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Abstract In scientometrics, scientific collaboration is often analyzed by means
of co-authorships. An aspect which is often overlooked and more difficult to
quantify is the flow of expertise between authors from different research topics,
which is an important part of scientific progress. With the Topic Flow Network
(TFN) we propose a graph structure for the analysis of research topic flows
between scientific authors and their respective research fields.

Based on a multi-graph and a topic model, our proposed network structure
accounts for intratopic as well as intertopic flows. Our method requires for the
construction of a TFN solely a corpus of publications (i.e., author and abstract
information). From this, research topics are discovered automatically through
non-negative matrix factorization. The thereof derived TFN allows for the
application of social network analysis techniques, such as common metrics and
community detection. Most importantly, it allows for the analysis of intertopic
flows on a large, macroscopic scale, i.e., between research topic, as well as on
a microscopic scale, i.e., between certain sets of authors.

We demonstrate the utility of TFNs by applying our method to two com-
prehensive corpora of altogether 20 Mio. publications spanning more than 60
years of research in the fields computer science and mathematics. Our results
give evidence that Topic Flow Networks are suitable, e.g., for the analysis
of topical communities, the discovery of important authors in different fields,
and, most notably, the analysis of intertopic flows, i.e., the transfer of topical
expertise. Besides that, our method opens new directions for future research,
such as the investigation of influence relationships between research fields.
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1 Introduction

Scientific collaboration is a key factor for improving publication quality (Ferligoj
et al., 2015), it is increasing in frequency (Sonnenwald, 2007) and a neces-
sity for cross-domain research progress. Networks (or graphs) derived from
co-authorship publication data are the most common approach to investigate
scientific collaborations (Newman, 2001b) and therefore constitute an essential
tool to reveal patterns of collaboration (Newman, 2001a).

Often these investigations are restricted to particular sets of research topics,
e.g., Kretschmer & Gupta (1998) investigated collaboration networks in the
field of theoretical population genetics and Hou et al. (2008) analyzed the co-
authorship network of Scientometrics journal authors. Yet, more often analyses
are rather agnostic to the research field and do focus on other aspects, such
as geographical features (Katz, 1994), political demarcations in the world,
e.g., He (2009), or observed shock events, such as geopolitical change on the
research landscape (Braun & Glaenzel, 1996).

An increasingly strongly investigated field of research is the analysis of
topics of publications, their emergence, dynamic as well as specializations.
Thereby, approaches to the topic analysis of publication corpora differ into
intrinsic methods (Churchill et al., 2018; Rosvall & Bergstrom, 2010) and ex-
tensional ones, i.e., they separately compute an author collaboration network
and topic model for the related publications (Jeong et al., 2020). Clearly,
the combination of collaboration networks and topic-based models offers new
insights for scientometric analyses of publication corpora, especially an author-
based measurement of topic flows. Although implicitly the properties of co-
authorships and research topics have certainly been blended in studies, no ex-
plicit modeling of the two as a combined analysis structure for Research Topic
Flows has yet taken place. Provided that such a structure can be explained
and calculated (in a mathematically justifiable way), it will allow a variety of
new scientometric analysis approaches: 1. It allows to detect inter-topic col-
laborations between researchers; 2. Based on the detection, their frequency
and intensity can be measured and tracked through time; 3. In total, all these
measurements can be aggregated and a comprehensive model for measuring
the flow between research topics can be derived.

In this paper, we propose how this combination can be designed in a math-
ematically tractable way. Considering human comprehensibility and explain-
ability we employ an interpretable topic model (non-negative matrix factor-
ization) for the construction of the Topic Flow Network (TFN). Our approach
overcomes several obstacles, most importantly 1. TFN reflects the variety of
research topics of authors and their publications; 2. TFN can capture the dif-
ferent thematic flows between authors and, in an aggregated form, between
topics themselves.

In detail, we introduce a topic model enhanced graph structure to investi-
gate how topical expertise flows through collaboration networks (i.e., co-author
networks). For this, we start with a research corpus from which we derive a
topic model, that allows for the creation of a directed, edge-weighted multi-
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graph, the TFN. The predicate for a directed edge from author a to author
b is that they collaborated on topic t and the expertise of a on t is higher
than the expertise of b on t. Based on this structure we are able to measure
the flow between research topics by aggregation and thus indirectly the flow
of knowledge between research areas.

We study our method on two comprehensive publication corpora from the
research fields mathematics and computer science, which amount to a total of
20 Mio. research articles and about 900,000 authors. Both span a period of
more than sixty years, starting from 1960. The thereof constructed TFNs are
used in example analyses, such as calculating common social network metrics,
(topical) community detection and the recognition of influential authors via
PageRank. Most importantly, we derive topic flows for all topics and years in
our data set and visualize and interpret five examples.

An advantage of our approach is that it solely rests on the availability of
co-authorship information and paper abstracts, i.e., no citation information is
required, which is usually more difficult to acquire. Combined with the inherent
interpretability of the topic model, this renders the Topic Flow Network a
versatile and comprehensible research tool in the field of scientometrics.

2 Related Work

Our presented work draws mainly from research results from the analysis of
social (co-authorship) networks, topics therein and recent topic flow modelings.
Work on the former is extensive and we want to recollect therefore only the
most relevant results for our work. In contrast, our compilation of topic flow
approaches is more comprehensive.

Co-Authorship Networks Co-authorship is one of the best documented prop-
erties in scientometrics. Data based on this attribute are comparatively easy
to obtain for a plethora of research areas, unlike data based on other author
network properties such as citation information. These co-authorship networks
are a special case of scientific collaboration networks (Moed et al., 2004) and
are a constant subject of research, in particular with respect to scientomet-
ric analysis. State of the art studies investigate these networks in a global
scope (Isfandyari-Moghaddam et al., 2021), focusing on whole research ar-
eas (Ji et al., 2022) or incorporate temporal aspects (Ji et al., 2022).

Topic Models At the current state of research, there is a variety of useful and
widely applicable topic models for use on text corpora. The majority of ap-
proaches to topic modeling take a document-word matrix as input, in which
documents are represented in a so called vector space model. The first promi-
nent instance is Latent Semantic Analysis (Deerwester et al., 1990), short LSA,
and is based on the1 singular value decomposition of the input matrix. From

1 This decomposition is unique up to the chosen basis.
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the factor matrices, one can infer relations between documents and topics as
well as topics and terms. A similar principle is followed by the non-negative
matrix factorization (Lee & Seung, 1999) procedure (NMF), which decomposes
a matrix into two factors that are non-negative matrices. This decomposition
results in far better understandable topic representation, since the topic values
for a document cannot be negative. The same is true for a topic’s term values.

A probabilistic approach to topic modeling was introduced by D. M. Blei,
Ng, et al. (2003) and is called Latent Dirichlet Allocation (LDA). This and
thereof derived methods (D. M. Blei & J. D. Lafferty, 2006; D. Blei & J.
Lafferty, 2007; Wang & McCallum, 2006; Dieng et al., 2019) are broadly used
in practice, however, explaining them presents a certain obstacle. Moreover,
when confronted with short texts, such as research paper abstracts, the results
of NMF are superior to those of LDA (Hong & Davison, 2010).

Since we want to base our investigations for Research Topic Flows on the
titles and abstracts from a large document corpus, we decided for NMF. This
decision was also influenced by the fact that LDA produces considerably less
stable results. This way, we can provide more reproducible results in repeated
runs compared to employing the LDA algorithm (Belford et al., 2018). Finally,
we refrain in this work from using dynamic topic models and word embeddings
as these also reduce the explanatory power of our approach.

Topic evolution and Topic Flow The term topic flow is still ambiguous in the
scientific literature. For example, in the area of online social network analysis
the authors Malik et al. (2013) refer to TopicFlow as a visualization to capture
the evolution of topics from discussions on Twitter. In the realm of scientomet-
rics, topic flow is often taken as the share of a topic in the total amount of all
scientific publications in a year. Basically, the research approach to date can
be divided into two categories: 1. Intrinsic network-based modeling of topics
and (potentially) their propagation in time (IN); 2. Extending (temporal) net-
works by means of a topic model (EN). Yet, the concept of network in these
categories ranges from intradocument relations to interdocument clusters.

The work by Churchill et al. (2018) is an example for IN, which employs
a graph theoretic temporal topic model that identifies topics as they emerge
and tracks them through time. The authors of Jiang & Zhang (2016) propose
a hierarchical topic model, an IN approach, to capture the topic evolution over
time. In a case study on three computer science journals, the authors proposed
a principal way to visualize this topic evolution using Sankey diagrams. In
contrast to our work, however, the collaboration structure of the publication
network and the individual expertise of the authors were not taken into account
in the authors’ approach. A similar distinction applies to Li et al. (2019),
though in their paper the authors considered topical co-authorship to be a
relevant variable.

The second EN approach, linking co-author networks with an underlying
(or external) topic model, has already been tried a few times. Most related
to our method is the work by Jeong et al. (2020), whose objective is to cap-
ture temporal patterns of research interests of authors over time. The authors
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studied their approach on a (comparatively) rather small data set of about
800 documents and they have not yet defined or measured the flow between
(research) topics. Another example is the work of Tran et al. (2012), who
combined an LDA model to enhance an unsupervised link prediction learning
task involving a Japanese research database and the Digital Bibliography &
Library Project.

Of particular relevance to the present work are the articles based on the
map equation by Rosvall & Bergstrom (2008), Rosvall, Axelsson, et al. (2009),
and Rosvall & Bergstrom (2010), a statistical approach to network analysis
which does also incorporate topical aspects. Although their work seems similar
to ours, their approach is based on a fundamentally different question: How
can one capture research fields (or their topics) using citation patterns? This
method is orthogonal to ours, which attempts to capture the topical research
flow (or knowledge flow) between individuals, and in an aggregated form, be-
tween research fields themselves.

Finally, all studies cited in this section have in common that their meth-
ods were not applied to publication corpora of comparable (large) magnitude
compared to the present work, cf. Table 5.1.

3 Problem Description

An elementary component of scientific work is the exchange of knowledge on
various research topics in the form of author collaborations. This interchange
within co-authorships generates a flow of (topical) knowledge between the au-
thors and therefore of their respective research fields, which we refer to as
Research Topic Flows (RTF). Understanding this flow of information on the
research topics is crucial to comprehend scientific advances over time. Inves-
tigating RTF is a difficult problem, since (P1) papers are comprised of many
different research topics. An author can be associated with the topics of his or
her papers. Thus, as the paper topics change so will the associated research
topics of the author (P2). Furthermore, (P3) author collaborations can take
place within a research field (intratopic) and between different research fields
(intertopic). Another challenge is the delay in the publication process (P4),
since a certain time passes from the creation of a research work to its eventual
publication. Finally, (P5) the direction of topic flow depends on the relative
expertise of the concerned authors.

Analyzing RTF demands for a sophisticated network structure that cap-
tures author collaborations and their research topics over time. With our work,
we propose the Topic Flow Network (TFN) which fulfills the requirements
above and allows for further analyses. The creation of the TFN requires for
automatic methods to identify research topics in scientific corpora. This is a
challenging task by itself, since related topics may overlap and are not dis-
tinctly separable.
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4 The Topic Flow Network

The construction of a Topic Flow Network is based on a publication corpus C,
which is a relation of authors A, their papers P in their publication years Y ,
in short, C ⊆ P × P(A) × Y . We will often select the works by an author
a ∈ A published in the year y ∈ Y using the selection map σ : A×Y → P(P ),
σ(a, y) 7→ {p ∈ P | ∃(p,N, y) ∈ C with a ∈ N}. Due to the common delays
in the scientific publication process, we will in practice relax this definition by
additionally considering tuples (a,N, y−1) and (a,N, y−2), see P4 in Section 3.

In order to measure (research) topic flow a model for topics on C is re-
quired. Given such a model T using |T | = n topics, we can derive a map
θ : P → [0, 1]|T |, p 7→ θ(p) := (t1, . . . , tn). The n components of the topic
vector reflect the proportions to which extent each topic ti belongs to paper
p. This representation addresses P1 in Section 3. Whenever we want to ad-
dress a particular topic t from a topic vector, we project on it using πt, e.g.,
πtθ(p). By abuse of notation, we employ the same function symbol for the map
θ : A × Y, (a, y) 7→ θ(a, y) :=

∑
p∈σ(a,y) θ(p), which is the topic vector of an

author a in year y. Since the arity of this function is different, we assume that
there is no risk of confusion.

Definition 4.1 (Topic Flow Network) A Topic Flow Network(TFN) is
an edge-weighted multi-graph Gθ := (A, Eθ) which consists of an author set A
and a set of edge relations Eθ := {Eθy,t}y∈Y,t∈T with

Eθy,t := {(a1, a2) ∈ A×A | σ(a1, y) ∩ σ(a2, y) 6= ∅ ∧ πtθ(a1, y) ≥ πtθ(a2, y)}

Fig. 4.1 Topic Flow Network example of the year 2000 in the neighborhood of the computer
science researcher Ian Horrocks. Edges between author nodes indicate topic flows. Edge
colors represent topics and thickness indicates edge weight. For improved comprehensibility,
the figure shows only a sample of the edges between the given nodes.
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and the weight functions

ωθy,t : E
θ
y,t → R≥0, (a1, a2) 7→ ωθy,t(a1, a2) := πt

∑
p∈σ(a1,y)∩σ(a2,y)

θ(p).

For the year y, authors a1 and a2 have a t-labeled edge in Eθy,t if they
published together on topic t in this year. For all practical purposes, we remind
the reader of our relaxation that will also consider the years y−1 and y−2. The
weight for an edge in Eθy,t is the sum of topic vectors of the publications written
by a1 together with a2 projected on topic t. We may stress that loop edges
are included by this modeling. In fact, we consider the weight of a self-loop of
author a on topic t in year y to be the expertise of a on t in y.

With this construction of the TFN we want edges to reflect the amount and
the direction of topic flow within the co-authorship network (see P5 in Sec-
tion 3) as well as its change over time (see P2 in Section 3). The direction is
a direct result of comparing topic vectors of the involved authors on the topic
in question. In our model we assume that topical knowledge flows from the
author with higher expertise to the one with lower expertise weight. Different
edges (i.e., different topics) between the same author pair may have opposite
directions in the same year. Moreover, our modeling accounts for inter- as well
as intratopic flow (see P3 in Section 3).

An example for a computed Topic Flow Network is given in Figure 4.1. In
this figure, the TFN of the year 2000 in the neighborhood of the computer
science author Ian Horrocks is depicted. Only a sample of the edges is shown
for improved comprehensibility. Edges indicate topic flows between author
nodes. Multiple edges on different topics, indicated by the colors, can occur
between authors. Flows can have different weights, which is visualized by edge
thickness. The data is taken from the case study in Section 5.

4.1 Topic Flow Network Computation

Corpus Preprocessing Computing topics for the construction of the Topic Flow
Network requires that the papers P in the publication corpus C are converted
to a vector space representation. For this, we concatenate the title and abstract
of a paper, follow standard preprocessing techniques, such as tokenization
and stop word removal and, finally, compute tf-idf representations (Ramos
et al., 2003). We may note, that preprocessing steps may be specific to the
constitution of the input corpus rather than being an integral part of our
overall method. For the more intricate details that may be involved in this
process, we thus refer the reader to our case study in Section 5.

Topic Model For the computation of (research) topics, we employ non-negative
matrix factorization (NMF). From the tf-idf representation of the input corpus,
NMF computes a given number of n ∈ N topics. Each computed topic is
represented as a vector of weights, indicating relevances of terms to the topic.
A topic can thus be interpreted by means of its top-weighted terms. NMF
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additionally computes a topic representation of the input papers by means of
weights, which indicate the relevance of each topic to each paper. Through
this, we are able to construct the map θ for our TFN.

Since both, topic, and term weights, are non-negative, NMF gives topic
and paper representations that are well interpretable. In previous research,
the topics computed by NMF on scientific papers were found to coincide with
research topics (Schaefermeier et al., 2021). When computing topics on a large
publication corpus, a large number of topics might be required to capture the
different scientific subfields. A challenge here is that the many topics of papers
and the resulting edges in a TFN are difficult to comprehend, due to their
large number.

4.2 Selection of Relevant Topics

In order to derive human-comprehensible knowledge from TFN we restrict the
number of topics by removing certain edges from the graph as well as defining
main topics for nodes. For any author a ∈ A, we consider the main topic in
year y to be the topic t for which a has the highest expertise in this year. We
refer to this topic using the partial function

τ : A× Y → T, τ(a, y) 7→ t = argmax
t∈T

ωθy,t(a, a). (4.1)

Apart from being a partial function, Equation (4.1) lacks well-definedness
with respect to the existence of a unique maximum. This can be addressed by
randomizing the selection. However, in practice, i.e., when using sufficiently
large topic models, these exceptional cases are most-probably not encountered.

Whenever of interest, we will also refer to the second highest weighted topic
of an author a. This can be derived by restricting Equation (4.1) to subsets of
T . Moreover, this approach allows for associating a main topic to any subset
S ⊆ A of authors. The main topic S is the most frequent main topic in S, if
existent. We acknowledge that this approach may not work for very small or
random sets of authors. However, in real-world data sets we observe that this
definition is distinctive. Furthermore, we restrict the edge relations of Gθ to
the top-l weighted edges per pair (a1, a2) with a1 6= a2. For a suitable choice
for l we refer the reader to the case study in Section 5.

4.3 PageRank

PageRank (Page et al., 1998) is an algorithm to compute node relevances in
directed graphs. The assumption of PageRank is that nodes are relevant when
they have many incoming edges from other relevant nodes. The PageRank
algorithm repeatedly assigns relevance weights to nodes, given some initial-
ization, which is often the uniform weighting. In every step, these weights
are distributed evenly across the outgoing edges of the nodes, i.e., passed to
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their neighbors. This process is repeated until (some notion of) stability of the
weights. Since we figure that in our modeling topic weights should flow from
lower to higher topical expertise, we flip the edge directions in a TFN before
computing PageRanks. Overall, this method allows us to calculate importance
weights for researchers within TFN in a given year. Furthermore, by restrict-
ing the TFN Gθ to edges on a certain topic t ∈ T , we are able to calculate
relevances of authors with regard to this given research topic t. Since PageR-
ank is a well-researched algorithm that has been proven in practice, it was our
first choice for analyzing TFN. Yet, naturally, the whole tool-set of centrality
measures for directed graphs may be applied to TFN in future work.

4.4 Community Detection

One particular analysis that we want to carry out on topic flow networks
is community detection. The general task of community detection is to find
densely connected subgraphs. Given a Topic Flow NetworkGθ this idea enables
us to find research communities consisting of collaborating authors of A. For
community detection we use the Walktrap algorithm (Pons & Latapy, 2005),
which computes a partition of the input graph node set A. The method is based
on the principle that a set of generated random walks within the graph tends to
get “trapped” inside the same, densely connected parts of this graph. Walktrap
has a comparatively low run-time complexity of O(n2 log n), with n = |A|, in
sparse as well as dense graphs. We chose Walktrap for its resilience with respect
to a wide range of network characteristics, in particular the distinctiveness and
fuzzyness of communities (Papadopoulos et al., 2012).

We compute the partitions of the author nodes A in Gθ for each year y ∈ Y .
To obtain some interpretation of the found communities, we analyze the main
topics τ(a, y) of their authors a as described in Section 4.2. Hence, we call the
most frequent topic within a community (i.e., a set of authors) the main topic
of the community. Since TFN can be very large, e.g., as investigated in Sec-
tion 5, the obtained number of communities can be large as well. Therefore,
we will introduce aggregations and summary statistics in the practical study.

4.5 k-Cores

The k-core of graph G = (V,E) is the maximal induced subgraph G[V ′] s.t. all
vertices in G[V ′] have at least node degree k. Based on this the core number of
a vertex u ∈ V is the largest number k s.t. u belongs to the k-core. The largest
core number of a node in a graph is called the coreness of G. We compute
the coreness for all subgraphs of Gθ that are induced by the topics t ∈ T and
years y ∈ Y . In these settings, we lift the definition of k-cores to multi-graphs
where the degree of a vertex is the sum of the individual degrees with respect
to all edge relations. Edges with weight zero are not considered. We want to
remind the reader that a collaboration of authors N ⊆ A leads to multiple
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edges for every pair of authors in N (Definition 4.1). This modeling results in
comparatively larger core-numbers.

With k-cores we are able to assess the structural connectedness of vertices
with respect to the whole graph. This property is in contrast to simple degree
sequences, which only account for the neighborhood of vertices. With the core-
ness of a topic subgraph in Gθ we appraise the extent of research networking
taking place through collaboration on a given topic in a given year.

4.6 Intra- and Intertopic Flows

The main objective of the present work is to develop and analyze the concept
of intra- and intertopic flows between research topics. Both can be modeled
and captured by means of the Topic Flow Network in the following way. We
simplify our view on the graph Gθ by mapping to each author his or her
main topic (Section 4.2) in year y. This enables a simple clustering of all
author nodes in this year where any two elements of a cluster share the same
main topic. More formally, given the set of topics T we find an equivalence
relation ∼y on A by a1 ∼y a2 : :⇐⇒ τ(a1, y) = τ(a2, y) and the corresponding
clustering (partition) is denoted by A/∼y

. This partition, in turn, allows for
computing a topic flow between any two topics.

Definition 4.2 (Topic Flow) For TFN Gθ with topics T let A1, A2 ∈ A/∼y
,

where t1 ∈ T is the main topic for all a ∈ A1 and t2 ∈ T is the main topic for
all b ∈ A2. The topic flow from t1 to t2 is

ϕy(t1, t2) :=
∑
a∈A1
b∈A2

ωθy,t1(a, b).

This definition defines the intra- and intertopic flow between any two (dif-
ferent) research topics within a TFN. It is based on the assumption that such
a topic flow arises between any two authors from (different) research fields
(i.e., with different main topics) when they collaborate. More specifically, two
authors a and b with main topics t1 and t2 contribute to the intertopic flow
from t1 to t2 with the weight of the edge (a, b) on topic t1. The sum of all such
contributions is the topic flow from t1 to t2. We refer to any flow ϕy(t, t) as
an intratopic flow and accordingly any flow ϕy(t1, t2) with t1 6= t2 as an in-
tertopic flow. These flows allow us, first, to capture cross-topic collaborations
in general, and second, to quantify the extent of such collaborations. With the
latter we assume to measure in particular the flow of (topical) expertise from
t1 to t2, which may influence the target topic t2.

5 Research Topic Flows in Math and Computer Science

In order to test and evaluate Topic Flow Network we conducted a case study
on two comprehensive publication corpora CMATH and CCS from the research
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fields Mathematics and Computer Science. We compiled the data basis by
extracting publications from the Semantic Scholar Open Research Corpus
(S2ORC) (Ammar et al., 2018). This extraction was constrained to publi-
cations that were designated either Mathematics or Computer Science in the
attribute fields of study and were published between 1960 and 2021. For the
creation of the math corpus CMATH, we solely used publications that were
marked as Mathematics and not as Computer Science. This decision arised
from the observation that papers marked as both tend to focus on computer
science. Based on both data sets, we created topic flow networks as expounded
in the previous section. In a given year y ∈ Y , we restricted the number of
edges per collaboration of authors a, b ∈ A to the top-8 topics in order to
remove topics with low contributions. This was done for two reasons: First,
the thus created graph can be analyzed efficiently through algorithmic, in par-
ticular network centered, approaches. Second, bounding the number of topics
results in a more human-comprehensible analysis process. Table 5.1 gives an
overview on the created corpora and the resulting topic flow networks.

Table 5.1 Statistics for the Math (CMATH) and the Computer Science (CCS) corpora and
the resulting topic flow network graphs.

Math Computer Science
Publications 5,314,915 14,677,697

Publications with abstract 3,976,750 10,992,167
Authors (nodes) 185,835 714,212

Collaborations (edges) 126,693,634 736,891,384
Year range 1960 - 2021 1960 - 2021

5.1 Topic Flow Network Computation

Corpus Preprocessing For preprocessing, we concatenate titles and abstracts
and tokenize documents. Since we found many papers written in Indian, Chi-
nese, Japanese and Russian language, we remove non-English documents based
on a simple heuristic: If at least ten percent of the tokens in a document are
contained in an English stop word list,2 we classify a document as being in
English language. We determined the 10% threshold through a manual exam-
ination of publications with stop word proportions below different thresholds.
We compared this heuristic to a more computationally intensive approach,
the Python langdetect package3, that is widely used in practice. Assuming the
results obtained by langdetect as ground truth values, our method resulted in
an F1-score of 0.993 on the computer science data set. We found this outcome
to be sufficiently close to langdetect given that it led to substantially reduced

2 Used stop word list: https://github.com/RaRe-Technologies/gensim/blob/develop/
gensim/parsing/preprocessing.py

3 https://pypi.org/project/langdetect/

https://github.com/RaRe- Technologies/gensim/blob/develop/ gensim/parsing/preprocessing.py
https://github.com/RaRe- Technologies/gensim/blob/develop/ gensim/parsing/preprocessing.py
https://pypi.org/project/langdetect/
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computation time. About 5% of the papers were removed through this process.
As a next step, we remove stop words based on the same list as above. We do
not use any stemming, since this may reduce terms with different meanings to
the same word stem, which would be especially problematic for the recognition
of topics in a scientific context. Finally, we compute tf-idf representations for
all publications (Ramos et al., 2003).

For the topic model training, we solely use papers having an abstract. We
base this decision on the assumption that titles alone can have negative effects
on topic model training due to a different distribution of the tf-idf values. This
step removed about 25% of the documents. Yet, for all consecutive analyses
we employ all documents, i.e., also documents without an abstract.

Topic Model A crucial parameter in the topic model training is the number
of topics to be found. We experimented with different topic numbers on both,
the computer science corpus CCS and the math corpus CMATH. Based on a
manual assessment of the obtained topical granularity, we finally decided for
64 topics in both data sets. We additionally based this decision on the num-
ber of topics in the Mathematics Subject Classification, which is in a similar
range.4 Moreover, we initially experimented with a coherence measure but
found the resulting optimal topic number too low to reflect the variety of the
research fields that is contained in a large, comprehensive publication corpus.
We ensured convergence of the topic model training by visual inspection of
the training error. For all other hyperparameters, we used the defaults from
the gensim library.5 The computed topics for both data sets are given in the
appendix in Tables A.1.1 and A.1.2. These are represented as a list of their
respective top five weighted terms in the NMF model. For example, we were
able to derive important research fields from CMATH, such as group theory
(Topic 16) and coding theory (Topic 47). Similarly, in CCS we found topics
such as neural networks (Topic 42) and search engines (Topic 10).

5.2 PageRank

We employ the PageRank algorithm, as described in Section 4.3, to identify
researchers that stand out for their collaboration relationships in the Topic
Flow Network. We conduct this analysis in three settings. First, we compute
PageRank in a TFN representation of CMATH. Second we proceed in the same
way for the CCS corpus. Third, we restrict the TFN from CCS to t = robotics
(Topic 26), see Tables 5.2 and 5.3.

When comparing the ranked researchers to common scores, such as citation
count and h-index6, we find that the highly ranked authors score high on aver-
age. In the robotics field, our method identified, e.g., S. Thrun, a well-known
researcher in the field, as a top ten ranked author. The other authors in this

4 https://mathscinet.ams.org/msc
5 https://radimrehurek.com/gensim/models/nmf.html
6 These were extracted from Semantic Scholar in mid 2022.

https://mathscinet.ams.org/msc
https://radimrehurek.com/gensim/models/nmf.html
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ranking are also established researchers in the fields of robotics, as an empirical
review of their publications reveals. Within CMATH, our method ranked Paul
Erdős second. Since he is a prime example of a intertopical researcher in math-
ematics, we count this as a success of our approach. We want to stress that our
PageRank approach differs from statistics such as h-Index and citation counts
in that it accounts for the entire (topical) network structure.

Altogether, we find that topic flow networks are suitable for the automatic
discovery of important authors for a given research topic. Our approach is ca-
pable of providing a momentary influence indicator for researchers in a given
time window or topic. Hence, in contrast to citation-based methods, our ap-
proach can reveal recent intertopical flow and its (most relevant) generating
authors. This in particular true in research fields where the citation frequency
is low, e.g., mathematics.

Table 5.2 Top ten ranked authors computed by PageRank in CCS for the year 2000. *Note:
H-Index values and citation counts (ncite) were extracted from the Semantic Scholar website
in mid 2022.

Computer Science (2000) Robotics (2000)
Rank Author ncite* H-Ind,* Author ncite* H-Ind.*

1 T. Fukuda 26,104 70 T. Fukuda 26,104 70
2 T. S. Huang 103,000 150 D. Thalmann 23,985 80
3 A. Sangiovanni 49,353 101 H. Kitano 6,431 38
4 J. Kittler 51,970 89 M. Asada 11,856 46
5 C. Suen 26,218 66 M. Veloso 32,132 74
6 T. Kanade 99,184 140 R. Simmons 17,719 67
7 F. Catthoor 17,239 56 H. Asama 7,287 36
8 J. Dongarra 65,552 114 G. Hirzinger 28,737 83
9 C.-C. Jay Kuo 29,491 77 S. Thrun 97,400 145

10 R. Kikinis 61,726 126 K. Tanie 10,270 48

Table 5.3 Top ten ranked authors computed by PageRank in CMATH. *Note: H-Index
values and citation counts (ncite) were extracted from the Semantic Scholar website in mid
2022.

Math (1965) Math (2020)
Rank Author ncite H-Ind.* Author ncite H-Ind.*

1 R. Bellman 62,117 84 D. Baleanu 48,095 93
2 P. Erdős 38,540 93 H. Srivastava 46,826 79
3 D. Speiser 737 12 K. Nisar 5,897 35
4 E. Robinson 4,835 29 P. Kumam 11,501 44
5 R. Kalaba 11,465 47 T. Abdeljawad 10,536 52
6 S. Karlin 42,178 93 Y. Chu 12,308 53
7 H. Davenport 8,853 42 D. O’Regan 22,240 64
8 K. Parthasarathy 6,524 29 F. Smarandache 23,969 67
9 A. Green 15,901 53 R. Agarwal 36,790 83

10 O. Kempthorne 8,642 46 A. Alsaedi 58,137 100
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Fig. 5.1 Average shortest path (ASP) and average local clustering coefficient (ALC) for
different math and computer science topics. Topics in the left column are from computer
science and topics in the right were computed on the math corpus.

5.3 Social Network Analysis

Apart from identifying outstanding researchers in the Topic Flow Network, we
are interested in grasping the overall network structure. Naturally, TFNs are
social networks and can therefore be treated as such, using the whole toolset
of network analysis. A particular question in this direction is to which extent
a TFN satisfies the characteristics of a small-world network. For this analy-
sis, we employ the most important network properties, average local clustering
coefficient (ALC) and average shortest path (ASP). Both metrics have been
reported in the literature as relevant to the study of collaboration graphs (New-
man, 2001c). We computed these properties for three computer science and
mathematics topics respectively. We did this for all years available in the cor-
pora and depicted the results in Figure 5.1. Notably, there is a growth of the
ALC over years in all networks, which for most topics looks almost linear. This
indicates an increasing local connectedness, i.e., collaboration, of researches.
Furthermore, we find that most recent values for ALC appear to differ struc-
turally between the research fields mathematics and computer science.

The ASP on the other hand has a sudden increase between 1990 and 2000
for all topics. For some topics, e.g., neural networks, we observe that a sudden
peak is followed by a decrease. We surmise that the sudden increase of the
ASP occurs due to the overall growth of the network, while the decrease indi-
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cates increasing connectedness, i.e., triadic closure. We presume that a driver
for this growth could be the global political change in the 1990s (Braun &
Glaenzel, 1996) and the therewith lifted restrictions on international collabo-
ration. Moreover, in particular for the topic search, query, engine, we suspect
the more wide-spread use of the internet and the thereof resulting need for
search technologies (within not curated collections of data) may have had a
substantial effect (Sanderson & Croft, 2012). Altogether we conclude that TFN
grasped as social networks enable a variety of possibilities for topic-centered
scientometric analyses.

5.4 Community Detection

To reveal community structures in Topic Flow Network s and how they change
over time, we applied the Walktrap algorithm with default parameters (see
Section 4.4). For each year, we applied this algorithm and obtained commu-
nities Oi in the form of subsets of the authors A. For every Oi we computed
its size and the main topic of the contained authors. In the following, we omit
all communities of size 1, i.e., isolated researchers. This modeling allows for
the application of various community analysis methods. As an example, for
any topic t we summed up the sizes of all communities with this main topic
and depicted the results for CCS in Figure 5.2 and for CMATH in the appendix
in Figure A.1.1.
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Fig. 5.2 Community sizes for computer science data set CCS.
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Investigating the CCS results, we find that the number of communities
increases for almost all topics over time. This may be a consequence of the
overall growth of the number of scientific authors. Nonetheless, we can identify
several topics for which the community sizes decrease after a certain point in
time. Furthermore, we are able to identify the rising interest in certain research
topics. For example, the community sizes for the topic web, page, pages begin
to grow in the late 1990s, which coincides with the broad use of the web
(9th row from bottom). Around 2015 interest in this topic decreased again,
possibly due to a more differentiated terminology and increasing research on,
e.g., social networks (social, network, users, 5th row from top) and cloud,
computing, storage (30th row from top) , which gained interest around 2010.

For some examples, we looked into the two most frequent topics for some
communities (Section 4.2). For example, in 2021 the largest community Ci
had the two most frequent topics network, neural, networks, layer, deep and
model, models, simulation, prediction. For the second largest community, we
found the topics classification, feature, features, classifier, accuracy and net-
work, neural, networks, layer, deep. As another example, the fifth largest com-
munity, we found network, neural, networks, layer, deep in combination with
image, images, color, segmentation, processing. In all these cases, both topics
are strongly fitting semantically. We take this as evidence that the Walktrap
algorithm detected meaningful communites. Moreover, we conclude that using
several main topics may lead to more distinguished descriptions of communi-
ties. Altogether, topic flow networks appear to be suitable for the detection of
research communities. More elaborate approaches for their analyses would be
possible, e.g., based on properties such as author countries and institutions.

5.5 k-Cores

We compute the coreness of the CCS TFN restricted to all topics t ∈ T based
on the approach explained in Section 4.5. With the coreness of a topic network
in a year, we try to assess the degree of networking that takes places through
collaboration. We depict in the heat map in Figure 5.3 the coreness of all topics
and all years considered. The color intensity reflects the computed values. We
added the respective results for CMATH to the appendix in Figure A.1.2.

First, we observe that there is a substantial change in coreness values be-
ginning from around the year 2000. A general increase in coreness is expected
as this number is limited by the number of authors in the network and the
therewith bounded number of edges. However, the sudden increase of coreness
observed for several topics, such as data, mining, big (7th row), energy, con-
sumption, wireless (40th row) and network, neural, networks (42th row) shows
that there exists some particularly strong collaboration by authors within these
topics. In detail, we find that the topic search, query, engine (10th row) has
a large increase in coreness between 2000 and 2003, a time when the internet
use spiked, and therefore the research question for finding information in it.
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Fig. 5.3 Maximum core numbers for computer science data set CCS.

In Figure 5.4 we depicted the coreness values for all research topics in the
year 2000. We contrasted these figures with the sum of the community sizes per
topic from that year, as described in Section 5.4. We notice that large commu-
nity size does not necessarily imply large coreness and vice versa. For example,
there are few search engine communities and they are all comparatively small.
However, the corresponding coreness is high, in fact the maximum observed
value, which indicates that the search engine communities in that year are
densely connected. In summary, we conjecture that k-cores in TFNs are ca-
pable of revealing new structural insights into publication corpora relevant to
scientometric analyses.

5.6 Intra- und Intertopic Flows

In our final analysis, we compute intertopic flows as explained in Section 4.6
and visualize them for different years using Sankey flow diagrams. In all our
visualizations, source topics are displayed on the left and target topics on the
right. The size of an edge connecting a source with a target topic indicates
the amount of expertise on the source topic that flows to the target topic. To
obtain a better overview, we depict only the strongest 25 intertopic flows. We
exclude intratopic flows as they are responsible for the major part of the flow
and would obscure intertopic flows.
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Fig. 5.4 Maximum core numbers for computer science data set in 2000.
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Fig. 5.5 Intertopic flows in computer science CCS, 2021.

In Figure 5.5, we depict the results for CCS in 2021. Clearly, neural networks
and classification are source topics with strong outgoing flow to a variety of
different research topics. Similarly, the neural networks topic is also frequently
a target topic. Some of the target topics of neural networks include simula-
tion, prediction and classification, but also “practical” topics such as power,
supply, load, grid, wind. This may indicate that in 2021, neural networks are
already applied in practical scenarios, such as the prediction of wind energy
production. Figure 5.6 shows a substantially different view on CCS in 1996. We
find that the large source topic classification is missing in 1996 and all source
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Fig. 5.6 Intertopic flows in computer science CCS, 1996.
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Fig. 5.7 Intertopic flows in computer science CCS, 1962.

topics are differently pronounced. The algorithm topic was fourth largest tar-
get topic and contributed also largely to neural networks. As a third example
for CCS, Figure 5.7 depicts intertopic flows for 1962. At that point in time
neural networks were not yet of as much importance as compared to the con-
temporary status. Overall, intertopic flows occurred between more traditional
and basic computer science topics, such as from programming languages (pro-
gram, language, programs, code, game) to algorithms (algorithm, optimization,
proposed, clustering, improved).
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Fig. 5.8 Intertopic flows in math CMATH, 2016.

We applied the same analysis of intertopic flows to the TFN resulting
from the math data set CMATH. As an example the results for the year 2016
are depicted in Figure 5.8. In this, we can observe, that the algorithm topic
(algorithm, algorithms, proposed, search, convergence) is a source of strong in-
tertopic flow, which may be related to the mathematical investigation of algo-
rithms, e.g., concerning convergence properties. Some topics, such as method,
problems, proposed, methods, numerical are ambiguous. However, taking the
incoming flow into account, i.e., equations, differential, partial, ordinary, order
and algorithm, algorithms, proposed, search, convergence, it is revealed that
the methods topic might be related to the numerical treatment of differen-
tial equations. As Figure 5.9 shows, in 1966, i.e., 50 years earlier, there is a
considerable difference in intertopic flow compared to 2016. For example, we
find that topics which generate much flow to other topics are groups, theory,
theorem, dimensional, lie and, again, equations, differential, partial, ordinary,
order. We find that there is a strong flow from group theory (groups, theory,
theorem, dimensional, lie) to a topic that we identify as mathematical physics
(quantum, states, classical, mechanics, state). Thus, our method identifies an
influence, which is confirmed by the scientific literature. Moreover, we find
further intertopic flows that are supported by literature, e.g., from graph, ver-
tices, vertex, edge, edges to groups, theory, theorem, dimensional, lie, which we
attribute to research about modern algebraic graph theory, or from random,
distribution, probability, distributions, variables to equations, differential, par-
tial, ordinary, order, which might be a consequence of the introduction of
probabilistic methods for the solution of differential equations.

In our case study, we computed intertopic flow visualizations for CMATH
and CCS for more than 60 years of research. Hence, a thorough investigation
into all the computed flows requires a separate study and is out of scope of this
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Fig. 5.9 Intertopic flows in math CMATH, 1966.

methodical introduction work into Topic Flow Networks. However, we claim
that the depicted examples provide enough evidence that the proposed method
of TFN is suitable for capturing, visualizing and investigating intertopic flows.

6 Conclusion & Outlook

In this work we investigated the exchange of topic specific expertise in large
scientific collaboration networks. For this, we introduced Topic Flow Network,
i.e., an edge weighted multi-graph, that encodes topical collaborations over
time. The edge weights in this TFN result from the topical collaborations, i.e.,
research papers. Topic Flow Networks not only allow for an investigation of
topic flows, but their structure also enables analyses with standard methods
from graph theory and social network analysis. Our method requires solely
the availability of co-authorship information and paper abstracts, i.e., data
sources that are commonly easier to obtain compared to, e.g., citation data.

To demonstrate the overall applicability of our approach, we conducted
experiments on two large research corpora from the domains computer science
and mathematics. Both corpora were extracted from the Semantic Scholar
Open Research Corpus and span over more than sixty years of research. We
applied several graph based analysis methods to the resulting TFNs, such as
PageRank, k-cores and community detection. These analyses provide evidence
that the introduced graph structure is capable of capturing novel aspects of
(topical) collaboration, which were unattainable by the state of the art. A
particular unique feature of our method is the ability to uncover collaboration-
based intertopic flows. Most interestingly, and a potential starting point for a
broad intertopic study, are the strong differences in flow over time and their
respective topics.
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For future work, we identified several lines of research. First, we restricted
some of our investigations to main topics, and therefore main topics edges. An
inclusion of all edges may result in a more detailed view on intertopic flow.
However, the number of the therewith required computations grows in the size
of the graph per additional topic. Second, our investigations were so far only
targeted at capturing and quantifying topic flow. Yet, it could be beneficial to
study the causal effects of flow within the collaboration network. Using this,
one could investigate influences between research topics over time, e.g., neural
networks on computer vision. Third, the introduced characterization of inter-
and intratopic flow does not account for the absolute difference of topical ex-
pertise in the TFN. By incorporating this as a weight a more complete picture
of the global intertopic flow might emerge. Once again, this is associated with
an increase in computation costs. Finally, we may note that, although our net-
works only require co-authorship information, they can be extended to include
citation information in a natural way. This in turn would allow for the analysis
of the transfer of topical expertise, through collaboration and citation at the
same time.
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A.1 Additional Plots and Topic Descriptions
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Table A.1.1 Found topics for the math corpus CMATH. For each topic, top five terms are
given in order of relevance.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
sample boundary estimator space entropy yield
regression wave estimators detection bound weight
data stress likelihood product asymptotic modules
variables elastic estimation tensor order plant
linear stochastic maximum text heat grain

Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12
integral parameter function existence matrices polynomial
operators parameters density conditions sequence polynomials
type distribution kernel sufficient sequences degree
inequalities hopf lambda periodic numbers coefficients
integrals bifurcation constant condition positive orthogonal

Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18
equation stability test group fuzzy time
solutions delay tests subgroup membership filter
wave lyapunov testing groups controller varying
diffusion delays statistic subgroups interval discrete
initial functional hypothesis abelian clustering filters

Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
graphs network graph channel let chapter
tree optimization vertices gaussian denote series
trees networks vertex numbers ring section
edge neural edge proof prime discusses
graph methods edges scheme integer theory

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
soil finite watermark solution learning spaces
correlation element watermarking initial data banach
water scheme image approximate classification space
logic numerical embedding linear students hilbert
cell convergence attacks equation mathematics mappings

Topic 31 Topic 32 Topic 33 Topic 34 Topic 35 Topic 36
fractional formula image manifold operator groups
order number images curvature bounded theory
derivative text segmentation boundary operators theorem
caputo numbers color distance norm dimensional
derivatives formulas edge surfaces convex lie

Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42
wavelet flow optimal nonlinear models method
transform fluid domain solutions interval problems
image flows state semigroup data proposed
fourier velocity regularization property regression methods
coefficients pressure designs bifurcation methods numerical

Topic 43 Topic 44 Topic 45 Topic 46 Topic 47 Topic 48
inequality structure error frequency codes algebra
inequalities particle mean signal code algebras
convex positive estimates phase decoding lie
variational optimization distributions signals binary commutative
yang equilibrium square power ldpc modules

Topic 49 Topic 50 Topic 51 Topic 52 Topic 53 Topic 54
matrix sets random model control noise
eigenvalues logic distribution linear controller signal
rank fuzzy probability process feedback curves
covariance decision distributions stochastic systems white
inverse set variables markov state gaussian

Topic 55 Topic 56 Topic 57 Topic 58 Topic 59 Topic 60
functions problem sampling operators equations quantum
analytic sequence data topological differential states
symmetric solving motion manifolds partial classical
real programming mean compact ordinary mechanics
class solve model metric order state

Topic 61 Topic 62 Topic 63 Topic 64
complexity algorithm systems point
operators algorithms chaotic fixed
computational proposed dynamical points
algorithms search synchronization mappings
problems convergence chaos set
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Table A.1.2 Found topics for the Computer Science corpus CCS. For each topic, top five
terms are given in order of relevance.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
face teaching net program social sensor
recognition course petri language network nodes
facial english nets programs users node
faces students state code packet sensors
expression teachers object game media wireless

Topic 7 Topic 8 Topic 9 Topic 10 Topic 11 Topic 12
data estimation power search fuzzy user
mining linear supply query decision users
big noise load engine membership interface
processing parameters grid engines controller authentication
clustering parameter wind quantum sets device

Topic 13 Topic 14 Topic 15 Topic 16 Topic 17 Topic 18
vehicle routing management algorithms graph antenna
vehicles protocol business cell graphs controller
driving protocols chapter selection edge ghz
road nodes information problems vertices antennas
driver hoc mobile problem vertex array

Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
speech students security design model image
noise knowledge privacy systems models images
recognition student attacks architecture modeling color
codes research authentication requirements simulation segmentation
clustering skills secure development prediction processing

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
memory robot xml channel communication cloud
language mobile graphs channels wireless computing
hardware robots matrix scheme terminal storage
processor motion query mimo mobile encryption
parallel human retrieval fading information information

Topic 31 Topic 32 Topic 33 Topic 34 Topic 35 Topic 36
circuit task logic information training unit
voltage genetic grid online human device
current tasks smart content methods display
phase policy iot education dataset invention
circuits policies internet technology samples apparatus

Topic 37 Topic 38 Topic 39 Topic 40 Topic 41 Topic 42
learning step software energy algorithm network
machine rules development consumption optimization neural
deep rule engineering wireless proposed networks
virtual query process efficiency clustering layer
learners theory hardware battery improved deep

Topic 43 Topic 44 Topic 45 Topic 46 Topic 47 Topic 48
module service water traffic quality scheduling
modules services forecasting road code resource
document qos sar images path allocation
connected quality equations segmentation planning problem
comprises business radar flow product resources

Topic 49 Topic 50 Topic 51 Topic 52 Topic 53 Topic 54
book method input frequency library control
books filter output signal digital controller
download nonlinear mode rate libraries loop
reading numerical device bit quantum adaptive
like finite converter ofdm resources motor

Topic 55 Topic 56 Topic 57 Topic 58 Topic 59 Topic 60
health web fault agent detection video
server pages parallel agents intrusion coding
database page faults multi signal frame
care decision diagnosis measurement flow signal
monitoring services tolerant decision layer audio

Topic 61 Topic 62 Topic 63 Topic 64
fusion test object classification
cache testing semantic feature
multi optimization objects features
fused problem tracking classifier
local problems motion accuracy
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