CV can be calculated as follows:

CV ¼ 1

n

Xn

i¼1

scosðvwi
;
Xn

j¼1

vwj
Þ

The cosine similarity scosðw; vÞ between two vectors w and v is calculated by w�v
jjwjj�jjvjj and it

equals the cosine of the angle h between the two vectors. Since the angle depends only on

the direction of the two vectors, not their length, we can write

scosðvwi
;
Pn

j¼1 vwj
Þ ¼ scosðvwi

; 1n
Pn

j¼1 vwj
Þ. The CV measure can thus also be interpreted as

the average cosine similarity between the context vectors and their centroid 1
n

Pn
j¼1 vwj

.

The CV measure has three parameters: The number of top terms n, the size of the sliding
window sw and the weight c. We follow the recommendations and results from the paper

Rosner et al. (2014) and the default values in gensim of n ¼ 20, sw ¼ 110 and c ¼ 1. Note

that with our paper abstracts a window of size 110 often contains the whole document.

Hence, it might be worth considering smaller window sizes in future research.

Case study on machine learning publications

We conduct a case study for topic space trajectories applied to a machine learning paper

corpus. The decision for using research articles from machine learning is motivated by the

fact that we ourselves are researchers in that field and thus aware of its subfields and

development. We claim that the choice of a more specialized topic does neither limit the

applicability of our approach nor the usefulness of interpretation methods, which will be

presented in Section 4.

Dataset and filtering

We use the Semantic Scholar Open Research Corpus for our analyses (Ammar et al. 2018).

Our version of this corpus is the dump from January 31st, 2019. We extract papers from the

top 32 machine learning conferences and journals compiled in Kersting et al. (2019). We

also added the IJCAI conference, which is another top-tier conference. For each paper, we

have the paper title, the paper abstract as well as author and citation information. Hence,

we emphasize here that our work is based on paper abstracts rather than full texts. Figure 2

shows the number of papers in our data set by venue and year. When all papers are

included, these date back until 1969. However, in this figure we only depict years, in which

more papers from different venues are included. Since our dump of the Open Research

Corpus is from early 2019, for this year it only contains a small number of publications.

Hence, we also leave out 2019 in the figure.

To ensure a good coverage of venues, we manually compared the number of papers of

many randomly chosen years to the numbers counted in conference proceedings and

journal volumes. We estimate that for the largest number of cases more than 80% of

published papers are covered by our data. However, this is a very rough estimate and can
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sometimes vary from venue to venue. For some of our analyses, we remove years or

venues with very few papers from our data. In our estimation of conference topics, these

few samples would otherwise lead to a skewed estimate of average topics. As an extreme

example, we found a case, where the topic vector of a conference in a year was based on

only one paper. In this case, the difference to previous and subsequent conference years

was quite substantial, which made us aware of the problem.

We sometimes observed introductions to proceedings or journals being listed as sepa-

rate publications in the data set. We remove these by heuristics based on the publication

title. More specifically, we remove publications starting with the word ‘‘Publication’’ or

including the substrings ‘‘Introduction’’ and ‘‘special’’ or ‘‘Special’’. We use this latter

heuristic because the titles for some of such publications started with ‘‘Introduction to

Special Issue of’’, where the word ‘‘special’’ is sometimes written in lower case and

sometimes in upper case. Although this simple detection mechanism could lead to false

positives in some cases, we found it to work reasonably well on our subset of the Open

Research Corpus.

A problem we found with the Open Research Corpus is that the abstracts of many

publications are missing. We experimented with representing such papers only through

their title. This, however, leads to extremely short representations which do not cover well

the actual topical content. The main reason for this is their sparseness, i.e., few words being

contained such that few co-occurrence statistics between words can be gathered. Addi-

tionally, paper titles are sometimes designed to be catchy instead of only representing

content or they contain the name of a self-developed method. Such titles can be misleading

for an automated analysis. Therefore we decided to fully remove all papers without an

abstract from our data set. A different strategy here would be to incorporate other

Scientometric data, such as citations or keywords or to merge in paper abstracts from

further data sources. While it can be extremely useful to incorporate such further

Fig. 2 Number of conference papers per year in our data set. The figure shows only a subset of the data. The
area of each circle represents the number of papers in the conference
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information, they either open up new problems on their own or, as in the case of keywords,

can pose similar problems as paper titles. We hence restrict our work to incorporating only

paper abstracts as a data source. Nonetheless, further data sources could open up inter-

esting ways to the enhancements of our method in future research. Altogether, after this

process, we are left with about 61 thousand machine learning papers prepared for our

analyses, i.e., which are equipped with a venue name, a title, a year and an abstract text

and, additionally, the title of the work.

Preprocessing

For our analyses, we use the gensim library for the Python programming language

(Řehůřek and Sojka 2010). This widely used library provides implementations of many

different topic models together with various methods for natural language processing tasks,

e.g., preprocessing. For each paper, we only use the text from the paper abstract. In Scholz

et al. (2014) it has been shown that paper abstracts are sufficient to represent the content of

publications and even can outperform models using the full paper text. This is a natural

consequence of the fact that abstracts consist of a condensed summary of the research

presented in the paper, but without additional, more ‘‘noisy’’ discourses that might be

provided in the full text. We proceed by converting the texts to lower case, tokenizing and

removing stop words with the method remove_stopwords from gensim, which is based on a

hard-coded list of stop words that apparently has been designed by the gensim developers.

Stop words are words like ‘‘the’’, ‘‘such’’ or ‘‘and’’, i.e., words which frequently occur in

text but do not provide much topical information. The concrete list can be found in the

gensim source code1. In natural language processing tasks, attempts are often made to

reduce different word forms to a common word stem, e.g., through the Porter stemming

algorithm. Stemming reduces the size of the vocabulary and thus leads to increased per-

formance (in terms of speed) of subsequent calculations. However, it is also known to lead

to word representations that are often no ‘‘real words’’ anymore. It is also known to reduce

unrelated words to the same stem (e.g. university and universe both being mapped to

univers). Due to these disadvantages we do not use stemming. Finally, we represent each

document in a vector space using tf-idf weights. In this, we remove all terms from the

model that occur less than ten times in our data set. Our aim here was to speed up

subsequent calculations considerably without losing the very important words. The cut-off

value is of course dependent on the corpus size. We determined its order of magnitude by

looking at the term distribution that we will address in more detail in Section (‘‘Abstract

length and term distribution’’). The reasoning here is that many terms exist, which are very

unlikely to occur in a document and thus do not contribute much to calculated topics.

Through their removal, we considerably reduce the size of the vocabulary and hence of the

matrices in NMF. This improves memory usage as well as calculation times. A similar

approach has been used in van Eck and Waltman (2007a), where concepts (small sets of

words) appearing in less than ten documents were removed from analysis. Through this

process, we obtain the n � d word-document matrix V ¼ ðwÞij with entry wij containing the

tf-idf-weight of word i in document j. The column vectors of V equate the papers P, which
together with other data from the Open Research Corpus form a publication corpus D,

cf Definition 2.1.

1 https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/parsing/preprocessing.py.
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Matrix factorization

After having obtained a word-document-matrix V as described in the previous section, we

apply to it the NMF-implementation from gensim using the default parameters. Since the

minimization process in this implementation of NMF relies on sampling as well as ran-

domly initialized matrices, it is nondeterministic. Hence, we obtain different results in each

run of the algorithm. Consistent to the findings in Belford et al. (2018), our experience is

that these results are nonetheless very stable. This especially holds in comparison to LDA,

with which we also experimented. To determine the topical stability, we manually com-

pared the rankings of the top terms of the learned topics. In almost all instances these

ranked terms were nearly the same with slight variations in their order. Only some few

topics were totally different in their content when running the learning algorithm repeat-

edly. We also briefly experimented with the parameters of NMF, namely the initialization

method (e.g., to a non-negative double singular value decomposition instead of random

values) and the minimized reconstruction error, which can be changed to the Kullback-

Leibler divergence. Gensim does not have parameters to change the initialization method

or the objective function of the minimization. We therefore experimented for this with the

implementation from the python package scikit-learn. Subjectively we did not observe

clear improvements or even strong differences and hence relied on the default parameters

of the gensim implementation. To test for convergence of the gensim implementation of

NMF, we plotted the error curves for repeated runs of the algorithm and with different

parameters (such as a larger number of iterations over the data set). We found the error

curve to very consistently converge to a low value after having seen about one third of our

data set. Hence, no further parameter tweaking was necessary in our case.

Optimal topic number

We calculated the coherence measure CV for every topic number from 1 to 25. The results

of these calculations are given in Fig. 3 (left). We also calculated CV for some larger

values, namely for each topic number t from the set f30; 50; 100; 200; 300; 400; 500g. The
results are not depicted here, since the coherences did not improve. We achieved the

maximum coherence with a topic number of t ¼ 22. We therefore use 22 topics in our

subsequent analysis. Note that for each topic number, we trained one single instance of the

NMF model. We did this with a fixed random seed to ensure reproducibility. NMF is

nondeterministic and the achieved model quality could actually vary from run to run. Our

reasoning here was that NMF is still relatively stable. However, for future work we would

recommend to train multiple models for each topic number and use the one with the

maximum coherence. Using this method the full process of finding a model with a good

topic number can be automated.

Before the CV measure, we experimented with other heuristics to select a topic number.

As an example, we tried to take advantage of the matrix reconstruction error mentioned in

(‘‘Document representation in topic space’’ section). This error optimally should be a

monotonically decreasing function of the number of topics, since the convex combination

of more topic vectors should allow for an equally or more accurate document recon-

struction. Our intuition was that plotting the reconstruction error for an increasing number

of topics should result in a curve that starts with a strong (negative) slope and slowly

converges to a minimal error with a slope close to zero. Our idea was then to select the

topic number through the elbow criterion, i.e., by finding a point where the further decrease
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of the error with increasing t is neglectible. Figure 3 (right) shows the curve resulting from

this approach. While it matches our intuition, the optimal number of topics would lie

somewhere near 500. We find this number too large to give a comprehensible overview

over research topics. We conjecture, however, that our approach would lead to success in

selecting a good model for other downstream tasks such as classification.

Abstract length and term distribution

Since we work with relatively short paper abstracts instead of full paper texts, we deem it

necessary to get an overview over some statistical properties of our data. Even more so,

since our texts are shortened further through stop word removal and since real world data

sets are sometimes erroneous, we need to ensure that mostly enough words are left with

actual topical information. We also want to categorize our data in terms of a comparison to

data sets from other text domains, to which our analysis methods could be applied.

First, we look at the distribution of the abstract lengths. In Fig. 4, this distribution is

given before and after stop word removal. We see that the average abstract consists of

about 152 words, while the median is 145 due to a skewed distribution and some excep-

tionally long outliers. Paper abstracts are therefore longer than Twitter posts, which

originally had a character limit of 140 that has nowadays been increased to 280. Hence,

more information about the topic is included in a paper abstract. The order of magnitude,

however, is still similar if we assume an average word length of five characters (a common

assumption made in typing speed tests). Other document types such as web sites typically

are several orders of magnitude larger in their word number. Once we remove stop words

from the abstracts, their average length decreases quite substantially to only 92 words and a

median of 86. Hence, about one third of words in a paper abstract are stop words with little

information.

Next, we analyze how frequently different words (terms) occur. Figure 5 shows the

results of this analysis in a log-log-plot before (left) and after stop word removal (right). In

the left plot we notice that before stop word removal, term frequencies follow Zipf’s law

(Zipf 1949), as expected. Zipf’s law is the empirical observation that when terms are

ranked by their frequency of occurrence, this frequency is distributed inversely propor-

tional to their rank, i.e., Pn � 1=ra for some a[ 0. Stop words are words which occur

frequently while containing little information. Hence, after their removal, highly ranked

Fig. 3 We present for different topic numbers Left: The coherence measure CV . Right: The matrix
reconstruction error
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words are less frequent in the distribution as can be seen in Fig. 5 (right). This leads to the

removal of words that are important for the matrix reconstruction error but have no use for

topic discrimination.

Interpreting topic space trajectories

After having described the circumstances of our case study, we are now presenting the

actual topic space trajectories that we calculated from our paper corpus. What is more, we

give interpretations and visualizations of our findings. While we conducted our study on a

particular research field that we are familiar with, our approach here could be applied to

other fields and text domains. Hence, our concrete analysis at this point simultaneously

serves as an example of a generalizable approach.

Found topics

Table 1 shows the topics identified through NMF. Each topic is represented by its top ten

terms, determined from the word weights in its topic vector. We manually assigned a

number and a name to each topic. The name is based on our own interpretation of the top

words in a topic. For this, we considered up to 50 terms per topic. We may refer to some of

these additional top words where we consider it useful for the interpretation of a topic.

Most topics found through NMF are well interpretable and often clearly correspond to

one specific research area. To name some, we found topics related to Bayesian inference,

neural networks, nonlinear control, optimization, social media, clustering, semantic web,

Fig. 4 Abstract length distribution. The figure shows histograms of abstract lengths (counted as the number
of words) in our data set before (left) and after stop word removal (right). For this plot, we removed outliers,
i.e., papers with extremely long abstracts, which occur due to wrong data in the corpus. Vertical lines give
the mean, median, and standard deviation

Fig. 5 Term distribution. The x-axis in both plots shows the rank of each term when sorted in descending
order of term frequency. The y-axis shows the term frequencies. Term frequencies are given before (left)
and after stop word removal (right)
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Table 1 Topics identified through NMF. Each topic is represented here by the top ranked terms. Terms are
given in order of their rank (i.e., from highest to lowest word weight). Topics are numbered arbitrarily for
reference. We manually assigned names to topics based on our own interpretation. Sometimes interpreta-
tions reflect a tendency or focus of a topic

1 Bayesian
Inference

2 Search
Engines

3 Neural
Networks

4 Nonlinear
Control

5 Optimization

inference search network control convex
models query networks controller optimization
bayesian queries neural adaptive algorithm
model engine nodes nonlinear function
variational engines layer systems functions
latent user deep tracking convergence
probabilistic click training feedback gradient
variables ranking node nn linear
posterior web recurrent robot problems
gaussian users hidden loop algorithms

6 Neurons,
Dynamic
Networks

7 Classification,
Pattern
Mining

8 Information
Retrieval

9 Social
Media

10 Clustering

neurons tree retrieval social clustering
neural classifiers topic users clusters
spike classifier topics media cluster
neuron training information twitter data
time mining relevance content algorithm
synaptic decision ir influence means
input data models online spectral
activity classification language services algorithms
spiking trees model user similarity
firing ensemble documents people sets

11 Learning
& Knowledge
Bases

12 Semantic
Web

13 Recommender
Systems

14 Graphs 15 Reinforcement
Learning

learning web user graph policy
task pages recommendation graphs reinforcement
knowledge page users nodes agent
tasks feature items edges agents
entity selection item subgraph reward
entities data recommender node action
text semantic recommendations structure policies
fuzzy content collaborative mining value
online information filtering vertices learning
transfer features preferences patterns decision

16 Planning
& Reasoning,
Association
Rules, Logic

17 Document
Retrieval,
STS-Tags

18 Feature
Extraction,
Dimension
Reduction

19 Support
Vector
Machines

20 Kernel
Methods

rules document feature kernel density
knowledge documents multi svm regression
rule inline features kernels estimation
logic retrieval classification vector kernel
language query class stability estimator
reasoning math dimensional support gaussian
planning tex sparse matrix distribution
semantic formula view machines estimators
semantics term supervised svms probability
domain xml dimensionality delays distributions

21 Matrix
Methods

22 Image
Recognition

matrix image
label images
rank visual
domain object
labels objects
learning recognition
target segmentation
labeled features
data scene
loss spatial
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recommender systems, graphs, reinforcement learning and image recognition. However,

we also found a few topics, which allow for ambiguous interpretations. As an example,

topic 7 seems to be a mixture of pattern mining and classification methods. Topic 11 is a

topic that appears to be related to different types of learning, e.g. (based on more than the

top ten words), transfer learning, online learning, representation learning, reinforcement
learning and machine learning. As such, it could be interpreted as a general topic on

different concepts of machine learning, i.e., dealing with different approaches on how and

what to learn. Additionally, this topic is related to knowledge bases. For some research

areas, we found several topics with different focusses. As an example, we found two topics

on neural networks (topic 3 and 6). Topic 3 here is more concerned with the architecture of

networks (e.g., containing the words layers, architecture, structure, convolutional, feed-
forward). Topic 6 puts more emphasis on neurons and the biological motivation of neural

networks (e.g., neuron, firing, stimulus, synapses, brain, signal, cortical). Additionally,
topic 6 puts more emphasis on advanced, dynamic neural networks (spiking, temporal,
recurrent, memory).

Topic 17 is a mixture of document retrieval and XML-Tags from the Standards Tag

Suite (STS), e.g., tex, math, formula. STS is an XML format used by publishers to

exchange documents. In our data, STS was used for publications from one venue. Opti-

mally, only the content from these tags should be parsed and added to the document

representation. We spared this effort since few documents are concerned and a complicated

checkup of the format of all documents with a subsequent parsing process would be

required. Topic 18 is a mixture of feature extraction and methods related to dimensionality

reduction (further top terms are manifold, subspace, embedding). We consider this a

sensible mixture since these two topics are strongly related, i.e., dimensionality reduction

methods are often used to extract features from data.

Altogether we found that NMF gives topics with good interpretability. We also found

some limitations of the method. In some cases, two different topics are mixed together,

although they are not strongly related semantically, e.g., in topic 7 pattern mining and

classification. We surmise this behavior of NMF is encouraged when some third terms

often co-occur with both topics, e.g., here algorithm and data mining. It could especially be
encouraged through polysemic or homonymous terms (i.e., terms that, in a different

context, have slightly or totally different meanings). Second, NMF sometimes learns two

topics that could be one, e.g., two on neural networks. This behavior tends to occur for

topics that are overrepresented in the training corpus. Where desired, sub- or supersam-

pling based on (research) categories and paper numbers of venues could therefore mitigate

such results. A third limitation of NMF is its flat structure. NMF hence fails to convey the

taxonomy of topics, e.g., search engines being a subtopic of information retrieval. How-

ever, this lack of complexity is at the same time an advantage, since it improves the

comprehensibility.

Topic Similarities

In Fig. 6 we depict the cosine similarities between the calculated topic vectors tj with

j 2 f1. . .tg. Calculating the cosine similarity is a method often used in information

retrieval to compare word weights of document vectors. The cosine similarity measures the

cosine of the angle between two vectors. For vectors with non-negative components it lies

between zero and one. Its maximum is reached for an angle of zero, i.e., when both vectors
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point into the same direction. Its minimum is reached here when the vectors are orthogonal.

From the plot we can see how topics are related to each other. More specifically, brighter

cells show that two topics have more similar word weights. Because the original topics

have a dimension of more than 14000, it would be laborious to analyze this through a direct

comparison of the word weights.

In the plot we see that most topic pairs have a low similarity. This indicates that most

learned topics are a strong feature by their own and hence should enable us to represent

well the variety of our data in topic space without redundancies. In the plot we notice that

two topics on neural networks are most strongly related (‘‘network, networks’’ and

‘‘neurons, neural’’), but still have a low cosine similarity of about 0.3. We further see that

two topics on information retrieval are closely related (‘‘retrieval, topics’’ and ‘‘document,
documents’’). Such observations show that topics which come from the same research field

(or supercategory) lead to more similar topic vectors. Turning this argument upside down,

we can to some degree confirm or rebut our interpretations of the topic vectors. This is

because similar topic vectors indicate similar research fields. It is interesting to notice that

in some cases topics bear a comparatively high similarity to a variety of different topics. As

an example, the topic ‘‘tree, classifiers’’ is similar to almost each of the other topics. The

topic ‘‘convex, optimization’’ is similar to such topics as ‘‘tree, classifiers’’, ‘‘policy,
reinforcement’’, ‘‘feature, multi’’, ‘‘density, regression’’, ‘‘kernel, svm’’. Supposedly, such

Fig. 6 Cosine similarities scosðx; yÞ between all pairs of topic vectors x and y. Note that similarities are
symmetric, i.e., for all x, y we have scosðx; yÞ ¼ scosðy; xÞ. Diagonal elements have a cosine similarity of 1.
Best viewed in color
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cases occur due to a strong co-occurrence with other research topics and sometimes, these

co-occurrences are also related semantically. As an example, optimization methods are

often applied to a loss function for the training of classifiers such as some tree-based

methods and support vector machines (SVMs), for fitting regression models, and in rein-

forcement learning. Hence, also the related topics occur together. The same holds for the

topic on Bayesian inference, which is applied to a plethora of machine learning problems.

The lesson learned here is that research topics can be similar for at least three reasons:

1) They have the same supercategory. 2) One is a subcategory of the other. 3) One field is

often applied to the other. Hence, calculating topic similarities enables us to interpret

topics semantically to some degree. Note that the three cases can sometimes be hard to

distinguish since learned topics sometimes do not reflect a pure, single research field.

Methods for an automated analysis of these relations would open some interesting further

research.

Overall historical interest in topics

In Fig. 7 (top), we illustrate the topic trajectory for all papers in our data set from the years

1987 up to 2018. For this, we calculated one centroid per publication year. We depict the

trajectory as chronologically sorted stacked bars, where each column depicts the topic

space representation of one year. In Fig. 7 (bottom), we calculated the sum of the docu-

ment vectors without dividing by the publication number, as done for the centroids.

Through this method, the topic weights are given proportional to the total number of papers

in a year instead of relative to a total sum of 1. Note that topic names and numbers

correspond to the topics in Table 1. We sometimes used shortened names to improve the

overview in our visualizations and will repeat on doing so in the remainder of this paper.

However, we emphasize here that topics might comprise further notions than visible from

the short names alone.

We now analyze some striking results. For this, we refer to topics by our manually

assigned topic names.. Observing the topics from 1987 up to 2000 and comparing these

with the years from 2001 to 2018, it becomes apparent that three topics with the initially

largest weights lose their relative importance over the years. These topics are topic 16

(Planning & Reasoning), topic 3 (Neural Networks) and topic 6 (Neurons & Dynamic
Neural Networks). Note that the bars here are influenced by the number of venues, that

published papers in a specific year. This is why biennially some bars become larger and

smaller. The IJCAI conference here was held every second year in uneven years, i.e., those

where aforementioned topics have more weight. We also have venues that did not yet exist

at the beginning of our analysis. In 2001, for example, the Journal on Machine Learning

Research (JMLR) was introduced (cf. Fig. 2). 2001 is also the first year in which a

considerable amount of publications from the WWW conference appears in our data set

(although founded earlier). Both these facts led to a larger number of publications in their

specific research areas. Despite these influences, the overall tendencies of decline and raise

in topic weights are visible. The mentioned decline of interest in neural networks took

place at a time, when support vector machines (SVMs) became popular as a more efficient

alternative (starting around mid-90s). SVMs stayed a widely used machine learning

method. Neural networks, however, gained more interest again in more recent years. These

facts become visible from our visualization and coincide with our personal background

knowledge.
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Further topics that have largely gained in interest include Social Media, Recommender
Systems, Optimization, Matrix Methods and Bayesian Inference, among others. Social

media became more popular through platforms like Facebook or Twitter. The interest in

recommender systems has been promoted through the Netflix prize, a public contest on

recommender systems that started in 2005, and through the introduction of the RecSys
conference in 2007. Besides this, the growth of online platforms such as Amazon promoted

the interest. Optimization, Bayesian inference and matrix methods have proven useful

techniques that can be applied to a plethora of machine learning approaches. Topics that

have recently lost weight in research are Semantic Web, Search Engines as well as

Clustering and Classification & Pattern Mining. Again, this coincides with our personal

Fig. 7 Topic importances by years. Columns are chronologically sorted by years. For each year, the relative
importance of each topic is given by the proportion of the bar height. In the top image, the stacked bars are
normalized to height 1. In the bottom plot, the total height of stacked bars depicts the number of papers in
our data set. Best viewed in color
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intuition. These latter two, very general topics have already been explored deeply in

research and were often replaced by more specific problems, applications and methods.

Altogether, we notice that some machine learning topics gain, some lose relative

importance. Sometimes, topics are almost invisible at the beginning and grow over time.

This is a hint that these research topics just emerged or became more popular due to a

certain event. Usually, popularity for machine learning methods is triggered by some

milestone in their performance, i.e., when beating a benchmark on a data set by some large

margin over previous methods. Sometimes other events trigger interest, such as public

contests or the release of platforms.

We also aggregated topics over all papers in our data set without differentiating by year.

This gives us the overall prevalence of topics in our data set. What we found here was, that

the most prevalent topics in our data set are Optimization, Classification & Pattern Mining
and the two topics on Neural Networks. Each of these topics makes out about 6-7% of our

corpus. This is expected due to the many venues with large publication numbers on these

topics in our data set. The prevalence of the least important topics, Document Retrieval/
STS-Tags and Clustering, is only about half as high (about 3%). This is partly due to their

loss in popularity in recent years, where the overall publication numbers were higher.

Analyzing venue similarities through topical maps

Topic space embeddings and trajectories are of a dimensionality that, in general, cannot

directly be depicted in a coordinate system. On the other hand, it is often useful to visualize

data in such a way. This is because it allows to find similarities and differences between

entities (e.g., venues), indicated by nearness (or distance) in the plot. To be able to

visualize high-dimensional data in such a way, we employ a well-known technique called

multidimensional scaling (MDS), cf. Mead (1992). The idea behind MDS is to layout high-

dimensional vectors in a low-dimensional space while preserving distances as best as

possible. The low-dimensional representation of each input vector is found based on the

squared differences between the pairwise distances of vectors in the input and the output

space. More precisely, starting from random coordinates, points are aligned in the low-

dimensional space s.t. an objective function is minimized as follows:

min
x̂1;...;x̂n

Xn

i¼1

Xn

j¼1

dðxi; xjÞ � jjx̂i � x̂jjj2
� �2

In this, n is the number of vectors, xi is one (high-dimensional) input vector and x̂i is the

corresponding low-dimensional output vector to be determined through MDS. The function

d is a measure of distance in the input space. Here, we use the Euclidean distance, i.e.,

dðx; yÞ:¼jjx � yjj2. Note that in theory a distance measure for compositional data such as

the Aitchison distance (Martı́n-Fernández et al. 1998) or one between probability distri-

butions, e.g., those presented in Schaefermeier et al. (2019), would be more suitable for our

data. In our investigation, however, we found that the Euclidean distance leads to a better

separation of venues into three different research fields, namely neural networks, infor-
mation retrieval and general machine learning.

We use a dimensionality of two for the vectors x̂i, as this allows for good visualizations.

In the resulting space, the two dimensions are not comprehensible as topics. Nonetheless,

in this space we can analyze the topical similarity of venues based on their distance.

In Fig. 8 we depict topical representations of venues, calculated as the centroids of all

their papers’ topic vectors. We projected these centroids into a two-dimensional space
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using MDS. In this figure, the closer points are together, the more similar the research

topics of their corresponding venues are. Therefore we call a visualization like in Fig. 8 a

topical map of the venues from a publication corpus.

An interesting observation here is that venues cluster into three areas: In the top area we

have venues that fall into the information retrieval category. In the middle part we have the

more general machine learning venues. These two clusters are separated by CIKM
(Conference on Information and Knowledge Management), which appears to fall some-

where in between both worlds. In the bottom area, we have conferences and journals

specialized on artificial neural networks. RecSys (Recommender Systems Conference) in
the top right of the plot is a conference with a strong topical focus on recommender

systems. Hence, it appears to be a category by itself. However, RecSys lies most closely to

the information retrieval world and is most dissimilar from neural networks.

Further interesting patterns emerge once we look at the specific venues. NIPS (Neural
Information Processing Systems), as an example, was founded as a conference situated

closer towards the neural networks topic. Over time, however, it developed into a more

general machine learning conference, as can be seen by looking at current conference

proceedings. Note that as a general tendency, the number of published papers per venue is

growing from year to year as noticeable from Figs. 2 and 7 (bottom). Hence, more recent

publication years have a stronger influence on the centroid of a venue. This explains why

NIPS falls into the general machine learning category. However, it clearly is the one

Fig. 8 Topical map of venues. Dots show venue representations after dimensionality reduction through
MDS. Closeness indicates topical similarity
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conference from this category that is closest to the neural networks cluster. IJCAI (In-
ternational Joint Conference on Artificial Intelligence) and ILP (Inductive Logic Pro-
gramming, right middle) are both conferences which lie closest to the general machine

learning category. Nonetheless, they put more emphasis on specialized topics, such as

knowledge representations and logic based systems. Hence, they lie at the border to general

machine learning with a small but visible gap to the central part. Similarly, COLT (Con-
ference on Learning Theory) lies at the left border of the same cluster.

In summary, the topical map shows that topics are captured well and as expected

through our venue representations. Besides this, topical maps lead to interesting insights

once we analyze (in this case visually perceived) clusters and edge cases, i.e., outliers and

points which lie between several clusters. A natural enhancement of this method would be

an analysis of trajectories in topical maps, i.e., how venues drift apart or together over

time.

Visualizing topic space trajectories through projection

Topic space trajectories exhibit too many dimensions (i.e., topics) for direct visualization

in a coordinate system. To analyze trajectories, we hence project venue representations

onto their most relevant two topics. We determine the relevance of a topic through its

average weight in the trajectory, i.e., the topic weight averaged over all years. We

demonstrate this method on the NIPS conference, which we selected due to its interesting

trajectory. We selected some additional venues, most of which are related to neural net-

works, for comparison. Figure 9 depicts the trajectories created through this process. We

marked the first and last year of each trajectory. Trajectories drift into the direction of the

arrows. Through measuring the average weight in the trajectory, we identified the two

topics on neural networks as the most relevant ones. The topic on the x-axis is the one we

previously identified as being more concerned with the architecture of neural networks (we

Fig. 9 Trajectories of selected
Conferences. Projection on two
selected topics on neural
networks. Best viewed in color
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simply called it Neural Networks). The topic on the y-axis is more concerned with the

biologic motivation of neural networks and with dynamic neural networks (i.e., recurrent

and spiking neural networks). We called this one Neurons & Dynamic Neural Networks.
We observe that initially all venues drift to the origin of the coordinate system, i.e., lose

their relative interest in both topics. In recent years, however, research on neural network

architecture has gained attraction again. By backtracking the trajectory of NIPS, we can see

that this started around 2010. Around these years, the field of deep learning (Bengio 2009)

gained much interest. This interest was motivated and accelerated through several dis-

coveries and improvements in the field, e.g., the ReLU (rectified linear unit) activation

function in Glorot et al. (2011), largely improved training times through GPU program-

ming (Raina et al. 2009) and breakthroughs in performance on benchmark data sets, e.g.,

on the MNIST data set of handwritten digits in Ciresan et al. (2010) and on the ImageNet

data set through convolutional neural networks in Krizhevsky et al. (2012). At this point

we would like to note that other topics that gained interest, such as optimization, rein-

forcement learning and image recognition (cf. Fig. 7) are strongly connected to neural

networks. Hence, the total interest in topics involving neural networks has increased even

more than apparent from the trajectory in Fig. 9.

The conference IJCAI, which was held every two years starting from 1969 and yearly

starting from 2015, is almost stationary most of the time. It exhibits only a small proportion

of papers on neural networks. In recent years it shows a movement to the right, i.e., an

increasing relevance of research on neural network architecture. The NIPS conference has

a comparatively smooth, easy to follow trajectory, which again ends close to the origin.

This result is supported by the fact that NIPS has become a more general conference on

machine learning. Neural Processing Letters starts close to NIPS but ends at a different

location, with more relevance on both neural network topics. This is a reasonable result,

since it is a journal focussed specifically on this research area. An interesting case is IEEE
Transactions on Neural Networks, which has been renamed to IEEE Transactions on
Neural Networks and Learning Systems in the year 2012. In our data set these two are

handled as separate venues. We noticed the name change through the behavior of the

trajectories. More specifically, the endpoint of the trajectory under the first venue name lies

close to the starting point of the trajectory under the second name.

Altogether, we see that topic space trajectories are an effective method for a human

interpretable analysis of topic drift. A drawback resulting from high-dimensional data, like

topic vectors, is that we can only visualize the trajectory for up to three topics. This

problem, however, can be mitigated through the selection of relevant topics. One possi-

bility here is a manual topic selection through the user. Likewise, an automated solution

can be established through a measure of topic relevance. For our example in Fig. 9, this

measure is the average weight of the topic. We can imagine further measures for different

applications. Using the maximal topic weight over all years would yield trajectories for

topics which were strongly relevant, even when only for a short time. Measures based on

the absolute difference between topic weights for different years open another promising

direction. Such measures would return trajectories with strong movement in topic space.

This can be fine-tuned based on which years are considered (e.g., the difference between

the first and the last year, between all consecutive years or between all pairs of years) and

how these are aggregated (e.g., using the average or maximum of the differences).
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Visualizing topic space trajectories as heat maps

We found that heat maps as depicted in Fig. 10 are an effective method for inter-

pretable topic visualizations. In such plots, topic weights can effortlessly be compared

across venues. Each row here visualizes the topic space representation of one venue. In this

specific instance, we calculated the centroid of papers from 2018. The topic weights are

visualized through different color shades in the columns, with brighter colors indicating

stronger topic weights.

Building upon this idea, in Fig. 11 (a) and (b) we visualize all topic space trajectories of

our data set through one heat map per venue. In these heat maps, each row represents the

topic space representation of a venue for a specific year. By following the rows from top to

bottom, we see how interest in specific topics evolves over time. We only calculated and

displayed centroids for years, in which at least ten papers were published at a venue. We do

this for two reasons: First, occasionally we have instances of papers which seem to have a

wrong year or venue. Second, sometimes our data set contains very few papers for a year.

Both these lead to venue representations, that do not reflect reality well. We hence only

calculate trajectories over years with more samples, i.e., papers. This leads to the effect,

that we have no trajectory at all for the venue DMKD.

In the resulting heat maps we make two particularly interesting general observations:

First, the topics evolve smoothly from year to year, despite the fact that each row was

calculated from completely different papers. Second, we see that venues with similar

research exhibit similar patterns in their heat maps. The heat maps thus can be regarded as

distinguishable fingerprints that research areas leave. As an example, the heat maps of

different venues on Information Retrieval (e.g., Information Retrieval and SIGIR) exhibit a
visually similar appearance. This is due to their topic weights being stronger in the same

columns as well as being similar in their development over time (i.e., over the rows).

Fig. 10 Conference topics for 2018. In this visualization, each row represents a conference. The conference
is represented through their mean topic vector. Each column represents a topic. Colors indicate topic
weights. For each topic, the most important terms are given
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Fig. 11 (a) Topic space trajectories as heat maps. Each heat map visualizes the topic space trajectory of a
venue. In each heat map, rows represent years and columns represent topics. Cell colors indicate topic
weights. Topic numbers are given on the x-axis in each subplot and corresponding topic names in the legend
at the bottom. DMKD is missing since we require a minimum number of ten papers per year. Trajectories
are continued on the next page.
(b) Topic space trajectories as heat maps (cont’d)
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Fig. 11 continued
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Likewise, such a similarity is strongly visible for conferences and journals on artificial

neural networks (e.g., NIPS, Neural Computation and Neural Networks). In particular, we

have two important topics on neural networks with a similar development over time.

Altogether the strongly visible patterns show that topic space trajectories capture topical

specifics about venues as well as about their historical development. Our visualizations as

heat maps make these specifics visually perceivable. We argue that heat maps are among

the best possible visualization method for these kinds of trajectories. The reason is that heat

maps capture all dimensions, i.e., topics, while providing a good and comparable overview.

We now analyze the trajectories of some particular venues. One important machine

learning conference is the International Joint Conference on Artificial Intelligence (IJCAI).
What strikes most for this venue, is that it has a strong focus on one particular topic, which

is Planning & Reasoning, Logic & Association Rules. This focus, however, has decreased
since 1995 and the conference has become more diverse. In particular, Reinforcement
Learning has gained importance since then, which is a different approach to solve similar

tasks.

Another interesting case are the European Conference on Machine Learning (ECML)

and Principles and Practice of Knowledge Discovery in Databases (PKDD). Both con-

ferences, similarly to IJCAI, started with a high interest in planning & reasoning (etc.) that

declined since 1995 (for PKDD some years later). Both additionally exhibit a strong focus

on Classification & Pattern Mining throughout their existence until 2007, as well as some

interest in Clustering. What distinguishes these conferences is how weights are distributed

across other topics. PKDD here is concerned with web pages, graphs and knowledge bases.

ECML is concerned with matrix and kernel methods as well as SVMs and feature

extraction. In 2008 these two conferences were merged and since then called ECML/
PKDD. The resulting heat map of this conference thus exihbits even more diversely

distributed topics than the two alone.

Topic diversity

In this part, we analyze the topical diversity of venues based on their topic space repre-

sentations. For this, we calculate a measure of diversity from each of these vectors. As the

components of the vectors are all positive and sum up to 1, we can interpret each topic

space representation as a probability distribution over topics. A higher diversity should be

obtained, the more evenly distributed these topics are. This can be achieved through the

Shannon-Entropy. The Shannon-Entropy of a probability distribution p over a discrete

random variable x with outcomes X is calculated as follows:

HðpÞ ¼ �
X

x2X

pðxÞ � ln pðxÞ

While this measure becomes larger, the more evenly distributed topics are, its concrete

value is not well interpretable. In Jost (2006), the entropy is therefore converted to a more

interpretable measure through taking the exponential, i.e. by calculating exp(H(p)). This
measure is often used in biology to calculate the effective number of species, i.e., the
number of evenly distributed species that would be necessary to obtain the same calculated

entropy. Hence, the maximum possible value of this measure for a distribution over

n outcomes is exactly n. This is reached when all outcomes have the probability 1/n. In
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information theory, the measure is also sometimes referred to as the perplexity of a dis-

tribution, although with a different connotation and interpretation.

We calculate the effective number of species for the topic space representation of every

venue. We then rank the conferences in decreasing order of diversity. The results are given

in Table 2. The results agree with our background knowledge about these venues. More

general conferences or journals on knowledge discovery, which contain research from

almost every machine learning field are ranked highly in the list. First rank is ECML/

Table 2 Ranking of venues by topical diversity. Topical diversity is measured as the effective number of
species, which is the exponential of the Shannon entropy. Journals are printed in italic. There is a tendency
of journals to be more focussed

Rank Venue (Conference or Journal) Diversity

1 ECML/PKDD 19.30

2 IEEE Transactions on Knowledge and Data Engineering 19.24

3 KDD 19.08

4 CIKM 18.21

5 ACML 18.02

6 SDM 17.99

7 PAKDD 17.54

8 NIPS 17.13

9 ICML 16.64

10 IJCAI 16.51

11 ECML 16.36

12 ICANN 16.25

13 Journal of Machine Learning Research 16.18

14 IEEE Transactions on Neural Networks and Learning Systems 16.01

15 ICDM 15.81

16 PKDD 15.44

17 WSDM 15.42

18 AISTATS 15.25

19 SIGIR 14.58

20 ECIR 14.42

21 Neural Processing Letters 14.35

22 WWW 14.15

23 IEEE Transactions on Neural Networks 14.10

24 Information Retrieval Journal 13.96

25 DMKD 13.92

26 Neural Networks 13.74

27 IJCNN 13.73

28 Information Retrieval 13.49

29 COLT 12.95

30 ILP 12.82

31 Neural Computation 11.73

32 RecSys 7.87
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PKDD with a diversity of 19.30. This is closely followed by other more general confer-

ences and journals on machine learning and knowledge discovery, such as KDD and

CIKM. In contrast to this, in the lower part of the table we see venues which are more

specialized. As an extreme example, RecSys, with its strong focus on recommender sys-

tems, is ranked lowest with a diversity of 7.87. Second lowest rank is Neural Computation

with a diversity of 11.73. COLT and ILP are comparatively specialized conferences as

well. Almost all other conferences from the lower part of the table (ranks 19-28), are

specialized conferences or journals on neural networks or information retrieval.

In the middle part of the table we have the cases which are in between. Interesting

examples are ECML and PKDD, which starting from 2008 merged to the single conference

ECML/PKDD. While both already exhibited a strong topical diversity, it increased even

more through the merge. Another interesting case is NIPS (Conference on Neural Infor-

mation Processing Systems). Although this originally was a conference on neural networks

as its name indicates, it later evolved into a more general conference on machine learning

and artificial intelligence. Hence, its topical diversity is considerably higher than the

diversity of all other conferences and journals focussing on neural networks.

In a second analysis, we look at the development of diversity over the years. This is

depicted as a heat map in Fig. 12. In this figure, each row depicts the topic diversity of a

venue for all years our data set spans. The diversity is indicated by the color (or shade) of a

cell in a row. The last row contains the average diversity over all conferences. Diversities

were only calculated, where at least ten papers were available for a venue and year. Note

that in some cases, we still have erroneous data. As an example, SIGIR did not take place

before 1978. Analyzing the results, it is interesting to note that many venues start out with

an increase in diversity (e.g., NIPS, WWW, KDD). In later years, however, and especially

the last few years, the diversity often is lower than previously (e.g., NIPS, ICML, IEEE

Transactions on Knowledge and Data Engineering, AISTATS). The tendency of an early

Fig. 12 Topic diversities for venues over years. The diversity of a venue in a specific yearis indicated by the
color (or shade) in the plot. Black boxes indicate that not enough data isavailable. In most cases this means,
that the venue did not take place or exist during thatyear. The last row contains the average diversity over all
venues in that year
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increase is also noticeable in the last row containing the average diversity. Here, however,

we see that later on the diversity is close to constant. It seems that during the last years,

some conferences put more focus on specific topics again, while on average the diversity

does not change. One reason for this could lie in the growing number of different con-

ferences and journals. Venues here sometimes might want to distinguish themselves more

from others. This leads to more focussed single venues, while the average diversity

remains nearly constant. Venues could also have become more selective in their review

process, choosing only papers that fit the conference well. This could be a consequence of

the increasing popularity of machine learning in the recent years, which has also led to a

larger number of submitted papers that venues can choose from.

Another interesting case is the WWW conference. From 2001 to 2006, this conference

has a diversity that ranges between 9.7 and 10.7. In 2007, there is a sudden increase to a

diversity of 12.9. Our topic trajectory heat map in Fig. 11 indicates that in this year the

previously strongest topic on web pages has lost popularity. Instead, interest in search

engines and social media has grown. Additionally, the topic on recommender systems

starts to gain relevance, although already starting one year before in 2006. We assume that

two events played a big role for this result: In 2006, the social media platform Twitter was
released. Twitter quickly became a popular resource for research due to its large, global

user base and public API. The second event was a competition on recommender systems,

called the Netflix prize2. In this competition, which started in 2006, participants were

invited to develop a recommender system that predicted user ratings for films. The prize

money of one million dollars led to an increasing interest in recommender systems with

more than 5000 teams actively participating in the competition.

Topic densities

In this part, we analyze the topical density of some venues. For this, we use the topic space

representations of the documents in our data set. For one venue, we project the topic space

representations of papers into two-dimensional space using MDS. If we have more than

1000 papers for a venue, we only utilize a random sample of 1000 papers. We do this to

speed up our calculations, since MDS has a complexity of O(n2) for calculating the

distances between the sample pairs. After MDS, we do a kernel density estimation (KDE)

to estimate a probability density of papers in the two-dimensional space. The KDE is

performed with a gaussian kernel and a grid search for the optimal bandwidth, a hyper-

parameter of this method. Finally, we plot the density as a heat map together with the

locations of the projected papers.

While the dimensions in the projected space are not directly interpretable as topics, we

can interpret distance in this space as topical distance. An advantage of representing

conferences by their distribution over only their centroid is, that we can see the whole

distribution of topics instead of only an aggregated mean value. This distribution captures

additional information such as various topical hot spots, i.e., dense areas in the projected

space.

Figure 13 shows the results of this process for some selected conferences. We notice

here that venues with a broader focus (ECML, KDD) tend to have several ‘‘blobs’’ at the

margin of the distribution. We suspect that these blobs are all from different topical

focusses. Conferences with a stronger single topical focus (COLT, RecSys) do not exhibit

2 https://www.netflixprize.com.
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Fig. 13 Topic densities of selected venues. Dots represent papers after dimensionality reduction of topic
vectors through MDS. Proximity in this space hence indicates topical similarity. Colors indicate the
probability density of papers estimated through KDE
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this behavior or only slightly. For RecSys, we have a considerably dense area at the right

part, while to the left of this papers drift apart from each other. This indicates one single

very strong topical focus. Papers deviating from this focus are distributed evenly across

other topics, i.e., without any further strongly visible cluster.

The lower four plots all show venues with research on neural networks. In our heat

maps in Fig. 11 we showed that their topic space trajectories exhibit similar patterns. In the

density plots, however, we see that nonetheless their distributions are different. Topic

densities hence reveal additional information to the topic space representations of venues.

This is because the venue representations only give an average of the paper vectors in topic

space instead of the full distribution. For Neural Processing Letters, two distinct topical

focusses are visible, one being broader (i.e., with more variance) than the other one. Neural

Computation has a clear focus, similar to RecSys. This is backed by the fact, that it has the

second lowest topic diversity directly after RecSys (cf. Table 2). NIPS has a broad dis-

tribution and papers are focussed on different topics, visible through blobs distributed

around the margin. Neural Networks, similar to Neural Processing Letters, seems to have

two main focusses. However, there is an area, where these two clusters almost merge. This

indicates that there is a smooth thematic transition between both focusses. Hence, we

suspect that these blobs are the two topics on neural network.

We saw in this section that topic densities give supplementary information to topic

space embeddings. However, in the resulting space, we do not know which area of a

density belongs to which topic. At this point, we leave the development of a method for a

more specific topical interpretation of areas open for further research. One possibility here

would be to create a ‘‘pseudo-paper’’ vector for each topic, with full weight on the topic.

One could then project these pseudo-papers into the two-dimensional space together with

the real papers and mark their positions. It might also be beneficial to apply MDS to the

papers of several venues together before estimating the density of each. Finally, we

envision that topic space trajectories are extended to such densities, i.e., the chronological

development of densities is investigated.

Related work

We discussed topic models in more detail in (‘‘Document representation in topic space’’

section). Hence, we only give a brief outline here. Topic models generally take a docu-

ment-word matrix as input, in which documents are represented in a vector space model.

The classic topic model is Latent Semantic Analysis (LSA) (Deerwester et al. 1990),

which performs a singular value decomposition of this matrix. It has been used for various

text mining tasks, e.g., recently in recommendations of scientific articles (Chughtai et al.

2020). Similarly to LSA, non-negative matrix factorization (NMF) (Lee and Seung 1999)

decomposes a matrix into two factors, however with the constraint that all parts which

contribute to the reconstruction of the input matrix must be positive. The decomposition is

therefore better understandable for humans than through LSA, where topics and words can

also contribute negatively. Latent Dirichlet allocation (LDA) (Blei et al. 2003) is a

probabilistic approach on topic modelling that has gained much interest and is probably the

de-facto standard in topic modelling. Many extensions exist, for example dynamic topic

models, where topics change over time (Blei and Lafferty 2006, 2007; Wang and

McCallum 2006) and which incorporate word embeddings (Dieng et al. 2019). For LDA,

some research has reported that it cannot handle short documents well (Hong and Davison

2010). In our work, however, we look at (relatively short) paper abstracts. Additionally, in

123

Scientometrics



Belford et al. (2018) it was shown that LDA produces considerably less stable results than

NMF in repeated runs of the algorithm, hence leading to impoverished reproducibility.

Therefore we refrain from LDA and related methods in our research. Incorporating

dynamic topics as well as word embeddings complicates interpretability (since topics

change over time) and leads to even worse reproducibility than LDA alone. The reason for

the latter is that these models introduce additional elements of randomness. Hence, we also

refrain from methods from these realms. Instead, we utilize the well-investigated NMF,

which gives interpretable and reproducible results.

The work Berry et al. (2007) gives an overview over research on NMF. As the authors

point out, research on NMF algorithms is focussed on first, applications to different kinds

of data, second, enhancing or improving aspects of the algorithm (such as convergence and

space and runtime complexity) and third, analyzing algorithmic properties (e.g., con-

cerning the training convergence). In Yang et al. (2011), it was found that normalizing

input data and minimizing Kullback-Leibler (KL) divergence instead of the Frobenius

norm may lead to faster convergence and more better approximations. Following this line,

Hien and Gillis (2020) recently proposed new algorithms for KL based NMF with guar-

anteed non-increasingness of the objective function. In Ding et al. (2008) it has been

shown that with KL divergence, NMF minimize the same objective function as the topic

model probabilistic latent semantic indexing (PLSA), which is regarded as a predecessor of

LDA. Different optimization methods have been used for NMF, namely based on multi-

plicative update rules, gradient descent or alternating least squares (Berry et al. 2007). The

minimization of NMF is often done starting from randomly initialized matrices, which can

greatly affect the results (Berry et al. 2007). Other initialization methods of the matrices

have thus been proposed, e.g., based on a nonnegative singular value decomposition

(Boutsidis and Gallopoulos 2008). The work Zhao and Tan (2016) proposes an online

algorithm for NMF, which is able to learn and update topics without having to store the

documents. It is also shown to have good convergence properties as well as being able to

handle outliers. The gensim implentation we use in this work is based on the same paper.

By the same authors in Zhao et al. (2017), NMF is extended to optimize a broader class of

divergences as their target function. In this work, the performance, stability and conver-

gence speed in the application as a topic model is demonstrated in a document clustering

task, in which documents are assigned to the topic with the strongest weight. Many further

attempts have been made to improve certain properties of NMF or to deal with certain

implementation problems. These are often very specific, e.g. to the used optimization

algorithm or target function.

Different attempts have been made to deal with dynamics over time in topic analysis.

Generally, there are two basic approaches: 1. Dynamic topic models, which explicitly

incorporate time. 2. Using static topic models or word frequencies and to comparing results

over time in a post-processing step. Examples of the first approach include the afore-

mentioned dynamic topic model (D-LDA), an extension of LDA in which topic distribu-

tions exist for time steps and are conditioned on their previous step (Blei and Lafferty

2006). In Topics over Time (TOT) by Wang and McCallum (2006), each topic is modelled

as a distribution, which generates words as well as continuous timestamps. This is achieved

by extending LDA with an observable timestamp. More recently, the dynamic embedded

topic model (D-ETM) has been proposed (Dieng et al. 2019). In this, D-LDA is extended

with the recently popular word embeddings. Despite the interestingness of these approa-

ches, they also come with some drawbacks in their practical application: The additional

parameters lead to more complicated training with often unstable results, which has

already been shown for traditional LDA in comparison to NMF (Belford et al. 2018).
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Furthermore, interpretability is often reduced. This is especially the case when topics (as

word distributions) may change over time and need to be reinterpreted. A different

approach is thus to employ static topic models or word frequencies and to compare results

over time in a follow-up step. This typically involves sorting results for time steps or slices,

sometimes followed by some form of aggregation (as done in our approach) and, finally, an

analysis of the results over time. Often, only two slices are employed to provide a before/

after comparison in topics and maintaining overview. This, however, may often be to

coarse-grained for a deeper analysis. In Scientometrics, topics are often analyzed by fre-

quent terms in articles or through keywords instead of using explicit topic models. Key-

words can be added by authors to their papers to facilitate automatic indexing, e.g., for

search engines. A field sometimes using this approach and related to our work is the one of

burst detection, i.e., the detection of sudden increases or decreases of interest in a topic

(Kleinberg 2002). As a more recent application Tattershall et al. (2020) applies burst

detection methods from stock market trend analysis to detect bursts in research topics

based on normalized term frequencies. A disadvantage over our approach here is the term-

based analysis, which requires additional manual work and does not give an overall

summary. Another popular tool incorporating burst detection as well as bibliometric

techniques is CiteSpace (Chen 2006). Emerging trend detection here is performed through

terms which rapidly grow in frequency over time. Visualizations of scientific research is

enriched based on citation and co-citation data. The topical analyses are, however, very

coarse-grained. VOSviewer is a more recent tool for the visualization of scientific research

(van Eck and Waltman 2010). VOSViewer is based on Visualization of Similarities (VOS),
a method inspired by and improving on multidimensional scaling when applied to e.g.,

bibliometric data (van Eck and Waltman 2007b). VOSViewer allows the discovery of

topics in terms of clustered co-occurring terms or keywords. Comparisons over time can be

achieved by comparing visualizations derived from different time slices. VOSViewer is

still popular and has been used, e.g., for the analysis of machine learning research in van

Eck and Waltman (2007a) and more recently in Bhattacharya (2019). Scholia (Nielsen

et al. 2017) is a more recent tool based on Wikidata. It allows to visualize topics of

scientific publications based on keywords. All these approaches do not allow for a fine-

grained, topical analysis over time. In contrast to our approach, they do not give an overall

summary and comparison over all topics on the venue level and are sometimes difficult to

interpret.

There exists much research where textual analysis of scientific articles has been per-

formed, often involving topic models. In Mimno (2012), 24 journals from philology and

archaeology were analyzed regarding paper locations in a vector space over time and

regarding topical variation. In Griffiths and Steyvers (2004) article abstracts from the

PNAS journal were analyzed for hot topics by performing a linear trend analysis on the

weights in a topic model. In Wang and McCallum (2006), articles from NIPS conference

were analyzed with a dynamic, continuous extension of LDA. The authors showed that

through this method, the increasing and decreasing popularity of recurrent neural networks

during the 1990s could be recovered, similar to the findings in our work. In this work full

paper texts were used, in contrast to our work where abstracts are employed. In Sipos et al.

(2012), based on PNAS articles, a temporal summary consisting of landmark documents,

authors and topics was generated. Additionally, in this work papers were layouted in a two-

dimensional space based on paper similarities, bibliographic coupling and force-directed

layouting. The method for this, called Vxinsight, was presented in Davidson et al. (1998).

In Blei and Lafferty (2007) and Dieng et al. (2019) the authors demonstrated the appli-

cability of extensions of LDA on articles from the Science magazine and the ACL
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conference (Annual Conference of the Association for Computational Linguistics). In

Skupin (2004) paper abstracts from geographic research were visualized based on a vector

space model, a self-organizing map and hierarchical clustering. What all of the above

attempts have in common, is that they do not present a thorough, full analysis and com-

parison of different venues. Additionally, these previous works operate on the paper level,

i.e., do not find representations of conferences or journals in vector space. The only

exception from this is Mimno (2012), which, however, solely operates in a dimensionality-

reduced space obtained from a bag-of-words representation instead of an inter-

pretable topic space. In contrast to this, we envision methods to analyze topic trajectories

of conferences and journals in an interpretable and reproducible manner.

Comparing our results to existing scientometric analyses of machine literature, we often

found confirmation and sometimes differences. In van Eck and Waltman (2007a), articles

from the computational intelligence field, which strongly overlaps with machine learning,

were analyzed using VOS. Some of the clusters they found are similar to our findings,

namely control problems, classification, regression and optimization. A surprising result of

this work different from ours, was that clustering and classification were determined as a

single topical cluster. Tattershall et al. (2020) analyze computer science research through

burst detection and found some results similar to ours, e.g., the rise of popularity of Social

Networks and related terms between 2004 and 2014, the lowered interest in web 2.0 in

recent years. In Bhattacharya (2019), an analysis of machine learning literature has been

performed based on measures from social network analysis, VOSviewer and keywords

from the web of science. A frequency ranking of topics for 2018 was performed, which was

very different from the popularity we found based on our topics. As an example, support

vector machines were found to be very popular, which is a contrast to our results as well as

our personal background knowledge. An attempt of clustering keywords was made, which,

in contrast to our topics, produced clusters of often very different keywords. Finally we

want to emphasize that, to the best of our knowledge, we are the first to provide such a

deep topical analysis of a large corpus of machine learning literature over time in a long

period and on the venue level.

Conclusion

In this work we introduced topic space trajectories, a novel approach to analyze confer-

ences and journals. Loosely following the notion of interpretable AI, our focus here lay on

interpretable results and reproducible methods. Overall, additionally to introducing our

method, our aim was to present a deep analysis of the results achievable through it. We

therefore demonstrated our approach on a set of machine learning conferences and journals

and came to various interesting insights. Additionally to being reasonable and fascinating

by themselves, the presented results support the applicability of our approach. Nonetheless,

we also found some limitations. Most of these limitations stem from the nature of high-

dimensional data. The reduction of high-dimensional documents in a tf-idf representation
to a low-dimensional topic space representation mitigates such problems. However, the

topic space still has a dimension that cannot be visualized in a coordinate system. As a

consequence, we further reduced our data to a two-dimensional space through multidi-

mensional scaling. In this representation we can analyze topical (dis)similarities between

objects (i.e., documents or venues) in what we called topical maps and topic densities.
However, we obtain dimensions that are not interpretable as topics anymore and lose

information about which topics are (dis)similar. We therefore found salvation in two
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solutions: First, plotting trajectories for only the two most interesting topics, and second,

visualizations of trajectories as heat maps. Based on topic space trajectories, we also

analyzed topical diversities of venues and their development over time. Last but not least,

we made our discoveries plausible throughout our analysis through a comparison with

historical events in research.

Many of our approaches open room for further research. An interesting direction would

be automated name suggestions for the topics found through NMF. We imagine that this

could be achieved through frequent bigrams in the most relevant documents for a topic.

Topical maps and topic densities could be extended by their development in time, i.e., by

calculating them for trajectories. Both would benefit from methods for improved

interpretability.

As already indicated in our introduction, we envision further applications of our

method. First, our venue embeddings could be used in a recommendation scenario, e.g.,

similar as in Chughtai et al. (2020). Second, it would be interesting to explore whether

topic space trajectories can be extrapolated into the future. This could then, as an example,

lead to even better recommendations. Possible applications lie in researchers looking for a

suitable conference or journal for an unpublished paper or for recommending reviewers for

a submitted paper. Last, we are eager to see our method applied to other kinds of data. As

one very similar example, instead of venues we could analyze the trajectories of authors in

topic space. Our method can, however, also be applied to totally different text domains.
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