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How we treat the complex data
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Running example: Titanic data

Survived  
= No

Survived  
= Yes

Pclass 
≥ 1

Pclass 
≥ 2

Pclass 
≥ 3

Pclass 
≤ 1

Pclass 
≤ 2

1 ✔ ✔ ✔ ✔

2 ✔ ✔ ✔ ✔

3 ✔ ✔ ✔ ✔

4 ✔ ✔ ✔ ✔

5 ✔ ✔ ✔ ✔

Formal Context

Scaling



Scaling problems

• One should write functions how to binarise and de-binarise the data 

• Contexts with hundreds of attributes are hard to read 

• Much slower computation time (Kaytoue et al., IJCAI 2011) 

• Mining obvious implications: 

• “Pclass ≥ 3” => “Pclass ≥ 2” 

• “Pclass ≥ 2” => “Pclass ≥ 1” 

• etc
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Scaling does not scale well !



Pattern Structures

• Every object is described by a 
pattern 

• What is pattern? 
Something that belongs to a 
complete meet-semilattice 

 

• A dataset is modelled by a 
pattern structure 

(𝔻, ⊓ )

(G, (𝔻, ⊓ ), δ : G → 𝔻)
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Abstract. Pattern structures consist of objects with descriptions (called
patterns) that allow a semilattice operation on them. Pattern structures
arise naturally from ordered data, e.g., from labeled graphs ordered by
graph morphisms. It is shown that pattern structures can be reduced
to formal contexts, however sometimes processing the former is often
more efficient and obvious than processing the latter. Concepts, implica-
tions, plausible hypotheses, and classifications are defined for data given
by pattern structures. Since computation in pattern structures may be
intractable, approximations of patterns by means of projections are in-
troduced. It is shown how concepts, implications, hypotheses, and clas-
sifications in projected pattern structures are related to those in original
ones.

Introduction

Our investigation is motivated by a basic problem in pharmaceutical research.
Suppose we are interested which chemical substances cause a certain effect, and
which do not. A simple assumption would be that the effect is triggered by the
presence of certain molecular substructures, and that the non-occurence of the
effect may also depend on such substructures.

Suppose we have a number of observed cases, some in which the effect does
occur and some where it does not; we then would like to form hypotheses on
which substructures are responsible for the observed results. This seems to be a
simple task, but if we allow for combinations of substructures, then this requires
an effective strategy.

Molecular graphs are only one example where such an approach is natural.
Another, perhaps even more promising domain is that of Conceptual Graphs
(CGs) in the sense of Sowa [21] and hence, of logical formulas. CGs can be used
to represent knowledge in a form that is close to language. It is therefore of
interest to study how hypotheses can be derived from Conceptual Graphs.

A strategy of hypothesis formation has been developed under the name of
JSM-method by V. Finn [8] and his co-workers. Recently, the present authors
have demonstrated [11] that the approach can neatly be formulated in the lan-
guage of another method of data analysis: Formal Concept Analysis (FCA) [12].

H. Delugach and G. Stumme (Eds.): ICCS 2001, LNAI 2120, pp. 129–142, 2001.
c⃝ Springer-Verlag Berlin Heidelberg 2001

Solution
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What is Pattern
Practice

Pattern Name When to use Ex. Column Example

ItemSet Pattern tags and keywords Scaled data {Mr., Pclass ≤ 2} ⊓ {Miss., Pclass ≤ 2} = {Pclass ≤ 2}

CategorySet 
Pattern categorical data Embarkment {Southampton} ⊓ {Cherbourg} = {South., Cherbourg}

SequenceSet 
Pattern sequences Name {“Mr. Jack Smith”} ⊓ {“Mr. John Smith”} = {“Mr.”, “Smith”}

Interval Pattern numerical data Age [20, 20] ⊓ [30, 30] = [20, 30] 

Cartesian 
Pattern tabular data Embarkment x Age ({South.}, [20,20]) ⊓ ({Cherb.}, [30,30]) 

= ({South., Cherb.}, [20, 30])
GraphSet 
Pattern graphs {graph X} ⊓ {graph Y} =  

maximal common connected induced subgraphs of X and Y
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“Worse than NP-complete” S.K.
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PS do not always scale well !

“Worse than NP-complete” S.K.



How to scale patterns

• Fix the datatype: 

• Graphs (S. Kuznetsov 2007, A. Buzmakov et al. 2017) 

• Numbers (M. Kaytoue et al. 2011) 

• Temporal sequences (S. Boukhetta et al., 2021) 

• Fix the framework: 

• Predicates and strategies: GALACTIC 

• Atomic Patterns: Paspailleur
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What are atomic patterns?
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Magic !
More details on Friday at 12:30



What are Paspailleur?
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https://smartfca.github.io/paspailleur/



Patterns API
The frontend
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Pattern Pattern Structure
Models A data type A dataset

Operations Meets and joins of patterns Mining patterns in a patterns-set

Base class Pattern PatternStructure

Specific classes

• ItemSetPattern 
• CategorySetPattern 
• IntervalPattern 
• NgramSetPattern 
• CartesianPattern

In the future releases

Custom class creation In the future relasess In the future releases



Algorithms API
The backend
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Base functions.py
- extension() 
- intention() 
- group_objects_by_patterns() 
- order_patterns_via_extents() 
- iter_patterns_ascending() 
- iterate_antichains()

Mine equivalence classes.py
- iter_intents_via_ocbo() 
- iter_intents_via_cboi() 
- list_stable_extents_via_gsofia() 
- iter_keys_of_pattern() 
- iter_keys_of_patterns() 
- iter_keys_of_patterns_via_atoms() 
- iter_all_patterns_ascending()

Mine subgroups.py
- iter_subgroups_bruteforce() 
- iter_subgroups_via_atoms()

Mine implications.py
- iter_proper_premises_from_atomised_premises() 
- iter_pseudo_intents_from_atomised_premises()



Titanic Example
https://smartfca.github.io/paspailleur/
example_from_titanic.html
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(All code there is run by GitHub in about a minute)

https://smartfca.github.io/paspailleur/example_from_titanic.html
https://smartfca.github.io/paspailleur/example_from_titanic.html


Conclusions

• Paspailleur is a Python package for Pattern Structures started in 2023 

• It got rewritten from scratch in the first 2 weeks of January 2025 

• Is based on the idea of atomic patterns (to be introduced on Friday) 

• It mines concepts, implications, and subgroups in complex data 
without the need for manual binarization 

• Supported data formats: itemsets, categories, numbers and intervals, 
sequences of words (ngrams), cartesian products of everything above. 

• Works (surprisingly) fast on the data of thousands objects.
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Future work

• More data types: 

• Graphs, 

• Convex polygons, 

• Images (???). 

• More specialised pattern structures: 

• For Intervals (via Numpy), 

• For ItemSets and Categories (via bitarrays).
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