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Abstract: Null model generation for formal contexts is an important task in the realm of formal
concept analysis. These random models are in particular useful for, but not limited to, comparing the
performance of algorithms. Nonetheless, a thorough investigation of how to generate null models for
formal contexts is absent. Thus we suggest a novel approach using Dirichlet distributions. We recollect
and analyze the classical coin-toss model, recapitulate some of its shortcomings and examine its
stochastic properties. Building upon this we propose a model which is capable of generating random
formal contexts as well as null models for a given input context. Through an experimental evaluation we
show that our approach is a significant improvement with respect to the variety of contexts generated.
Furthermore, we demonstrate the applicability of our null models with respect to real world datasets.
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1. Introduction

This presented work is an extension of the already published conference paper [1]. There we
investigated how to randomly generate formal contexts using Dirichlet distributions. Formal contexts
are the basic data structure in the realm of formal concept analysis (FCA), a theory used to represent
and extract knowledge, which is rooted in lattice theory [2]. These datasets are constituted of a set of
objects, a set of attributes and a binary (incidence) relation between them. Many real-world datasets
can be interpreted as such formal contexts and are therefore subjected to methods from FCA.

An important problem when investigating datasets through FCA is to decide whether an
observation is meaningful or not. Related fields, e.g., graph theory and ecology, employ null
model analysis, see [3–5]. This method randomizes datasets with the constraint to preserve certain
(statistical) properties and can easily be adapted to FCA. Randomly generating formal contexts is also
relevant for other applications, e.g., comparing the performance of FCA algorithms, as done in [6,7].
Both applications can be approached by randomly generating formal contexts. Hence, one has to develop
(novel) procedures to randomly generate formal contexts. However, known methods for generating
adequate random contexts are insufficiently investigated [8] and novel approaches have to be developed.

A naive approach for randomly generating formal contexts is to draw uniformly from the set of
all formal contexts on a finite set of attributes M. This approach is infeasible as the number of formal
contexts with pairwise distinct objects is 22|M| . This problem is related to the random generation of Moore
families, as investigated in [9]. There, the author suggested an approach to uniformly draw from the set
of closure systems for a given set of attributes, which is computationally infeasible for |M|>6, see [10].
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The predominant procedure to randomly generate formal contexts is the coin-toss model, mainly
due to the ease of use and the lack of proper alternatives. Yet, this approach is biased to generate a small
class of contexts, closely related to the fixed row density contexts, as investigated by Borchmann et al.
in [8].

We overcome the so far encountered limitations with a novel approach based on Dirichlet
distributions. To this end we first examine the stochastic model of coin-tossing and provide further details
explaining the short-comings of this approach. Secondly, we suggest an alternative model to generate
formal contexts that addresses some of these short-comings. In particular, we demonstrate how to select
appropriate base measures and precision parameters to obtain both random contexts and null models.
For this we present a thorough analysis of the influence of these parameters on the resulting contexts.
Afterwards we empirically evaluate our model on randomly generated formal contexts with six to ten
attributes. We show that our approach is a significant improvement upon the coin-tossing process in
terms of the variety of contexts generated. In this extended version, we employ our findings to null model
generation for ten real-world formal contexts and four artificially created ones. We identify in there the
limitations of our method and propose a possible application for discovering interesting formal contexts.

As for the structure of this paper in Section 2 we first give a short problem description and recall
some basic notions from FCA followed by a brief overview of related work in Section 3. We proceed
by stochastically modeling and examining the coin-toss and suggest the Dirichlet model in Section 4.
In Section 5 we evaluate our model empirically and discuss our findings. In section Section 6 we give
an introduction to null model analysis in FCA and discuss the applicability of the Dirichlet approach
to null model generation. We support the theoretical findings with a study on real-world and artificial
contexts. Lastly in Section 7 we give our conclusions and an outlook on future research.

2. FCA Basics and Problem Description

We begin by recalling basic notions from formal concept analysis. For a thorough introduction we
refer the reader to [2]. A formal context is a tripleK :=(G,M,I) of sets. The elements of G are called objects
and the elements of M attributes of the context. The set I⊆G×M is called incidence relation, meaning
(g,m)∈ I⇔ the object g has the attribute m. We introduce the common operators, namely the object
derivation ·′ : P(G)→P(M) by A⊆G 7→A′ :={m∈M | ∀g∈A : (g,m)∈ I}, and the attribute derivation
·′ :P(M)→P(G) by B⊆M 7→B′ :={g∈G | ∀m∈B : (g,m)∈ I}. A formal concept of a formal context is a
pair (A,B)with A⊆G, B⊆M such that A′=B and B′=A. We then call A the extent and B the intent of the
concept. WithB(K) we denote the set of all concepts of some contextK. A pseudo-intent ofK is a subset
P⊆M where P 6= P′′ and Q′′⊆ P holds for every pseudo-intent Q(P. In the following we may omit
formal when referring to formal contexts and formal concepts. Of particular interest in the following is the
class of formal contexts called contranominal scales. These contexts are constituted by ([n],[n], 6=) where
[n] :={1,...,n}. The number of concepts for a contranominal scale with n attributes is 2n, thus having 2n

intents and therefore zero pseudo-intents. If a context (G,M,I) fulfills the property that for every m∈M
there exists an object g∈G such that g′= M\{m}, then (G,M,I) contains a subcontext isomorphic to
a contranominal scale of size |M|, i.e, ∃Ĝ⊆G such that (Ĝ,M,I∩(Ĝ×M))∼=([n],[n], 6=) with n= |M|.

In this paper we deal with the problem of randomly generating a formal context given a set of
attributes. Our motivation originates in Figure 1 where we show 5000 randomly generated contexts
with ten attributes. The model used to generate these contexts is a coin-toss, as recalled more formally in
Section 4. This method is the predominant approach to randomly generate formal contexts. In Figure 1
we plotted the number of intents versus the number of pseudo-intents for each generated context and a
histogram counting occurrences of pseudo-intents. We may call this particular plotting method I-PI plot,
where every point represents a particular combination of intent number and pseudo-intent number,
called I-PI coordinate. Note that having the same I-PI coordinate does not imply that the corresponding
contexts are isomorphic. However, different I-PI coordinates imply non-isomorphic formal contexts.
The reason for employing intents and pseudo-intents is that they correspond to two fundamental
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features of formal contexts, namely concept lattice and canonical implication base, which we will not
introduce in the realm of this work.

We observe in Figure 1 that there appears to be a relation between the number of intents and the
number of pseudo-intents. This was first mentioned in a paper by Borchmann [11]. Naturally, the
question emerges whether this empirically observed correlation is based on a structural connection
between intents and pseudo-intents rather than chance. As it turned out in a later study this apparent
correlation is most likely the result of a systematic bias in the underlying random generation process [8].

We therefore strive after a novel approach that does not exhibit this or any other bias. Consistently
with the above the I-PI coordinates and their distribution are used as an indicator for how diverse
created contexts are. The coin-toss approach will serve as a baseline for this. We start by analyzing
the coin-toss model which leads to a formalization fitted to the requirements of FCA in Section 4.
This enables us to discover Dirichlet distributions as a natural generalization.
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Figure 1. Visualization of I-PI-coordinates for coin-tossing, see Example 1.

3. Related Work

The problem depicted in Section 2 gained not much attention in the literature so far. The first
observation of the correlation between the number of intents and pseudo-intents in randomly generated
contexts was by Borchmann as a side note in [11]. The phenomenon was further investigated in [8]
with the conclusion that it is most likely a result of the random generation process. Their findings
suggest that the coin tossing approach as basis for benchmarking algorithms is not a viable option and
other ways need to be explored. Related to this is a work by Ganter on random contexts in [9]. There
the author looked at a method to generate closure systems in a uniform fashion, using an elegant and
conceptually simple acceptance-rejection model. However, this method is infeasible for practical use.
Furthermore, the authors in [12] developed a synthetic formal context generator that employs a density
measure. This generator is composed of multiple algorithms for different stages of the generation process,
i.e., initialization to reach minimum density, regular filling and filling close to the maximum density.
However, the survey in [8] found that the generated contexts exhibited a different type of systematic bias.

4. Stochastic Modelling

In the following we analyze and formalize a stochastic model for the coin-toss approach. By this
we unravel crucial points for improving the random generation process. To enhance the readability
we write Z∼Distribution to denote that Z is both a random variable following a certain Distribution
and a realization of said random variable.

4.1. Coin-Toss—Direct Model

Given a set of attributes M we construct I ⊆ G × M utilizing a direct coin-toss model as
follows. We let G be a set of objects with |G| ∼ DiscreteUniform[|M|,2|M|] and draw a probability
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p∼Uniform(0,1). For every (g,m) ∈ G×M we flip a binary coin denoted by ω(g,m) ∼ Bernoulli(p),
i.e., ω∈Ω= {0,1}where P(ω=1)= p and P(ω=0)=1− p, and let X(g,m)(ω) := {(g,m)} if ω=1 and
X(g,m)(ω) :=∅ if ω=0. Then we obtain the incidence relation by I :={X(g,m)(ω(g,m)) | (g,m)∈G×M}.
Hence, I contains all those (g,m) where the coin flip was a success, i.e., ω=1. If we partition the set of
coin-tosses through grouping, i.e., {{ω(g,m) |m∈M} | g∈G}, and look for some object g at the number
of successful tosses, we see that they follow a Binomial(|M|, p) distribution. In detail, a binomial
distribution with |M| trials and a success probability of p in each trial. This means that no matter how
G, M and the probability p are chosen, we always end up with a context where the number of attributes
per object is the realization of a Binomial(|M|,p) distributed random variable for every object g∈G.

Example 1. We generated 5000 contexts with the coin-tossing approach. A plot of their I-PI coordinates and
a histogram showing the distribution of pseudo-intents are shown in Figure 1. In the histogram we omitted the
high value for zero pseudo-intents. This value emerges from the large amount of generated contranominal scales
by the coin-toss model. In particular, 1714 of the contexts contain a contranominal scale and have therefore zero
pseudo-intents.

We observe that most of the contexts have less than 100 pseudo-intents with varying numbers of intents
between 1 and 1024. The majority of contexts has an I-PI coordinate close to an imaginary curve and the rest
has, in most cases, less pseudo-intents, i.e., their I-PI coordinates lie below this curve. Looking at the histogram
we observe a varying number of pseudo-intents. We have a peak at zero and a high number of 126 contexts with
one pseudo-intent. Additionally there is a peak of 62 contexts with 36 pseudo-intents and a peak of 55 contexts
with 73 pseudo-intents. In between we have a low between 18 to 23 pseudo-intents and one around 50.

4.2. Coin-Toss: Indirect Model

In order to exhibit a critical point in the direct coin-tossing model we introduce an equivalent
model using an indirect approach, called indirect coin-toss. Furthermore, this model serves as an
intermediate stage to our proposed generation scheme.

As we just established, the number of successful coin-tosses, i.e., number of attributes per object,
follows a binomial distribution. An indirect model that generates the same kind of formal contexts
as direct coin-tossing can therefore be obtained by using a binomial distribution. In contrast to the direct
model we first determine the total number of successful coin-tosses per object and pick the specific
attributes afterwards. We formalize this model as follows.

Given a set of attributes M, as before, we let G be a set of objects with |G| ∼
DiscreteUniform[|M|, 2|M|] and draw a probability p ∼ Uniform(0, 1). For every g ∈ G we let
θg ∼ Binomial(|M|,p) be the number of attributes associated to that object g. Hence, θg ∈ {0,...,|M|}.
We let Θg := {B ⊆ M | |B| = θg} be the set of all possible attribute combinations for g and denote
by DiscreteUniform(Θg) the discrete uniform distribution on Θg. Now for every g ∈ G we let
Bg ∼ DiscreteUniform(Θg) to obtain the set of attributes belonging to the object g and define the
incidence relation by I :=

⋃{{(g,m) |m ∈ Bg} | g ∈ G}. This serves as a foundation for our proposed
generation algorithm in Section 4.3. The indirect formulation reveals that the coin tossing approach
is restricting the class of possible distributions for θg, i.e., the number of attributes for the object g, to
only the set of binomial ones. Thereby it introduces a systematic bias as to which contexts are being
generated. An example for a context that is unlikely to be created by the coin-tossing model is a context
with ten attributes where every object has either two or seven attributes.

4.3. Dirichlet Model

One way to improve the generating process is to use a broader class of discrete distributions
to determine θg. In the indirect coin-tossing model we were drawing from the class of binomial
distributions with a fixed number of trials. In contrast to that we now draw from the class of all discrete
probability distributions on the same sample space, i.e., distributions that have the same support of
{0,... ,|M|}, which in our case represents the possible numbers of attributes for an object. For finite
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sample spaces every probability distribution can be considered as a categorical distribution. Therefore,
a common method to draw from the class of all discrete probability distributions is to employ a Dirichlet
distribution. In Bayesian statistics this distribution is often utilized as prior distribution of parameters
of a categorical or multinomial distribution [13].

One way to define the Dirichlet distribution is to use gamma distributions [13]. A Gamma(ρ,τ)
distribution with shape parameter ρ≥ 0 and scale parameter τ > 0 can be characterized on the real
line with respect to the Lebesgue measure by a density function f (z |ρ,τ)= 1

Γ(ρ)τρ exp−z/τzρ−11(0,∞)(z)
if ρ > 0, where 1S denotes the indicator function on some set S and Γ denotes the gamma function.
In the case of ρ = 0 the gamma distribution degenerates at zero. The Dirichlet(βα) distribution with
parameters βα=(βα1,...,βαK), where β>0, αi≥0 for all i and αi >0 for some i∈{1,...,K} and ∑K

i=1αi =1,
is a probability distribution on the set of K-dimensional discrete distributions. Given independent
random variables Z1,...,Zk with Zi∼Gamma(βαi,1) it is defined as the distribution of a random vector
(Y1,...,YK) where Yi = Zi/∑k

j=1 Zj for i ∈ {1,...,K}. Note that this allows for some of the variables to
be degenerate at zero which will be useful in the application for null models, as we will describe
in Section 6. If αi >0 for all i the random vector (Y1,...,YK) has a density

f (y1,...,yK |βα1,...,βαK)=
Γ(β)

∏K
i=1Γ(βαi)

K

∏
i=1

yβαi−1
i 1S(y1,...,yK) (1)

on the simplex S= {(y1,...,yK)∈RK | yi≥ 0,∑K
i=1yi = 1}. Note that f in Equation (1) is a density with

respect to the (K−1)-dimensional Lebesgue measure and we can rewrite f as a (K−1)-dimensional
function by letting yK =1−∑K−1

i=1 yi and using an appropriate simplex representation. Moreover, note

that the elements of (Y1,...,YK) have the expected valueE(Yi)=αi, the variance Var(Yi)=
αi(1−αi)

β+1 and

the co-variance Cov(Yi,Yj)=
αiαj
β+1 for i 6= j. Hence, the parameter α is called base measure or mean as

it describes the expected value of the probability distribution and β is called precision parameter and
describes the variance of probability distributions with regard to the base measure. A large value for
β will cause the drawn distributions to be close to the base measure, a small value will cause them to
be distant. A realization of a Dirichlet distributed random variable is an element of S and can therefore
be seen as probability vector of a K-dimensional categorical distribution.

In Figure 2 we illustrate the effects of varying β. We show different distributions of probabilities
for three categories drawn from 3-dimensional Dirichlet distributions. The base measure α in each case
is the uniform distribution, i.e., ( 1

3 , 1
3 , 1

3 ), the precision parameter β ∈ {30,3, 3
10} varies. The choice of

β=3 then results in a uniform distribution on the probability simplex. For comparison we also chose
β = 30 and β = 3

10 . A possible interpretation of the introduced simplex is the following. Each corner
of the simplex can be thought of as one category. The closer a point in the simplex is to a corner the
more likely this category is to be drawn.

(0,0,1)(1,0,0)

(0,1,0)
β · α=[10. 10. 10.]

(a) β·α=(10,10,10)

(0,0,1)(1,0,0)

(0,1,0)
β · α=[1. 1. 1.]

(b) β·α=(1,1,1)

(0,0,1)(1,0,0)

(0,1,0)
β · α=[0.1 0.1 0.1]

(c) β·α=(0.1,0.1,0.1)

Figure 2. Distribution of categorical probabilities of sym. Dirichlet distributions.
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In the rest of this section we describe the model for our proposed random formal context generator.
Given a set of attributes M, we let G be a set of objects with |G|∼DiscreteUniform[|M|,2|M|]. We then
use a probability vector p∼Dirichlet(βα) to determine the probabilities for an object to have 0 to |M|
attributes, where α :=ν/||(ν)||1 with ν :=(1,...,1)∈R|M|+1. By using α as base measure and β= |M|+1,
which implies βα = (1, ... ,1), we draw uniformly from the set of discrete probability distributions.
As a different way to determine θg we can therefore use p = (p0,...,p|M|) as probabilities of a |M|+1
dimensional categorical distribution θg∼Categorical(p). These categories are the numbers of attributes
for an object, i.e., P(θg = c)= pc for c∈{0,...,|M|}. Looking back at Section 4.2 we replace the binomial
distribution based on a uniformly distributed random variable by a categorical distribution based on
a Dirichlet distributed one. Afterwards we proceed as before. We present pseudocode for the Dirichlet
approach in Algorithm 1 as a further reference for the experiments in Section 5.

Algorithm 1: Dirichlet Approach
Input :a set of attributes M
Output :a formal context (G,M,I)

1 N∼DiscreteUniform[|M|,2|M|]
2 G :={1,...,N}
3 ν :=(1,...,1) // (|M|+1 ones)
4 α :=ν/||ν||1
5 β := |M|+1
6 p∼Dirichlet(βα)

7 forall g∈G do
8 θg∼Categorical(p)
9 Θg :={B⊆M | |B|= θg}

10 Bg∼DiscreteUniform(Θg)

11 Ig :={(g,m) |m∈Bg}
12 I :=

⋃
g∈G Ig

13 return (G,M,I)

5. Experiments

In this section we present a first experimental investigation of Algorithm 1. We evaluated
the results by examining the numbers of intents and pseudo-intents of generated contexts.
The contexts were generated using Python 3 and all further computations, i.e., the I-PI
coordinates, were done using conexp-clj [14]. The generator code as well as the generated
contexts can be found on GitHub (Online Repository containing Data, Results, Code:
https://github.com/maximilian-felde/formal-context-generator).

5.1. Observations

For each experiment we generated 5000 formal contexts with an attribute set M of ten attributes
using Algorithm 1. We also employed slightly altered versions of this algorithm. Those alterations
are concerned with the choice of β, as we will see in the following. We plotted the resulting I-PI
coordinates and a histogram of the pseudo-intents for each experiment. In the histogram we omitted
the value for zero pseudo-intents, i.e., the peak for contexts containing a contranominal scale of size
|M|. A comparable experiment on ten attributes is described in Example 1, where a (direct) coin-toss
model was utilized. The results of Example 1 are shown in Figure 1. This will serve as a baseline in
terms of variety and distribution of I-PI coordinates.

First we used Algorithm 1 without alterations. The results are depicted in Figure 3. We can see that
most of the generated contexts have less than 75 pseudo-intents and the number of intents varies between

https://github.com/maximilian-felde/formal-context-generator
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1 and 1024. There is a tendency towards contexts with fewer pseudo-intents and we cannot observe any
context with more than 101 pseudo-intents. The number of generated contexts containing contranominal
scales of size |M|was 2438. The histogram shows that the number of contexts that have a certain quantity
of pseudo-intents decreases as the number of pseudo-intents increases with no significant dips or peaks.
In this form the Dirichlet approach does not appear to be an improvement over the coin-tossing method.
In contrary, we observe the spread of the number of pseudo-intents to be smaller than in Example 1.
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Figure 3. Dirichlet generated contexts with α=( 1
|M|+1 ,..., 1

|M|+1 ), β= |M|+1.

Our next experiment was randomizing the precision parameter β between 0 and |M|+ 1, i.e.,
let β∼Uniform(0,|M|+1] in Algorithm 1, Line 5. We will refer to this alteration as variation A. The
results are shown in Figure 4. We can see that again many contexts have less than 100 pseudo-intents
and the number of intents once again varies over the full possible range. There are 1909 contexts that
contain a contranominal scale of size |M|. However, we notice that there is a not negligible number of
contexts with over 100 and up to almost 252 pseudo-intents, which constitutes theoretical maximum [8].
Most of these gather around nearly vertical lines close to 75, 200, 380, 600 and 820 intents. Even though
most of the contexts have an I-PI coordinate along one of those lines there are a few contexts in-between
100 and 175 pseudo-intents that do not fit this description. Looking at the histogram we can observe
again that while the number of pseudo-intents increases the number of generated contexts to that
pseudo-intent number decreases. This is in contrast to Example 1. This time, however, we can clearly
see a peak at seven to ten pseudo-intents with 190 contexts having ten pseudo-intents. Apart from this
we observed no other significant dips or peaks. We also tried randomizing the base measure α using
Dirichlet distributions. However, this did not improve the results.

Since the last experiment revealed that small values for β resulted in a larger variety of contexts
we will now investigate those in more detail. For this we introduce a constant factor c such that
β= c·(|M|+1). We find for the experiment called variation B the factor c = 0.1 suitable, as we will
explain in Section 5.2. A plot of the results can be found in Figure 5. We can see that most of the contexts
have less than 150 pseudo-intents and the number of intents is between 1 and 1024. Furthermore,
the quantity of contexts containing a contranominal scale of size |M| is 1169. This number is about 700
lower than in variation A, roughly 500 lower compared to the coin-tossing results in Example 1, and
over 1200 lower than in the unaltered Dirichlet approach. We can again observe the same imaginary
lines as mentioned for variation A, with even more contrast. Finally, we observe that the space between
these lines contains significantly more I-PI coordinates. Choosing even smaller values for c may result
in less desirable sets of contexts. In particular, we found that lower values for c appear to increase the
bias towards the imaginary lines.

The histogram (Figure 5) of variation B differs distinguishably to the one in Figure 4.
The distribution of pseudo-intent numbers is more volatile and more evenly distributed. There is a
first peak of 366 contexts with ten pseudo-intents, followed by a dip to eleven contexts with seventeen
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pseudo-intents and more relative peaks of 50 to 60 contexts each at 28, 36 and 45 pseudo-intents. After
62 pseudo-intents the number of contexts having this amount of pseudo-intents or more declines with
the exception of the peak at 120 pseudo-intents.
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Figure 4. Dirichlet generated contexts with α=( 1
|M|+1 ,..., 1

|M|+1 ), β∼Uniform(0,|M|+1).
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Figure 5. Dirichlet generated contexts with α=( 1
|M|+1 ,..., 1

|M|+1 ), β=0.1(|M|+1).

We established that both variations of Algorithm 1 with β∼Uniform(0,|M|+1) and β= c·(|M|+1)
are improvements upon the coin-tossing approach. In order to further increase the confidence in our
Dirichlet approach we have generated 100,000 contexts with the coin-tossing approach as well as with
both variations for six, seven and eight attributes. We compared the distinct I-PI coordinates after certain
numbers of generated contexts. The results of this experiment is shown in Figure 6. Each subfigure
shows the results for one attribute set size. We have plotted the number of generated contexts versus the
number of distinct I-PI coordinates for the coin-toss (green solid line), variation A (orange dashed line)
and variation B (blue dotted line). In all three plots we recognize that there is a steep increase of distinct
I-PI coordinates at the beginning followed by a fast decline in new I-PI coordinates, i.e., a slow increase
in the total number of distinct I-PI coordinates, for all three random generation methods. The graphs
remind of sublinear growth. For all three attribute set sizes we can observe that the graphs of variation
A and B lie above the graph of the coin-toss. Hence, variation A and B generated more distinct contexts
compared to the coin-toss. Exemplary for |M|=7 the coin-tossing approach resulted in 1963 distinct I-PI
coordinates and reached them after around 99 000 generated contexts. Variation A generated around
19 000 contexts until it hit 1963 distinct I-PI coordinates and reached a total of around 2450 after 100,000
contexts generated. Variation B reached the same number of distinct I-PI values already at around
13,000 generated contexts and resulted in 2550 distinct I-PI coordinates.
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(c) Results for contexts with 8 attributes
Figure 6. Number of distinct I-PI coordinates for up to 100,000 randomly generated contexts with 6,
7 and 8 attributes.

5.2. Discussion

We begin the discussion by relating the parameters of the Dirichlet approach to the variety of
generated contexts. Afterwards we explore the discrepancy in the quantities of contexts that contain
a contranominal scale and discuss the observed imaginary lines. Lastly, we discuss the ability of the
different approaches for generating pairwise distinct I-PI coordinates efficiently.

The Dirichlet approach has two parameters, one being the β parameter related to the variance of
the Dirichlet distribution, the other being the α parameter which describes the expected value of the
Dirichlet distribution, as explained more formally in Section 4.3. A large value for β results in categorical
distributions that have probability vectors close to the base measure α, following from the definition.
A small value for β results in categorical distributions where the probability vectors are close to the
corners or edges of the simplex, see Figure 2c. As already pointed out in Section 4.3, those corners of
the simplex can be thought of as the categories, i.e., the possible numbers of attributes an object can
have. This implies that for large β the categories are expected to be about as likely as the corresponding
probabilities in the base measure. Whereas, for small β one or few particular categories are expected
to be far more likely than others.

We have seen that the Dirichlet approach without alterations generated around 2450 contexts
containing a contranominal scale of size |M|. This number was 1900 for variation A and 1200 for
variation B. One reason for the huge number of contranominal scales generated by the base version of
the Dirichlet approach is that most of the realizations of the Dirichlet distribution (Algorithm 1, Line 6)
are inner points of the probability simplex, i.e., they lie near the center of the simplex. These points
or probability vectors result in almost balanced categorical distributions (Algorithm 1, Line 8), i.e., every
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category is drawn at least a few times for a fixed number of draws. This fact may explain the frequent
occurrence of contranominal scales. The expected number of objects with |M|−1 attributes that need
to be generated for a context to contain a contranominal scale is low. In more detail, we only need to
hit the |M| equally likely distinct objects, having |M|−1 attributes during the generation process. To be
more precise, the mean µN and the standard deviation σN of the number of required objects with |M|−1
attributes can easily be computed via µN = N∑N

k=1
1
k and σ2

N = N∑N
k=1

N−k
k2 with N := ( |M||M|−1) = |M|,

cf. [15], as this is an instance of the so-called Coupon Collector Problem. For example for a context
with ten attributes we get µ10≈ 29.3 and σ10≈ 11.2, hence we need to generate on average around 30
objects with nine attributes to create a contranominal scale. While, there is already a high probability of
obtaining a contranominal scale after generating around 18 objects. This means if we generate a context
with |G|=300 objects and the probability for the category with nine attributes is around 10% we can
expect the context to contain a contranominal scale.

If we use a lower value for β we tend to get less balanced probability vectors from the Dirichlet
distribution and therefore generate less contexts that contain a contranominal scale. The pathological
case is a β close to zero, which leads to contexts where all or nearly all objects have the same number of
attributes. Even then we could expect at least 1

|M|+1 of the contexts generated to contain a contranominal
scale. In this case we basically draw from the set of categories, i.e., from the possible numbers of
attributes. Those are related as corners of the simplex and the probability to land in the corner belonging
to the category of |M|−1 attributes is approximately 1

|M|+1 .
Contexts where every object has the same number of attributes are referred to as contexts with

fixed row-density in [8]. They were used to show that the coin-tossing approach in practice does not
generate a whole class of contexts. An explanation for the imaginary lines observed in Figures 4 and 5
is that they correspond to contexts with fixed row-density, cf. ([8] Figure 5). As pointed out in the last
paragraph very low values of β the Dirichlet approach predominantly generates contexts where all
objects belong to few or even only one category. This explanation is further supported by the increasing
bias of the context’s I-PI coordinates to form those imaginary lines for decreasing values of β. It also
accounts for the peak at ten pseudo-intents in the histograms for variations A and B. This due to the
fact that a fixed row-density context with density 8/10 that contains all possible objects has exactly
ten pseudo-intents, cf. ([8] Prop. 1). This is again related to the Coupon Collector Problem. The solution
to this problem yields the expected number of objects that we need in order to hit every possible
combination. In particular for the case of the peak at ten pseudo-intents, N=(10

8 )=45, µ45≈198 and
σ45≈ 56, meaning if we generate a fixed row-density context with around 200 objects we can expect
it to contain all possible combinations and therefore have ten pseudo-intents. This fits well with the
observed 366 contexts with ten pseudo-intents in variation B. Consider the case that we only generate
fixed row-density contexts containing all possible attribute combinations and all densities are equally
likely. The expected number of contexts with eight attributes and therefore ten pseudo-intents for
5000 generated contexts then is 5000/11≈455. Naturally, variation B does not predominantly generate
fixed row-density contexts or even fixed row-density contexts with all possible attribute combinations.
Hence, the before mentioned 366 observed contexts with ten pseudo-intents seem reasonable.

Lastly we discuss the observations from counting distinct I-PI coordinates. In Figure 6 we can see
that the Dirichlet approach results in a broader variety of contexts in comparison to the coin-tossing for
any fixed number of generated contexts. All three plots show that there is an initial phase where contexts
with new I-PI coordinates are frequently generated followed by a far longer part where contexts with
new I-PI coordinates become increasingly rare. This is not surprising, since the number of possible I-PI
coordinates is finite and the probability to re-hit increases with every distinct generated I-PI coordinate.
Note that this is an effect that would also be observed when using a perfectly uniform sampling
mechanism. Nonetheless, what we can observe is that it takes the Dirichlet approach significantly longer,
compared to the coin-tossing model, to reach a point where only few new I-PI coordinates are generated.
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5.3. The Problem with Contranominal Scales

In the previous part of the discussion we established that contranominal scales pose a serious
problem while generating formal contexts. In particular when a formal context contains large or the
largest possible contranominal scale. One possible way to prevent this is to set the probability to
generate objects with |M|−1 attributes to zero while generating formal contexts with |M| attributes.
This results in the impossibility of generating a contranominal scale of size |M|. However, this would
diminish the class of generable contexts significantly. A more sophisticated approach to alter the
precision parameter and the base measure would consider more specific classes of those. Nonetheless,
the research for understanding the influence of the base measure and the precision parameter is in its
beginning with respect to context generation. Hence, we encourage a detailed investigation of this
in future work. Until then, using the base measure that results in a uniform draw of the categorical
distribution and randomizing the precision parameter is a good trade-off. For dealing with an already
generated contranominal scale of size |M|we propose the following course of action. The approach
at hand is to discard this particular context and to generate a new one. A more advanced method is to
remove all instances of at least one attribute combination on |M|−1 attributes. Furthermore, detecting
and removing a contranominal scales of lesser size is possible but computationally infeasible.

6. Applications

We see for our Dirichlet approach at least two major applications. For one, an improved random
generation process can be used to facilitate more reliable benchmarks for FCA algorithms. For example,
since the Dirichlet approach generates contexts that exhibit a greater variety, i.e., a larger class of
generated contexts compared to coin-tossing, it can be used to obtain more robust runtime results.
A second application is the generation of null models for formal contexts. In a nutshell, the idea of null
model analysis for formal contexts is to obtain information about a context of interest by comparing
it to similar, randomly generated contexts. Similar means here that the random contexts mimic some
properties of the original context either precisely or approximately.

6.1. Null Models for Formal Contexts

We start with a quick recollection of graph theoretic null models. Thereafter, we introduce
null models for formal contexts and their generation using our Dirichlet approach. We conduct an
experimental comparison of coin-toss and the Dirichlet generator for their ability to mimic real-world
contexts as well as randomly generated ones. Afterwards, we conclude this investigation with an
application for deciding the interestingness of a formal context.

In graph theory null models are well employed, c.f. [3,16,17], and one prominent use-case is
community detection in graphs by Newman [18]. There the graph of interest is compared to instances
of the graph with randomized edges (under certain constraints) to determine its community structure.
Essentially, the graph of interest is compared to random graphs that have the same number of nodes
and the same node degree distribution. An extension to this null model incorporates expected
degree distributions [19] and is able to capture certain peculiarities arising from real-world graphs
more robustly. Note that using the exact or expected node degree distributions are just two of many
possibilities to specify a null model. Other (graph) null models, for example, are based on the Bernoulli
(Erdösh–Reni) random graphs, the Barabasi–Albert graph model, the Watts–Strogatz graph model or
other task specific random approaches. Adapting the expected node degree distribution model allows
us to develop a Dirichlet based null model for formal contexts.

The graph based idea of null models can easily be transferred to formal contexts. It is known that
for every formal context a bipartite graph can be constructed in the following way: The vertex set is
constituted by the disjoint union of the object set and the attribute set. The set of edges is constructed
from the incidence relation in a natural way, i.e., an object and an attribute that are related in the context
have an edge between the corresponding vertices in the graph. Analogously, a formal context can be



Information 2020, 11, 135 12 of 26

constructed from a bipartite graph by using the partitions as objects and attributes and the edges to
determine the incidence relation.

Assume now we have a formal context K= (G,M, I) and we want to construct a null model for
K. We then interpret K as bipartite graph and construct a graph based null model. The resulting (null
model) graphs are then re-interpreted as formal contexts and constitute the null model for K. This being
said, algorithmically we omit the explicit transformations and conduct the graph based null model
generation on the formal context side directly. For our investigation we examine Newman’s null
model [18]. This model preserves the node degree distribution of a bipartite graph. This translates to
the preservation of the number of incidences for each object and for each attribute in the formal context.
Hence, a randomization technique that can be used to imitate Newman’s null model directly on formal
contexts is swapping of incidences (SWAP). This means we repeatedly select two objects g1,g2 ∈ G
and two attributes m1,m2 ∈M such that if (g1,m1),(g2,m2)∈ I and (g1,m2),(g2,m1) 6∈ I we swap their
incidences such that (g1,m2),(g2,m1)∈ I and (g1,m1),(g2,m2) 6∈ I. This generates a randomized version
of the original context under the constraint to preserve the node degree distribution. However, this
technique is obviously a frail randomization approach due to the constraint for swapping.

Considering only one partition element of a bipartite graph for the null model generation is still
a reasonable endeavor. This idea translates to focusing on either the attribute set or the object set in
a formal context. From this a less restrictive null model can then be derived. This model is less restrictive
with respect to the SWAP approach, since structural properties are only kept for either the object set
or the attribute set. For example, only the degree distribution of the object set is preserved. Building
up on this we focus in the following, without loss of generality, on the object set. More specifically we
consider the number of attributes per object, also referred to as row sums. This corresponds very well to
our model for randomly generating formal contexts, cf. Section 4.3. Note that the row sums in a formal
context correspond to the node degrees of the objects in the corresponding bipartite graph. Therefore,
the row sum distribution of a formal context is the same as the object node degree distribution in the
corresponding bipartite graph. An example for a row sum preserving null model for a formal context
is derived as follows. For all objects permute the incidence with the attribute set in the original context.
This clearly leaves the row sum of every object intact. Hence, the row sum distribution of the altered
context is equal to the distribution in the original context.

The last generalization before discussing our novel Dirichlet based null model is the following
idea. Instead of preserving the row sum distribution one may retreat to preserve this only to some
approximation. For example, one may employ the observed row sum distribution from the original
formal context K as prior for a categorical distribution. Here, the categories reflect the number of
attributes. For example, ifK has ten attributes then each to be sampled object can have between zero and
ten attributes. These are the categories of the distribution and the corresponding probabilities are the
relative frequencies of their occurrence in K. To generate a new random context from this distribution
we then draw for each object from K a new number of attributes and draw accordingly many elements
from the attribute set c.f. Algorithm 1 lines 8 to 11. This procedure does not necessarily preserve the
row sum distribution, but the expected distribution is equal to the distribution of the original context.

The Dirichlet Null Model for Formal Contexts

Our novel approach for null model generation is closely related to the model discussed above.
However, we additionally introduce small deviations from the original row sum distribution. To this end
we employ the normalized row sum distribution of K as a base measure for the Dirichlet distribution.
We may note that this requires the ability to deal with zero components in the base measure, as
mentioned in Section 4.3. Furthermore, a large value for the precision parameter β is necessary to
control the deviation from the original row sum distribution. The expected row sum distribution in
our approach resembles the distribution in the original context.
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For obvious reasons this null model can be computed using the Dirichlet random generator as
introduced in Section 4.3. Explicitly, for K= (G,M,I) one may apply Algorithm 1 with |G| in Line 1,
the row sum distribution from K as α in Line 4 and a large value for β, e.g., β=1000·(|M|+1), in Line 5.

An overview for the so far introduced gradations of formal context null models is depicted
in Table 1. We added additionally a simple resampling approach (last line).

Table 1. Non-exhaustive list of methods for simple null models under the indicated constraints. We write
G-dist for the row sum distribution and M-dist for the column sum distribution of a formal context.
Further we write E(G-dist) and E(M-dist) for the expected row (column) sum distribution.

Constraint Randomization Method(s) for Null Models

keep G-dist and M-dist pairwise swapping of incidences
keep G-dist or M-dist shuffling of rows or columns
keep E(G-dist) or E(M-dist) Dirichlet approach based on the row sum distribution as base

measure and a high precision parameter.
keep E(density) coin-toss based on density, Dirichlet approach
keep all implications resampling of objects

6.2. Evaluation of the Dirichlet Approach for Null Model Generation

We evaluate in this section our approach for null model generation. To this end, we use Algorithm 1
with the alterations specified in the last section. Namely, for some context (G, M, I) we use its row
sum distribution as base measure α, the number of attributes as N and a high precision parameter
β=1000·(|M|+1). In addition to the discussed Dirichlet null model we employ resampling as a base
line null model. That is, we generate random contexts by sampling objects from the original context.
Furthermore we compare our null model approach to the classical coin-toss procedure, i.e., we generate
random contexts using the coin-toss algorithm where the coin is weighted with respect to the original
context.

Altogether we investigate a set of ten real-world contexts and four artificial contexts for our
evaluation. The evaluation set is diverse. Nonetheless, with respect to the number of attributes we
had to select formal contexts where the computation of the intent set and and pseudo-intent set is
computationally feasible. The set of contexts as well as the code used for the evaluation can be found
online, see Section 5 on page 6 and the datasets of the conexp-clj software [14]. Short summaries of
the used contexts and their properties are depicted in Tables 2 and 4.

For the evaluation of our Dirichlet approach for null models we generated one null model per
context per approach (Dirichlet, coin-toss, resampling). Each null model consists of 100 randomly
generated formal contexts based on the properties of the original contexts. All generated contexts
have the same number of attributes and the same number of objects as the original contexts. We have
computed the density, the number of intents and the number of pseudo-intents for all generated
contexts and aggregated them for each null model in Table 4. Note that all non-integer values have
been rounded to two decimal places. Furthermore, we have prepared visual representations of the
results for all contexts, from which we only included a selection in the main matter of this work. More
specifically, we present the results for three real-world contexts and one artificial context. The remaining
visualizations can be found in the appendix (Figures A1–A10). The first graphic (Figure 7) contains
a detailed description of the shown plots.
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Table 2. Dataset Descriptions. All considered contexts can be found online contained in the conexp-clj
software, see [14], or in the supplementary materials for this paper, see Section 5 on page 6.

Context Source Description

Bird-Diet [14] A context of birds and what they eat.
Brunson-Club [20,21] Membership information of corporate executive officers in social

organisations.
Diagnosis [22,23] The data was created by a medical expert as a data set to test the

expert system, which will perform the presumptive diagnosis
of two diseases of the urinary system. The temperature attribute
is interval-scaled.

Dolphins [20,24] A formal context created from a directed social network of
bottlenose dolphins living in a fjord in New Zealand. A relation
indicates frequent association based on observations between
1994 and 2001.

Forum-Romanum [2] A context based on ratings of monuments on the Forum
Romanum in different travel guides and scaled ordinally. This
context can be found in the standard work on FCA.

Living-Beings-and-Water [2] The first formal context in the standard work on FCA (the yellow
book) by Ganter and Wille.

Olympic-Disciplines [25] This context is about the disciplines of the Summer Olympic
Games 2020.

Seasoning-Planner [14] This context contains foods that are related to recommended
seasonings based on a chart published by the spice company
Fuchs Group.

Southern-Woman [20,26] Participation of 18 white women in 14 social events over a
nine-month period, collected in the Southern United States of
America in the 1930s.

Wood-Properties [14] A context about properties of different kinds of wood.
Cointoss-1 artificial Artificially generated with the coin-toss approach.
Cointoss-2 artificial Artificially generated with the coin-toss approach.
Dirichlet-1 artificial Artificially generated with the Dirichlet approach.
Dirichlet-2 artificial Artificially generated with the Dirichlet approach.
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Table 3. This table contains some basic properties of the formal contexts used in the experiment where each method of random generation was used to generate a
null model consisting of 100 contexts. The aggregated results for density, number of intents and number of pseudo-intents are shown.

Context Method #Attributes #Objects (µ)-Density σ-Density (µ)-#Intents σ-#Intents (µ)-#Pseudo-Intents σ-#Pseudo-Intents

Bird-Diet

True Context 8 10 0.30 16 15
Cointoss 0.30 0.05 18 3.87 15 2.85
Dirichlet 0.30 0.04 18 3.50 15 2.49
Resample 0.30 0.05 11 2.01 11 1.81

Brunson-Club

True Context 15 25 0.25 62 73
Cointoss 0.25 0.02 84 14.18 88 7.41
Dirichlet 0.25 0.02 79 10.86 86 7.17
Resample 0.26 0.02 39 5.73 48 8.94

Diagnosis

True Context 17 120 0.47 88 43
Cointoss 0.47 0.01 5749 779.98 1422 100.19
Dirichlet 0.47 0.00 3677 55.04 1420 38.12
Resample 0.47 0.00 87 1.94 43 0.74

Dolphins

True Context 62 62 0.08 282 1077
Cointoss 0.08 0.00 227 21.15 1611 97.30
Dirichlet 0.08 0.01 231 29.73 1580 117.76
Resample 0.08 0.01 146 18.26 685 97.01

Forum-Romanum

True Context 7 14 0.45 19 8
Cointoss 0.45 0.05 33 7.29 13 1.92
Dirichlet 0.45 0.08 27 10.84 12 2.79
Resample 0.46 0.09 13 2.48 8 1.10

Living-Beings-and-Water

True Context 9 8 0.47 19 10
Cointoss 0.46 0.06 28 6.71 18 3.23
Dirichlet 0.47 0.02 29 4.34 19 3.57
Resample 0.47 0.03 12 2.47 10 0.78

Olympic-Disciplines

True Context 19 50 0.46 529 86
Cointoss 0.46 0.02 2178 380.38 831 83.09
Dirichlet 0.46 0.02 2414 674.88 773 114.78
Resample 0.46 0.02 301 47.00 65 6.51
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Table 4. Cont.

Context Method #Attributes #Objects (µ)-Density σ-Density (µ)-#Intents σ-#Intents (µ)-#Pseudo-Intents σ-#Pseudo-Intents

Seasoning-Planner

True Context 37 56 0.20 532 553
Cointoss 0.20 0.01 631 83.08 1045 133.45
Dirichlet 0.20 0.01 688 131.33 1044 172.95
Resample 0.20 0.01 260 52.03 331 49.12

Southern-Woman

True Context 14 18 0.35 65 23
Cointoss 0.35 0.03 94 18.59 75 8.57
Dirichlet 0.36 0.04 99 25.07 73 10.09
Resample 0.35 0.04 36 9.00 21 2.15

Wood-Properties

True Context 28 29 0.28 315 275
Cointoss 0.28 0.01 362 54.30 432 42.88
Dirichlet 0.28 0.02 361 61.43 427 45.90
Resample 0.29 0.02 154 31.96 153 31.68

Cointoss-1

True Context 10 793 0.42 913 34
Cointoss 0.42 0.01 866 27.40 45 8.39
Dirichlet 0.42 0.01 880 29.42 42 8.97
Resample 0.42 0.01 808 28.68 49 6.40

Cointoss-2

True Context 15 200 0.21 411 312
Cointoss 0.21 0.01 434 39.18 315 12.16
Dirichlet 0.21 0.01 408 40.04 312 11.37
Resample 0.21 0.01 278 19.39 294 18.59

Dirichlet-1

True Context 10 198 0.39 308 101
Cointoss 0.39 0.01 467 42.57 80 6.24
Dirichlet 0.39 0.01 307 7.04 96 4.40
Resample 0.39 0.01 259 7.21 84 6.61

Dirichlet-2

True Context 15 200 0.57 18,166 564
Cointoss 0.57 0.01 12,451 1,053.37 989 80.60
Dirichlet 0.57 0.01 17,894 1,342.92 625 68.66
Resample 0.57 0.01 12,018 976.22 552 51.81
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6.2.1. Observations

In addition to the visualizations in Figures 7–10 we summarized the result in a numerical
representation in Table 4. We observe that all three null model approaches imitate the original context
well in terms of density. However, the number of intents and pseudo-intents cannot be replicated by
any of the null models. A context with |M| attributes has at least one and at most 2|M| intents. Taking
this into account we find that for most of the contexts all three null models have an average number
of intents close to that of the original context. Nonetheless, we can observe that for Diagnosis and
Olympic-Disciplines both coin-toss and Dirichlet approach generated contexts exhibit a much higher
number of intents and pseudo-intents. Moreover, for Dolphins, Seasoning-Planner and Wood-Properties
we see that the average number of intents of the resampling approach is notably different to the average
number of intents of the original context and the other null model approaches. However, if we focus on
the artificial contexts we can report that the Dirichlet generated null model is able to imitate the original
contexts in terms of the number of intents and pseudo intents.

A thorough inspection of our visualizations Figures 7–10 leads to additional results. We see that
the Dirichlet approach and the resampling approach imitate the row density distribution very well in
general. In contrast, the coin-toss model cannot imitate the occurred row density distributions. Looking
at the I-PI-plots we see that the resampling null model usually creates a cluster of contexts to the left of the
original context. In contrast to this, the Dirichlet and coin-toss null models create a cluster to the top right
of the original for the three real-world contexts and two distinct clusters for the artificial context. Further
examining all the other visualizations (Figures A1–A10) we observe that this placement of the I-PI
clusters holds for the resampling approach but neither for the coin-tossing nor the Dirichlet approach.

6.2.2. Evaluation

Our experiments indicate that the Dirichlet null model approach is superior to the specified
competition of null models. This reflects our theoretical considerations very well. The resampling
approach comes off second-best in most of the times or even beats the Dirichlet null model. However,
since resampling is restricted to the set of already known objects this is not surprising. This restriction
is also the most important reason to discard the resampling approach for a proper null model notion.
The Dirichlet approach is not restricted in this way. Furthermore, the resampling approach does not
imitate artificial contexts as good as the Dirichlet approach. We further note that none of the null models
is truly able to imitate the I-PI-coordinate behavior of the real-world contexts. In contrast, our Dirichlet
approach appears to be adequate for imitating both Dirichlet and coin-toss generated artificial contexts
with respect to I-PI-coordinates.

Based on our observations and the evaluation we may propose a first application of our null
model: Discovering interesting formal contexts. Imagine we are given a set of formal contexts and we
want to identify the potentially most interesting one for a further analysis. If we have no additional
(background) information on these contexts deciding or valuating interestingness is complicated.
Here, one possibility to determine interestingness is to compare each to its null model. A criterion
for interestingness could then be to choose the contexts whose null model deviates the most from the
original in terms of I-PI coordinates or other statistical properties. The assumption here is that those
contexts have some structural properties that are not common when looking at randomized instances
of the context. Essentially, we want to select those contexts for further analysis that resemble randomly
generated contexts the least. This idea could be compared to the deciding criteria for Small World
Networks, see [27].



Information 2020, 11, 135 18 of 26

co
in
to
ss

di
ri
ch
le
t

or
ig
in
al

re
sa
m
pl
in
g

generator

0.0

0.2

0.4

0.6

0.8

1.0

d
e
n
s
it
y

Figure 7. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach. The first three charts show the resulting densities, numbers
of intents and numbers of pseudo-intents as box-whiskers plots with outliers. The chart in the top right
is an I-PI-plot of all generated contexts. The four other charts depict the mean and standard deviation
of the frequencies of the numbers of attributes, i.e., of the row sum distributions. The red line indicates
the row sum distribution of the original context for which the null models were generated
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Figure 8. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure 9. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure 10. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.

7. Conclusions and Outlook

Analyzing a stochastic model for the coin-tossing approach for randomly generating formal
contexts lead in a natural way to a more sophisticated context generator. By addressing the carved out
limitations of the underlying binomial model we comprehended the usefulness of Dirichlet distributions
for the generation of random contexts. Based on this we developed an algorithm which can easily
be implemented and run. In practice this algorithm generates random contexts from a significantly
larger class of contexts compared to the common coin-toss approach. We empirically evaluated this new
approach with different sizes of attribute sets. The conducted experiments showed that we generated
a significantly broader variety of contexts. This increased variety may enhance the reliability of random
context based investigations, like algorithm performance comparisons.
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Furthermore, we transferred the idea of null models from graph theory to formal concept analysis.
By doing so we enabled a novel analysis method for real-world formal contexts. The Dirichlet
approach for random contexts serves as one possible foundation for null models for formal contexts.
This approach generates null models that preserve the expected row sum distribution of the original
context. To show that the theoretical considerations translate to practical results we evaluated the
Dirichlet approach for null models on a collection of real-world and artificial contexts. To demonstrate
the superiority of the Dirichlet based null models we compared them to classical approaches like
coin-toss based and resampling.

The Dirichlet based null model approach, in particular the relevant parameters of it, poses a
lot of new questions and problems. In particular, how do different base measures relate to different
classes of formal contexts? How can one minimize the amount of generated contranominal scales while
preserving a wide variety of contexts? Investigating the base measures is a fruitful next step in order
to understand those questions. Furthermore, there is a lack of a characteristic description of real-world
formal contexts, as done in the realm of social network analysis, for example.
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Figure A1. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A2. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A3. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A4. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.

co
in
to
ss

di
ri
ch
le
t

or
ig
in
al

re
sa
m
pl
in
g

generator

0.0

0.2

0.4

0.6

0.8

1.0

d
e
n
s
it
y

Figure A5. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A6. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A7. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A8. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A9. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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Figure A10. Results of generating null models consisting of 100 random contexts each using resampling,
coin-tossing and the Dirichlet approach, c.f. Figure 7.
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