OOOOOOOO

|||||||

Caspallleur

Lightweight Python package for Formal Concept Analysis

https://github.com/smartFCA/caspailleur

Egor Dudyrev, ConSoft workshop @ CONCEPTS’25, Cluj-Napoca, Romania

https://github.com/smartFCA/caspailleur

Outline

- What Caspallleur can do
. Approaches for faster computation

. Conclusion

[0 README Ax Contributing 33 GPL-3.0 license V4

pypi 'v0.1.4.5 | () build repo or workflow not found || docs failing

A python package to work with Formal Concept Analysis (FCA).

o license | GPL-3.0

® Note

The development of FCApy is paused since 2023. Check out caspailleur package for mining formal
concepts and implications. And check out paspailleur package for mining pattern concepts and

B e I o I e implications. Tutorials for both packages are presented in expailleur repository.

The current FCApy package can be used for visualising concept lattices and ordered sets.

Caspallleur ¢ Install
During 2020-2022 | developed FCA. 77"

pip install fcapy (3

Gentle Intro to Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical framework aimed at simplifying the data analysis.

| e m b r a C e d O O P a n d m a d e S O To achieve so, FCA introduces a concept lattice: a hierarchical representation of the dataset. A concept lattice can
be visualized in an appealing tree-like manner, while keeping all the dependencies of the corresponding binary
many classes that the system
. The following Figure compares the tabular, Formal Context-based data representation (on the left), with the
b e C a m e h a rd to WO r k W I t h hierarchical, Concept Lattice-based data representation on the right. Both representations describe the same

"Live in water" dataset. But the right subfigure also unravels the dichotomy between the ones who "can move" (i.e.

animals) and the ones who "needs chlorophyll" (i.e. plants).
R —

Project timeline

Commits over time
Weekly from 18 Dec 2022 to 7 Sep 2025

20
18 vO.1.1

" |

14 Experiments

'y
s 12 for a paper
5
=2 -1
§ 8 Software for vO.2 v0.2.2
- a course on FCA “Human API” Bugfixes
0 I_A A A
Jan 1, 2023 Jul 1, 2023 Jan 1, 2024 Jul1, 2024 Jan 1, 2025 Jul 1, 2025

Current version

https://agithub.com/smartFCA/caspailleur

00 README 38 GPL-3.0 license V4

‘ pall ‘\'eu (

RIA § Funded by SmartFCA

Caspailleur is a python package for mining concepts and implications in binary data with FCA framework. Part of
SmartFCA ANR project.

2.2 | © build ' passing

Get started

The stable version of the package can be installed from PyPI with:

pip install caspailleur i

and the latest version of the package can be installed from GitHub repository:

pip install caspailleur@git+https://github.com/smartFCA/caspailleur i

Analysis example

Glossary

The field of Formal Concept Analysis has many mathematical terms and some conflicting notation traditions. Here
is the glossary used throughout the caspailleur package: Glossary.md.

https://github.com/smartFCA/caspailleur

What can do

Data Mining Data Preprocessing
Mine Concepts - Input values:
. [temsets

Mine Implications
. Formal context

Mine Descriptions (all of them) . Boolean matrix

. Order Concepts + Dictionary
- Binary dataframe

. Import from FCA repo

e
Visualisations? No . Save/load to/from .cxt

Data Mining

Concepts and their generators

. Closed descriptions

. LCM algo (via scikit-mine)

. gSofia algo (simplified one)
. Keys (minimal generators)

. Custom “Carpathia-G"-like
algo for a lattice of iIntents

Implications

. Canonical Direct basis
. (quite efficient)
. Canonical bases

. (not really efficient)

“I've done some tests.
Caspallleur 1Is among the fastest
software.”

Alexandre Bazin

Approaches for faster computations

1. Exploit the structure on descriptions,
2. Rely on LCM algo from scikit-mine,

3. Vertical mining with bitarrays.

Structure on descriptions

itemsets
csp.np2bas(...)

|

intents
csp.list_intents_via_LCM(...)

— | I

passkeys keys intents ordering
csp. list_passkeys(...) csp.list_keys(...) / K csp.sort_intents_inclusion(...)
pseudo-intents proper premises linearity index distributivity index
csp.list_pseudo_intents_via_keys(...) csp.iter_proper_premises_via_keys(...) csp.linearity_index(...) csp.distributivity_index(...)

Based on a diagram from Alexey Buzmakov, et al.
Data complexity: An FCA-based approach, IJAR, 2024

10

Structure on descriptions

Pros Cons
. Bootstraps the work - No guarantee of optimality
. Functions become smaller . The functions become
| Interdependent: one brakes ->
- Ended up being fast for Proper everything brakes
premises

S | | - Ended up being slooooow for
- Similar ideas published in L. Pseudo-intents

Szathmary et al, 2014

11

class skmine.itemsets.LCM(* min_supp=0.2, n_jobs=1, verbose=False) [source]

Linear time Closed item set Miner.
LCM can be used as a generic purpose miner, yielding some patterns that will be later submitted to a custom acceptance criterion.
It can also be used to simply discover the set of closed itemsets from a transactional dataset.

Parameters: min_supp (int or float, default=0.2) - The minimum support for itemsets to be rendered in the output either an int representing the
absolute support, or a float for relative support. By Default to 0.2 (20%)

n_jobs (int, default=1 The number of jobs to use for the computation. Each single item is attributed a job to) - discover potential itemsets,

considering this item as a root in the search space. Processes are preferred over threads. Carefully adjust the number of jobs otherwise
the results may be corrupted especially if you have the following warning: UserWarning: A worker stopped while some jobs were given

I ® to the executor.
a g o r Itl l m References

htt DS//SC| klt‘ m | ne q |t h U b |O/SC| kl [1] : Takeaki Uno, Masashi Kiyomi, Hiroki Arimura “LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets”, 2004
refe ren Ce/l te m Sets h t m |# | cm [2] : Alexandre Termier “Pattern mining rock: more, faster, better”

Examples

>>> from skmine.itemsets import LCM
>>> from skmine.datasets.fimi import fetch_chess
>>> chess = fetch_chess()
>>> lcm = LCM(min_supp=2000)
>>> patterns = lcm.fit_transform(chess)
>>> patterns.head()
itemset support

0 [58] 3195
1 [52] 3185
2 [52, 58] 3184
3 [29] 3181
4 [29, 58] 3180

>>> patterns[patterns.itemset.map(len) > 3]

12

https://scikit-mine.github.io/scikit-mine/reference/itemsets.html#lcm
https://scikit-mine.github.io/scikit-mine/reference/itemsets.html#lcm

LCM algorithm

Pros Cons
. A fast algorithm with a fast . Not the fastest algorithm In
Implementation existence
. Simple fit_transform AP . Imports sci-kit learn that
Imports a bazillion of other
packages

- (And glives some strange
warnings lately)

15

U Type '/' to search projects Q Help Docs Sponsors Log in Register

bitarray 3.7.1

pip install bitarray (@ Released: Aug 29, 2025

efficient arrays of booleans -- C extension

Navigation Project description

= Project description

O Release history

Bitarrays

https:/pypi.org/project/bitarray/

bitarray: efficient arrays of booleans

I { ’ This library provides an object type which efficiently represents an array of booleans. Bitarrays are sequence types

A formal context is represented not & Download files /P ojectlypewhich etficientlyrep v 01 booteans. Bltarrays are sequence byp

. . . and behave very much like usual lists. Eight bits are represented by one byte in a contiguous block of memory. The
ds O b_J eCtS‘ d tt [l b U teS‘ conn eCt IONS user can select between two representations: little-endian and big-endian. All functionality is implemented in C.
b U t as a9 | ISt Of 3 t-t rl b U te exte N tS Verified details @ Me'thods for acce.ssing' the machine representation are pro.vided,. incluc.iing the ability to impo.rt and export buffers.
A d tt . b t t t . These details have been verified by PyP! This allows creating bitarrays that are mapped to other objects, including memory-mapped files.

Na every attribute extent IS D
represented with Its characteristic Maintainers Key features
il hnell
VeCtO I n nansenne e The bit-endianness can be specified for each bitarray object, see below.
e Sequence methods: slicing (including slice assignment and deletion), operations +, x, +=, x=,the in operator,
len()

Unverified details
e Bitwise operations: ~, &, |, A, <<, >> (aswell as theirin-place versions &=, |=, A=, <<=, >>=),
These details have not been verified by PyPI

e Fast methods for encoding and decoding variable bit length prefix codes.
Proiect links s

R | N PR s Wy s Nyt | N [NP ¢ Py gy R | 1 SRy o U | FRS SO 1 & e || Ry Le S | BN §* RPN

14

https://pypi.org/project/bitarray/

Bitarrays

Pros and Cons

Pros Cons

. Really fast . Hard to read by humans
- Low memory usage

- Easy to use

. For references, see papers on
Vertical mining by L.
Szathmary

15

Visualisations

Mermaid diagrams

= g Mermaid Live Editor C) Playground - more features, no account required 0 0 Share

[->] Code §83 Config Docs (oaQ a
1 graph TD;
2 S["itemsets
<small><tt>csp.np2bas(..
3 A["intents
<small><tt>csp.list_inter
4 B["keys
<small><tt>csp. list_keys(...
5 C["passkeys
<small><tt>csp.list_pas:
6 D["intents ordering
<small><tt>csp.:
7 E["pseudo-intents
<small><tt>csp. li:
8 F["proper premises
<small><tt>csp.if | cspizils:st(s)
9 G["linearity index
<small><tt>csp.Ll:
10 H["distributivity index
<small><tt>« l
11 intents
12 S —> A csp. list_intents_via_LCM(...)
13 A ——> B;
14 A ——> C; \,
15 A ——> D; l passkeys keys l intents ordering ‘
16 A ——> E; csp. list_passkeys(...) csp. list_keys(...) csp.sort_intents_inclusion(...)
17 B ——> E;
18 B —> F; A —> F; / \. / ./ \
19 A ——> G; D ——> G; pseudo-intents proper premises linearity index distributivity index
20 D —> H: A —> H; | csp. list_pseudo_intents_via_keys(...) csp.iter_proper_premises_via_keys(...) csp. linearity_index(...) l csp.distributivity_index(...)

https:/mermaid.live/edit...

16

https://mermaid.live/edit#pako:eNqNlE1v4jAQhv9KNKetBIFEDfkgilSgtIftafe0mypyyBSsTezIdqqyiP--Jh8g0BLIyTN-53kzE8c7WPEMIYC1IOXG-LmYxsyonx-_YwjTiCosJCoZjtIoTEUUyoLkeRQqFa1kabLSTon8ZprmQzjSuXDU7MfwfiQ9tSSmkF0F5VSqpJUkn5Qk3-dv_dhZg_2D217mYb8fNG9AJZHyFqzT9AMXZw0bXGQoKFtfAUsuTp1TtsorSTn7v4PRWTy37yyxyvjwjtE2yrMJ325k2boIXqIwSoEFlXjNRp8UkTTSpJPe6fPS-OSUIRFUbQ3KMvy62k6rSmpVP_m1IWd6BIKmlaKft_Dn0ns8jn-MMRxGxtPx2NfhbHoezy_ixUX8fPrGsy5xkVlOW-3ypG0SL1Nj0S6OZ7GOX7sSvYCB_tlpBoESFQ6gQFGQQwi7Q00MaoMFxhDoZYYfpMpVDDHb67KSsF-cF12l4NV6A8EHyaWOqjIjCheU6JvkJEE9PjHnFVMQ-DUBgh18QWA5njn23bFjW57rTxzHHsD2kHZMyxu7luVPPMe3bXs_gL-16dh03YntuxPPe_QeLV8XYEYVF2_NDVZfZPt_A2d5-g

Conclusions

. Caspallleur is a stable package with 2.5 years history
. Can be used for rapid analysis of formal contexts

. Most of the algorithms work pretty fast but with no guarantee of SotA

17

Future work

. Implement many algorithms for mining intents, keys, implication
bases

. Add association rules mining

18

