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Abstract

Steadily growing amounts of information, such as annually published scientific
papers, have become so large that they elude an extensive manual analysis.
Hence, to maintain an overview, automated methods for the mapping and visu-
alization of knowledge domains are necessary and important, e.g., for scientific
decision makers. Of particular interest in this field is the development of re-
search topics of different entities (e.g., scientific authors and venues) over time.
However, existing approaches for their analysis are only suitable for single entity
types, such as venues, and they often do not capture the research topics or the
time dimension in an easily interpretable manner.

Hence, we propose a principled approach for mapping research trajectories,
which is applicable to all kinds of scientific entities that can be represented by
sets of published papers. For this, we transfer ideas and principles from the
geographic visualization domain, specifically trajectory maps and interactive
geographic maps. Our visualizations depict the research topics of entities over
time in a straightforward interpretable manner. They can be navigated by
the user intuitively and restricted to specific elements of interest. The maps are
derived from a corpus of research publications (i.e., titles and abstracts) through
a combination of unsupervised machine learning methods.

In a practical demonstrator application, we exemplify the proposed approach
on a publication corpus from machine learning. We observe that our trajectory
visualizations of 30 top machine learning venues and∼1000 major authors in this
field are well interpretable and are consistent with background knowledge drawn
from the entities’ publications. Next to producing interactive, interpretable
visualizations supporting different kinds of analyses, our computed trajectories
are suitable for trajectory mining applications in the future.

Keywords: maps of science, mapping knowledge domains, trajectory mapping,
topic models, scientific trajectories
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1. Introduction

Scientometric methods provide a graspable overview over the excessive, ever-
growing number of scientific publications. One particular task in this realm
is the visual mapping of knowledge domains such as research or patent data.
Shiffrin and Börner [1] highlighted in their foundational work the need for such
maps. For their creation, a multitude of methods from different scientific areas
is required. The ultimate goal here is to produce (interactive) map applications,
which allow for different perspectives, selectable through user interaction. For
example, a useful map for the analysis of research dynamics should reflect the
changes of importance of scientific topics in time.

Automatically deriving maps, which visualize research topics over time in an
interpretable, interactive manner can be a difficult task. Existing approaches
are often not optimal. One particular problem to solve is creating a compre-
hensive, interpretable overview over the research topics present in a specific
publication corpus. Many approaches for this rely on frequent terms or term
co-occurrences [2, 3, 4]. However, this limits the comprehensiveness and inter-
pretability of the results. As a further limitation, previous works often visualize
only one entity type, such as papers [5, 4] or scientific venues [6]. In particular,
author entities are seldom considered at all. Users of a scientific map could ben-
efit if multiple entities were brought together into a single representation. This
would allow a user to find thematically related authors, papers and venues by
proximity in the map. Finally, the time dimension is often not addressed suffi-
ciently. A common approach is to visualize discrete consecutive time steps [5, 6].
However, a user’s ability to read and comprehend the topical changes in time
would be greatly aided if these steps were combined into one common map.

In this work, we propose a novel approach for mapping research trajectories
based on topic models. This method overcomes the depicted disadvantages and
does automatically visualize different research entities, i.e., publications, authors
or venues in a common temporal topic map. Our framework for the generation
of maps takes a corpus of documents for which a topical representation is com-
puted. For this we employ non-negative matrix factorization, which preserves
human explainability due to its additivity. Our resulting maps allow for a uni-
fied view on all entity types. Our overall goal is to obtain human-graspable and
explorable visualizations. A particular advantage of our method is the feature to
follow trajectories of research entities, such as authors, conferences or journals,
in topic space over time.

We demonstrate the capabilities of our framework on a corpus of about
352,000 machine learning publications. Based on the created map, we are able
to follow the trajectories of authors and venues through different subfields over
time. Specifically, we map the research trajectories for several top machine
learning scientists and venues, such as the NeurIPS and WSDM conference.
All presented snapshots are taken from a running demonstration application.1

1https://sci-rec.org/maps
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2. Related Work

A PNAS journal special issue introduced the field mapping knowledge do-
mains [1], which is concerned with the automated analysis and visualization of
knowledge. The contributions in that journal publication can be regarded as
foundational works in this field. The collected works are comprised of articles
on discovering research topics through topic models, on the analysis of scientific
collaborations and of articles on visualization principles, among others. In one
particular article Skupin [7] visualizes research landscapes extracted from paper
abstracts based on self-organizing maps and cartographic principles. However,
in contrast to entities such as authors or papers, Skupin visualizes dominant
terms. The editors of the special issue address the demand for interactive vi-
sualizations in the future. Specifically, they highlight that such maps should
enable the selection of particular dimensions of the data, allow views from dif-
ferent perspectives and depict changes over time. Moreover, apart from such
detailed views, the editors deem especially beneficial to observe particular enti-
ties in context of the full scientific landscape. Our work addresses all mentioned
aspects.

Scientometrics often involves the visualization of scientific entities. Maps
naturally represent a particularly human-comprehensible type. In general, scien-
tometric methods can be categorized into two main approaches: First, content-
based techniques which analyze textual data such as publication abstracts or
keywords. Second, structural approaches that are based on e.g., citation or
co-authorship networks [8]. Both methods are often combined [9]. Visualiza-
tion approaches for research topics in scientometrics are often based on simple
term frequencies. As an example, the widely used VOSviewer software [2] uses
co-occurrence frequencies of terms. Such methods are often not able to derive
comprehensive topical structure in the input data. Rather, they highlight single,
important terms and leave much of the interpretation work to the user.

Science overlay mapping was introduced as a framework for creating sci-
entific maps [10]. In this, publication entities are represented as nodes in a
base map. Certain entities of interest can be overlaid over this map and may
be visualized for different time steps. Cluster affiliations, e.g. to different re-
search categories or subject areas, can be highlighted in color. This concept
was initially applied to Web of Science ISI categories. Other approaches to
base maps employ, e.g., geographic situations [11]. A number of further tools
and frameworks have been introduced, such as the science mapping library bib-
liometrix [12], the previously mentioned VOSviewer [2] or SciMAT [13]. An
overview on tools used in informetrics and scientometrics is given in [14, 15].
Apart from these approaches, we put our focus on interactive maps which dis-
play research trajectories of authors and venues.

Mapping trajectories has a long tradition in geographic visualization and it
has, more recently, also been used in the fields computational movement anal-
ysis and trajectory mining. An overview on some applications in these fields
is given by Dodge and Noi [16], Laube [17], Zheng [18]. For visualization of
geographic trajectories flow maps are often used, in particular, to depict aggre-
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gated movement of entities [16]. One very early and prominent example here is
the visualization of Napoleon’s Russian campaign by Charles Minard. Trajec-
tory maps, in contrast to flow maps, visualize the movement of single entities.
Movements are depicted through line segments or arrows connecting the po-
sition fixes in a data set. In our work, we employ such trajectory maps to
visualize scientific entities alike physical entities in geographic space. Our work
translates this idea to a “non-physical” space in which the dimensions represent
research topics. We base this on our work [19], in which we analyzed topic space
trajectories of scientific venues. In this work, we create a unified framework for
the interactive analysis of scientific trajectories through maps. Our proposed
trajectory method for scientific analyses is, to the best of our knowledge, novel.

There are further works similar to the topical maps we envision. A procedure
for creating a scientific map based on term similarities, multidimensional scaling,
and clustering has been introduced by Fried and Kobourov [3]. This approach
was applied to the field of computer science. Luhmann and Burghardt [5] devel-
oped an interactive map depicting research publications. This was based on the
topic modeling method LDA [20] and the dimension reduction method UMAP
[21]. Topic stability is achieved through agglomerative clustering of topics from
repeated LDA runs instead of using a more stable [22] topic model method, such
as non-negative matrix factorization, directly. Different from our work, research
categories here are not derived automatically from the paper abstracts and the
topic model. The time dimension and different entities other than papers are
not considered. A further work into a similar direction is the interactive “60
years of AI research” application [4], which, however, puts strong focus on the
most influential papers and is limited with respect to the interactive elements
we envision. None of the mentioned approaches involve trajectories.

3. Problem Description

For scientists, in particular scientometric analysts, it becomes more and more
difficult to maintain an overview over the development of research topics. Driv-
ing factors for this are the growing number of publications per year and the
large number of journals, conferences and authors. Furthermore, the specializa-
tion on different fields advances over time. The sheer mass of scientific entities,
such as authors, publications and venues, hinders researchers to become aware
of relevant scientific work. Moreover, different fields of research (i.e., topics)
emerge over time and become more and more popular. Other fields are, more
or less, replaced when new approaches are able to solve the same tasks in a
more effective way. Investigating research output may often require an analysis
on many different levels. These levels, e.g., may be based on different entity
types, concern different research topics and regard their development over time.
It may require substantial manual effort to bring all these dimensions together.

A natural consequence is the need for automated methods and tools which
support researchers in these tasks. In Schaefermeier et al. [19] we developed
a novel method for the examination of topic space trajectories for the special
case of scientific venues (i.e., conferences or journals). This method enables
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the discovery and tracking of research topics in a publication corpus based on
textual contents. From this study we conclude that the ultimate goal for the
topic-based analysis of publication corpora is to create a unified view on all
entities over time. This view, as argued by Shiffrin and Börner [1] requires to be
interactive and human-graspable. This results in the problem of automatically
creating topic maps from scientific corpora. In such maps topical similarity
should be indicated by closeness of items (i.e., entities). The user shall be able
to put focus on different aspects of interest. For this purpose, the user interface
should offer at least the following functions: zoom, pan, filter and search (for
entities), similar to geographical map software. The reasoning here is that users
are accustomed to such an interface. Hence, it is natural for them to acquire
knowledge in this manner, in particular, to identify relevant information. In all
this, it is essential to incorporate the temporal aspect of the corpus data.

For our solution we especially add to these requirements human-graspability
for the whole map creation process. Moreover, we require from a potential
solution that the user is able to explore a corpus based on topical similarity,
for example, through querying with entities, such as author, publications or
venues. Furthermore, we refrain from incorporating background-ontologies into
the map-creation process. Our ratio is that this allows for the application to
smaller research fields, where such an ontology is not available. Finally and
most importantly, our solution must be able to depict individual temporal entity
trajectories in the common topic space.

4. Methodology

Our approach, as depicted in Figure 1 is based on the extraction of topic
space trajectories from a corpus of publication documents. The dimensions of
this space, determined through a topic model based on a non-negative matrix
factorization, indicate different research topics where entities, such as publica-
tions, may be located. Some entities, such as authors and venues, may change
their location over time, which indicates a change in their research topics. As an
important aim, similar locations in this space should indicate similar research
topics (or combinations thereof).

We compute topic space trajectories for authors (i.e., scientists) and venues
(i.e., conferences and journals), following the approach from Schaefermeier et al.
[19], which we will outline briefly here. Proceeding from this, we explain the
additional steps for the computation and visualization of the final interactive
map. We will substantiate the method descriptions with illustrative examples.

Publication Corpus

The input data set for our method, as depicted in Figure 1, consists of a
structured corpus D of publications (papers) with different information, such as
author, publication venue (e.g., conference or journal) and year of publication.

Definition 1 (Publication Corpus). A publication corpus is a set D ⊆ P ×
2A × O × Y of papers P written by authors A, published at venues O in years
Y . A research paper p ∈ P consists of a title and an abstract.

5
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Figure 1: Procedure for calculating topic space trajectories and visualizing them as maps.

In our example application that we introduce throughout this work, we extracted
papers from the research field machine learning from the publicly available
Semantic Scholar Open Research Corpus (S2 ORC [23]). In more detail, we
use a combination of two corpora: First, a venue corpus of papers from the
top 30 machine learning and data mining venues listed in [24]. This corpus
was also used in Schaefermeier et al. [19]. Hence, the authors of the present
work were already familiar with this data. Second, an author corpus of papers
by the top ∼1000 machine learning researchers. The particular authors were
selected from an h-index based ranking2 and restricted to those discoverable in
S2 ORC, which had at least one publication in one of the aforementioned 30
venues. The full list of venues and authors is available in our demonstration
application3. In total, our corpus data set consists of about 352,000 papers.
In our demonstration application we visualize only a random sample of about
35,000 papers for performance reasons.

Non-negative Matrix Factorization

As a first step, we extract research topics from the input corpus using a topic
model based on non-negative matrix factorization (NMF). NMF is a method
that finds an approximate factorization V ≈WH for an input matrix V ∈ Rw×d

≥0 ,
where d := |D| is the number of input documents and w is the vocabulary
size, i.e., the number of distinct terms contained in all documents. The result
matrices W ∈ Rw×t

≥0 and H ∈ Rt×d
≥0 contain representations of t ∈ N different

topics as sums of word weights, as well as representations of the input documents
as sums of their topics.

For the input matrix V , we concatenate the title and abstract of each input
document. We remove stop words4 and calculate TF-IDF representations [25].
The columns in the calculated matrix W are interpretable as topics and the
columns of H are interpretable as representations of the input documents in a

2We used the ranking from https://airankings.professor-x.de by the university of
Würzburg, Germany.

3https://sci-rec.org/maps
4Used stop word list: https://github.com/RaRe-Technologies/gensim/blob/develop/

gensim/parsing/preprocessing.py
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Figure 2: Four examples of author topic space trajectories. The computed trajectories are
visualized as heat maps. Note: Color scales are different per heat map since they are scaled
by maximum per author. Only years with a minimum of three papers were retained.

t-dimensional topic space. The number of topics t ∈ N is a hyperparameter of
NMF, which we optimize with respect to a coherence measure CV [26]. We em-
ploy our well-understood topic model from Schaefermeier et al. [19] and extend
upon that work. This model was trained solely on the venue corpus and we use
it to obtain topic representations for all papers from both the author and venue
corpus. With respect to our requirement to achieve human-graspable results, we
may note: An advantage of NMF for our application over other topic modeling
methods, such as LDA [20] used in [5], is the stability of the computed top-
ics [22]. Hence, the reproducibility of mapping results is improved. For further
advantages we refer the reader to Schaefermeier et al. [19].

In our venue corpus, NMF found 22 topics where the three top-weighted
terms are, e.g., {inference, models, bayesian}, {network, networks, neural},
{clustering, cluster, clusters} or {policy, reinforcement, agent}. For an expert
on machine learning, these four research topics are easily identifiable as Bayesian
inference, neural networks, clustering and reinforcement learning. Altogether,
the determined 22 research topics were labelled manually by assigning a name
to it. For the full list of topics, refer to Schaefermeier et al. [19].

Topic Space Trajectories

Based on W and H, we obtain the topic corpus and topics depicted in the
third step of Figure 1. For each entity, i.e., author a ∈ A or venue o ∈ O we
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aggregate these topical document representations by calculating the centroids
of the corresponding documents. We calculate these centroids per publication
year y ∈ Y as well as over all years. By sorting the year-wise centroids of an
entity historically, we obtain their topic space trajectories. Hence, after this
step we obtain topic space representations of papers p ∈ P , of authors a ∈ A
and of venues o ∈ O. For authors and venues, we also obtain trajectories, i.e.,
ordered sets of topic space representations, which represent the movement of the
authors or venues through topic space over time. These trajectories delineate
the historical development of their focussed research topics.

We reasoned that due to the common delays in the publication process au-
thors are better represented by not only the papers written in a specific year,
but also those from previous years. We therefore replace the centroid for a year
y by the average of the centroids from the last three years y, y − 1 and y − 2.
This is equivalent to computing the moving average of a time series and leads to
smoother trajectories in practice. Although there are computationally more de-
manding methods [27], in our experiments we find that the previously explained
approach, that is also used in physical trajectory smoothing, is sufficient. For
venues we only use publications from a specific year to represent the current re-
search. In practice, venue trajectories were already smoother due to the larger
number of publications. As an example for the computed trajectories, Figure 2
depicts the results for four different authors. The computed topic weights are
visualized as heat maps, in which rows indicate topics and columns indicate
years. One may notice the topics in focus often stay consistent over some time
and do also change smoothly. Moreover, some authors are more focussed and
others are concerned with many different topics.

Computing 2d Representations

In the penultimate step, we apply a dimensionality reduction method to de-
rive a 2-dimensional representation from our t-dimensional topic vectors. We use
the coordinates of this 2-dimensional representation for the final visualization
in a map. While more detailed topical information is lost here, such visualiza-
tions are much easier to interpret, since closeness in a 2-dimensional coordinate
system can be interpreted as topical similarity. In Schaefermeier et al. [19], mul-
tidimensional scaling (MDS) was studied for dimensionality reduction of similar
data. However, in practice MDS is infeasible for large input corpora due to the
quadratic complexity for recalculating the pairwise distances [28]. Hence, in the
present work, we use t-distributed stochastic neighborhood embedding (t-SNE)
[29], which can be computed with O(N logN) complexity [30], where N is, in
our case, the number of input documents. This embedding method is widely
used for the visualization of high-dimensional and very large data sets (e.g.,
with millions of objects by van der Maaten [30]).

We may note that NMF is capable of computing 2-dimensional represen-
tations as well. However, this approach would limit potential representations
to only two topics. Moreover, such a reduction is limited by the linearity of
NMF [31]. In contrast, the nonlinear t-SNE, is capable of finding meaningful
2d visualizations for data sets that are intrinsically more complex. Hence, our
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Figure 3: Two-dimensional representations of authors. Each marker represents an author.
Marker colors together with shapes indicate the respective main topics. For many topics,
clusters emerge. Coordinates were computed through t-SNE. The locations for some well-
known authors from different fields are highlighted for reference. Best viewed in color.

approach combines the strengths of both dimension reduction methods: De-
riving human interpretable topics through NMF and finding meaningful map
coordinates through t-SNE for the visualization.

Figure 3 depicts an example of the thus calculated coordinates for the ∼1000
machine learning authors. These representations were computed in preliminary
experiments over all publication years. In addition to displaying coordinates,
we highlight in Figure 3 each author’s overall main topic (i.e., the topic with
maximum weight). Noticeable, clusters emerge based on said main topics. For
some well-known authors we also added labels to the right of the plot markers,
for reference. Based on this, we describe our mapping process below.

Map Visualization

For the visualization of our scientific maps, we mark each entity location in
a 2-dimensional coordinate system, as depicted in Figure 4. We use different
markers, such as dots or triangles, for different entity types. Furthermore, we
color them by their main topic, i.e., the topic corresponding to the maximum
weight within an entity’s topic vector. To provide some points of orientation
in the map we display topic names at each topic’s center. These are computed
as the centroids over all papers with that main topic. Different sizes of topic
names indicate the number of papers in the respective fields.

In order to enable the user to explore the just illustrated map, our approach
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provides several interactive elements. We allow for zooming and panning within
the map, similar to geographic (software based) maps. When the user’s cursor
hovers over an entity, such as a paper or author, further details are given in
a tooltip, for example paper title, author name, main topic or the publication
venue and year. We allow for different filtering options with respect to the
entities. More specifically, the user can restrict the visualized entities to specific
main topics by selecting them from the plot legend. From said legend, the user
can select specific entity types to visualize or remove from the map. By means of
these selections, one is able to, for example, restrict an analysis to only authors
or venues. The reasoning here is that, e.g., papers may be irrelevant to some
applications. The user can also restrict the visualized entities to those from a
specific year. In order to follow the development of selected entities over time,
we added a slider which allows to step through the publication years.

Below the map, we additionally display a stream graph that depicts the
percentages of research on the different topics. Percentages are calculated based
on the main topics of the data entities. Hovering over one of the colored areas
from the stream graph displays the associated topic in a tooltip.

From a dropdown menu or using a search field, the user can restrict the view
to a specific entity in order to analyze its trajectory. We show the corresponding
papers (written by the author or published at the venue) and depict the pre-
computed trajectory elements (see Figure 5). The points of the trajectory are
connected by line segments using spline interpolation. We label each trajectory
point by the associated year. In the trajectory view, the stream graph displays
the topics of the selected entity only instead of for the full data set.

In the practical implementation5 of our scientific map approach, we enhanced
the rendering performance by displaying only a sample of the complete set of
papers. The user can downsize this sample even further using a checkbox. This
sampling is automatically deactivated once a specific venue or author is selected
for detailed inspection. We used for our implementation the Altair library [32].

5. Trajectory Maps: A Case Study on Machine Learning Entities

In our demonstrator implementation, we exemplify the explained trajectory
mapping approach on a corpus of ∼352,000 machine learning publications with
the trajectories of ∼1000 authors and 30 venues (for further details, see Pub-
lication Corpus in Section 4). In the following, we analyze different example
trajectories and point out notable observations that can be made in the com-
puted maps. For this, we will first give an overview on the layout of topics.

Analysis of the Entire Map

In the overall map layout we obtain, the entities form clusters regarding their
main topics, as visible in Figure 4 (and as we already observed in our preliminary

5https://sci-rec.org/maps
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Figure 4: Depiction of the scientific map approach. Entities, i.e., papers, authors and venues
are displayed using different markers. Colors indicate main research topics. The stream graph
at the bottom displays research prevalence of research topics over time. The legend to the left
as well as the form elements at the bottom belong to the interactive interface.
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Figure 5: Depiction of the trajectory of a specific entity. In this case, the NeurIPS conference
is selected. Papers published at the conference are displayed in the map additionally to the
trajectory. Instead of for the full data set, the stream graph at the bottom now displays the
topic distribution for only the selected entity.
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experiments in Figure 3). Hence, different areas in the resulting map can, to
some degree, be assigned to different research areas. In the layout of the topics
and their labels, we observed that semantically related research areas are often
located closely nearby to each other. This is an expected result, given that the
objective of the dimension reduction method is to preserve the vicinity from
the original topic space. As a consequence, more similar, and therefore possibly
correlated, topics are laid out more closely together. As a further implication
resulting from this, more general topics are located centrally between related,
but more specialized topics. For example, in the left area of the map in Figure 4
we find the Information Retrieval topic, which is surrounded by topics such as
Document Retrieval, Social Media, Semantic Web and Recommender Systems.
Furthermore, the center of the overall map contains the topic Classification
Mining, which represents the highly general data mining field that is strongly
related to all other topics.

We may note that some topics researched by authors in our data set are
not explicitly captured by our employed topic model instance, since it was only
trained on the machine learning venue corpus. Examples for such topics are the
fields natural language processing or robotics. Since our corpus does not contain
publications from conferences or journals focusing on these more specialized
fields, no topic was created for them. Yet, the resulting topic representations
of publications in fields not captured are often located, as best as possible, in
related topic areas. For example, we observed that papers from robotics are
often located in the areas Nonlinear Control or Image Recognition. Both of
these fields are often applied to robotics.

Individual Author and Venue Trajectories

Our trajectory mapping approach allows for the analysis and comparison of
research trajectories by different authors and venues. As an example, in Figure 6
we present the topic space trajectories of six different machine learning authors.
For a better overview, the map view in each of these pictures was zoomed and
panned to the relevant area of the topic space map. Note that further details,
such as main topics for trajectory points, can be inferred from the full map view
(examples given in the appendix, Figures A.9 and A.10) and, in particular, in
the online demo application. Four of the depicted author trajectories were also
visualized as heat maps in Figure 2.

The authors in the top row of Figure 6 are Dieter Fox (left) and Sebastian
Thrun (right), which are both researchers in the robotics field. They published
together, among further works, a standard work on probabilistic robotics [33].
We may recapitulate that papers and authors in the robotics field are often
located in the Nonlinear Control area of our topic space. This topic is related
to control theory in general and a reasonable element of robotics. We also
observe that Dieter Fox at the later parts of his trajectory, published work in
the Image Recognition area. The titles of his publications displayed in this
map area (which can be inspected through the tooltips in the interactive map)
confirm this. Image recognition (i.e., computer vision) is commonly used in
robotics, e.g., for visual navigation. The last part of the trajectory by Dieter

13



1996199719981999
20002001200220032004

2005
2006

2007

2008

2010

2011
201220132014

2015

2016
2017
201820192020

BayeBaye

Classification, Classification, 

Feature ExtractionFeature Extraction
Image RecognitionImage Recognition

alal

KerneKerne

Learning, Knowledge BasesLearning, Knowledge Bases

Matrix MethMatrix Meth

Neural NetworksNeural Networks

Neurons, Dynamic NetworksNeurons, Dynamic Networks

Nonlinear ControlNonlinear Control

aa

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

year

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f R
ec

or
ds

Bayesian Inference
Graphs
Image Recognition
Kernel Methods
Learning, Knowledge Bases
Matrix Methods
Neural Networks
Nonlinear Control
Planning & Reasoning
Reinforcement Learning
Search Engines
Semantic Web
Social Media

maintopic

1.0
1.5
2.0
2.5
3.0

weight

paper
author
venue

type

Dieter Fox

1990

1991

199219931994

19951996

1997
199819992000200120022003200420052006

2007
2008

20092010201120122013

20162017

Bayesian InferenceBayesian Inference
Classification, MiningClassification, Mining

ClusteringClustering

Document RetrievalDocument Retrieval

Feature ExtractionFeature Extraction

GraphsGraphs

Image RecognitionImage Recognition

Information RetrievalInformation Retrieval
Kernel MethodsKernel Methods

Learning, Knowledge BasesLearning, Knowledge Bases

Matrix MethodsMatrix Methods
Neural NetworksNeural Networks

Neurons, Dynamic NetworksNeurons, Dynamic Networks

Nonlinear ControlNonlinear Control OptimizationOptimization

Planning & ReasoningPlanning & Reasoning

Recommender SystemsRecommender Systems

Reinforcement LearningReinforcement Learning

Search EnginesSearch EnginesSemantic WebSemantic Web
Social MediaSocial Media

Support Vector MachinesSupport Vector Machines

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
16

20
17

year

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f R
ec

or
ds

Classification, Mining
Feature Extraction
Graphs
Image Recognition
Kernel Methods
Learning, Knowledge Bases
Matrix Methods
Neurons, Dynamic Networks
Nonlinear Control
Optimization
Planning & Reasoning
Reinforcement Learning
Social Media

maintopic

1.0
1.5
2.0
2.5
3.0

weight

paper
author
venue

type

Sebastian Thrun

Bernhard Schoelkopf Christos Faloutsos

Wolfgang Nejdl Jiawei Han

Figure 6: Trajectories of six AI authors. Top row: Dieter Fox (left) and Sebastian Thrun
(right). Both authors are from the robotics area and published in this field together as co-
authors. Middle Row: Bernhard Schölkopf (left) and Christos Faloutsos (right). The
topical focusses change from support vector machines to inference methods (left) and from
general data mining to graphs (right). Bottom row: Wolfgang Nejdl (left) and Jiawei Han
(right). Here the focus changes from planning & reasoning to semantic web and social media
(left) and from planning and reasoning to classification & mining to knowledge bases (right).
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Fox revisits the initial nonlinear control area. In contrast to these topics, an
early part of the trajectory of his coauthor Sebastian Thrun (right) started in
the reinforcement learning field, on which he published various works.

In the middle row of Figure 6 we see that the trajectory of Bernhard Schölkopf
(left) in an early part of his career runs from support vector machines to
Bayesian inference. By inspection of his publications in the map we found
that he is conducting research on causal inference, which our model locates in
the Bayesian inference area. Christos Faloutsos (right) at the beginning of his
career, published on document retrieval, and then extended his scope to data
mining in general (which is visible in the full map view). Later he focussed on
graphs and, in particular, graph mining. In the bottom row, the trajectory of
Wolfgang Nejdl (left) shows that he started in the Planning & Reasoning area
and later switched to Semantic Web and Social Media. Jiawei Han’s research
trajectory (right) started in Planning & Reasoning, proceeding with Classifi-
cation, Mining and, finally, Knowledge Bases. Again, the publications of the
authors in the specific years confirm the trajectory courses.

NeurIPS Neural Networks

WWW WSDM

Figure 7: Trajectories of different venues. Top row: Two neural networks venues NeurIPS
(left) and the journal Neural Networks (right). NeurIPS in recent years became a more general
machine learning venue with some focus on optimization, but also, e.g., Bayesian inference.
Neural networks staid focussed on neural networks. Bottom row: The conferences WWW
(left) and WSDM (right). Both moved from semantic web to social media, the latter of which
became a more popular topic in general.

Analogously to authors, we may analyze and compare trajectories of publi-
cation venues within the same map. An example for four conferences or journals
is depicted in Figure 7. In the top row, we depict the trajectories of two venues
on neural networks: The NeurIPS conference (formerly NIPS, left) started in
the same research areas as the journal Neural Networks but, in contrast, later
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broadened its focus to Optimization and more general machine learning topics.
The same pattern can be observed in [19]. In the bottom row, the conferences
WWW (left) and WSDM (right) exhibit a similar course from Semantic Web
to Social Media. The latter topic became more popular overall in recent years,
e.g., in social network analysis applied to platforms such as Twitter.

Observed Patterns

We observed some reoccurring patterns in author trajectories that may lead
to new interesting research questions. One of these patterns is that a relevant
share of authors (i.e., researchers within the investigated realm) change their
research focus in the early years of their career. We first attributed this to some
artifact of our projection method. Although it is anecdotal, as researchers,
we ourselves often experienced similar behavior with colleagues in their career.
Therefore we looked closer into the publication work of the authors concerned
(e.g., Christos Faloutsos) and are able to substantiate our claim for the observed
trajectory pattern. Hence, we may assume that researchers are initially in an
orientation phase, in which they still have to find their suitable research area.
We leave open for future quantitative analysis (i.e., considering all trajectories)
to estimate the frequency of the observed phenomenon.

As another observation, we were able to identify different types of research
careers: In some instances, scientists stay focussed on a specific research area
throughout their whole career. Notably, researchers from the Image Recognition
field rarely move into completely unrelated areas of machine learning, according
to our observations (e.g., Andrew Zisserman and Jitendra Malik). In contrast,
there are researchers with strong changes throughout their career. Often these
authors follow the general research trends (i.e., hot topics), as we observed.
From the late 1990s to early 2000s, for example, support vector machines became
a popular hot topic, and later lost in popularity [19]. Following these trends
may be motivated by personal interests as well as incentives by research funds.
The vanishing interest in certain research topics may also occur naturally due
to the development of newer, more successful methodologies.

In summary, we found that the computed research trajectories provided
numerous insights into the temporal development of scientists. Moreover, the
results naturally lead to interesting research questions. The reoccurring pat-
terns we observed could consecutively be investigated through the application
of trajectory mining methods. As an example, trajectory clustering and stay
point detection may reveal such patterns and, possibly confirm the ones we ob-
served [18]. Another approach that may be used to test trajectory hypotheses
is the HypTrails method [34].

Discussion

Altogether, we find that our approach of mapping research trajectories leads
to well-interpretable visualizations of author’s research careers. In the same
manner as for authors, it allows to follow the focus changes of conferences and
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journals over time within the same maps. A particular advantage of the tra-
jectory approach is that the topical development over time becomes apparent
through one single visualization that can be interpreted rather quickly.

Our practical map implementation with tooltips and visualizing papers close
to a segment of a trajectory give additional detail information to a user. In
particular for these elements the interactive map application is a helpful solution
for supporting users in their analysis tasks. The interactive map allows to pan
and zoom to different segments of a trajectory. This facilitates obtaining an
overview on an entity in context of the overall topic space as well as in context
of details in the closer topic neighborhood, an important overall goal in the
mapping of knowledge domains brought up by Shiffrin and Börner [1].

As a limitation, the representation of entities through average and maximal
topic weights may occasionally oversimplify their overall topical distribution.
This may become a problem when authors or venues have a very broad distri-
bution of focussed topics at a point in time. The corresponding trajectory points
may then be positioned between different topic areas in the map and are thus
more difficult to interpret. In these cases, the tooltips, which give information
on the main topic, as well as the stream graph below the map may give helpful
further information. Often, however, we also observed that such broader topic
distributions were positioned at the center of various topics related to each other
or in a very general topic area such as Classification, Mining, which can be a
reasonable description for research related to many different topics in the field.

6. Conclusion and Outlook

In this work, we introduced a principled approach for mapping research
trajectories of authors and venues. Our ideas draw from methods from conven-
tional “physical” trajectory analysis and geographical information visualization.
We demonstrated the practical applicability of our proposed method in an in-
teractive map application that can be experimented with by the reader.6 We
analyzed examples of entity trajectories and found them to be consistent with
background knowledge from author and venue publications.

We think that our approach opens new possibilities for mapping and ana-
lyzing research trajectories for various other research entities. For example, our
idea is applicable to specific research institutions, groups and communities, e.g.,
based on universities, countries or author conglomerations. Besides research,
maps could also be computed for completely different, document-based knowl-
edge domains, such as social media posts and their authors, news articles or
patent data. As a further possibility, techniques from trajectory mining are ap-
plicable to our computed trajectories. The re-occurring patterns we observed in
author trajectories allow for the generation of new hypotheses that could be in-
vestigated further through trajectory clustering, stay point detection, sequential
pattern mining or HypTrails [18, 34].

6https://sci-rec.org/maps
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We also identified some limitations of our approach. The dimension reduc-
tion to two dimensions can occasionally lead to artifacts, i.e., some points being
projected to a location distant from the topic cluster where we would expect
it. For our trajectories, more stability in this regard might be achieved by av-
eraging the 2d coordinates computed for several random perturbations of the
original topic vector. Another idea here would be to compute centroids based
on the computed 2d coordinates of documents (instead of, as we did, computing
centroids of documents followed by the reduction to 2d). In this case, some
adjustment of centroid computations might be required due to the non-linear
projection method. For the practical applicability in productive settings the
performance of the map computation as well as the clarity of the visualization
should be improved. For this, we experimented with a level-of-detail based
visualization, where only highly relevant entities are depicted in the full map
overview and details added gradually once the user zooms closer into the map.
This will enable the user to maintain the “big picture” as well as to steadily
obtain a more fine-grained view on specific topic areas. We plan to base the
levels of detail on relevance weights of entities, which we compute from paper
numbers and additional citation data. Finally, the used topic model does not
capture all research topics in our data set, since it was trained only on a subset
of the documents (i.e., the venue corpus as explained in Section 4). With this
intentional decision we wanted to achieve comparability of our results to an
earlier work [19]. However, in productive applications, the topic model should
be computed from the entire data set that is visualized.

For future research we envision the usage of a hierarchical topic model that
captures topics and subtopics [35]. These subtopics would complement our
aforementioned level-of-detail suggestion and could be gradually refined in the
visualization upon zooming. Moreover, we suggest to improve the automation
of the map building process through an automated topic labeling procedure,
e.g., through frequent n-grams or based on the FREX score [36].
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Appendix A. Appendix

Figure A.8: Trajectory Overview. In this view, we display all trajectories from our data set
together instead of only one trajectory instance, revealing more of the overall trend of where
trajectories are located. We did not include this view in the final demo application due to
performance reasons and the reduced overview.
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Figure A.9: Overview (left) and closeup (right) of an author trajectory (Jiawei Han). In this
view, spline interpolation is turned off to show that there is some smoothness in the trajectory
already without it. In the map overview to the left, one may notice three main stations in the
author’s career (Planning & Reasoning, Classification, Mining and Knowledge Bases). This
is confirmed and complemented by the stream graph below the map. The closeup to the right
shows the part of the trajectory located in the Classification, Mining area. Here, different
parts of the area may also be related to different subtopics.

Figure A.10: Overview (left) and closeup (right) of an author trajectory (Michael Jordan).
Spline interpolation is turned on. The author started in Nonlinear Control, moving to Knowl-
edge Bases, Bayesian Inference, and, finally, Optimization. An exemplary tooltip of a paper
nearby the optimization part of the trajectory confirms the discovered topic.
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