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Abstract
The discovery of communities or interrelations
in social networks has become an important area
of research. The increasing amount of informa-
tion available in these networks and its decreas-
ing life-time poses tight constraints on the infor-
mation processing – storage of the data is often
prohibited due to its sheer volume.
In this paper we adapt a flexible approach for
community discovery offering the integration of
new information into the model. The continu-
ous integration is combined with a time-based
weighting of the data allowing for disposing ob-
solete information from the model building pro-
cess.
We demonstrate the usefulness of our approach
by applying it on the popular Twitter network.
The proposed solution can be directly fed with
streaming data from Twitter, providing an up-to-
date community model.

1 Introduction
Social networks like Twitter or Facebook have recently
gained a lot of interest in data analysis. A social net-
work basically consists of various types of entities – such
as users, keywords or resources – which are in some way
related to one another. A central question is often the dis-
covery of groups of individuals within such networks - the
finding of communities. Thus, we are seeking for a clus-
tering of the set of entities into subsets where the individ-
uals within each subset are most similar to each other and
are most dissimilar to the entities of all other subsets. The
similarity of entities is provided by their relations to one
another.

The relations between different entities are implied by
the communication taking place within the network. Users
exchange messages, which contain references to other
users, are tagged with keywords or link to external re-
sources by means of URLs. Figure 1 shows a message from
the Twitter platform, which implies relations between the
user yarapavan, the URL http://j.mp/fpga-mr
and the tag #ML.

A natural perception of a social network is that of a
connected graph, which models each entity as a node and
contains (weighted) edges between related entities. Such
a graph can be easily described by its adjacency matrix:
with d being the number of entities in our social network,
we will end up with a (sparse) matrix A of size d2, where
Ai,j = w if entity i is related to j with weight w and 0

Figure 1: Example tweets of the Twitter platform

otherwise. However this representation is not well-suited
for n-ary relations.

A well-established representation of multi-dimensional
relations is given by tensors [1; 2; 5; 17; 12; 6; 19]. A tensor
is a multi-way array and can be seen as a generalization
of a matrix. Tensors have been successfully used in multi-
dimensional analysis and recently gained attention in social
network mining [1; 2; 5]. In the case of social networks,
tensors can be used to describe n-ary relations by using one
tensor for each type of relations. Ternary relations of type
(user,tag,url) can then be described by a mode-3 tensor X
with

X i,j,k =
{
w if user i, tag j and url k are related
0 otherwise.

More complex n-ary relations will be reflected in tensors
of mode-n.

Tensor based Community Discovery
Community discovery in such tensor representations is
mapped to a decomposition of the tensors into a product
of matrices U (i) ∈ Rmi×k which approximates the tensor

X ≈ [z]
∏
i

×di
U (i).

Each of the matrices U (i) in turn reflects a mapping of
entities to clusters {1, . . . , k}. The [z] factor is a super-
diagonal tensor which serves as a “glue element” – see
Section 3 for details. A variety of different decomposi-
tion techniques such as Tucker3 or PARAFAC (CP) has been
previously proposed [3; 14; 7]. Approximation is com-
monly measured by some divergence function. In [5] the
authors proposed a clustering framework based on tensor
decompositions which has been generalized for Bregman
divergences. In [4] Bader et al. used CP tensor decom-
position to detect and track informative discussions from
the Enron email dataset by working on the ternary relation
(term,author,time). These approaches have been applied to
decompose single tensors. In [16] the authors introduced
METAFAC, which is a factorization of a set of tensors with
shared factors (U (q) matrices). This allows for the discov-
ery of one global clustering based on multiple tensor de-
scriptions of the data. The time complexity for these tensor



decompositions is generally given by the number of non-
zero elements of the tensors (provided that a sparse repre-
sentation is used).

Stream-based Community Discovery
The majority of the tensor decomposition methods so far is
based on a static data set. To incorporate streaming data,
the stream is broken down into blocks and the decomposi-
tions are re-computed for each of the new blocks [16]. A
common way to handle time is to introduce a trade-off fac-
tor of the old data and the data contained in the new blocks.

In [18] Sun et al. presented dynamic tensor analysis.
They handle n-ary relations by tensor decomposition using
stream-based approximations of correlation matrices. They
also presented a stream-based approach which is not really
comparable to ours. They are processing a tensor contain-
ing data by unfolding the tensors to every single mode and
after that they are handling every column of the resulting
matrices in a stream to update their model. In reality, we
cannot assume such an original tensor to be given. In con-
trast to [18], we consider multiple relations which have to
be updated at each iteration instead of just one.

Contributions
The critical bottle-neck within the tensor decomposition
methods often is their runtime. As of [16], the runtime for
a decomposition of a set of tensors can be bound by O(N),
where N is the number of entries in all tensors. However,
this number can be rather large – we extracted about 590k
entries (relations) from 200k messages of the Twitter plat-
form.

In this work, we present an adaption of the METAFAC
framework proposed in [16]. Our contributions are as fol-
lows:

1. We integrate a sampling strategy into the METAFAC
framework. Effectively we limit the maximum size
of the tensors – and therefore N – and use a least-
recently-used approach to replace old entities if the
limit of an entity type exceeds.

2. We introduce a time-based weighting for relations
contained within the tensors. These weights will de-
crease over time, reflecting the decreasing importance
of links within the social networks.

3. We present an adaption of the METAFAC factorization
which allows for a continuous integration of new rela-
tions into the factorization model. Instead of running
the optimization in a per-block mode, we provide a
way to simultaneously optimize the model while new
data arrives.

4. Finally, we provide an evaluation of our proposed
adaptions on real-world data.

The rest of this paper is structured as follows: Section
2 formalizes the problem and presents the METAFAC ap-
proach on which this work is based. Following that, we
give an overview of tensor decomposition in Section 3 and
provide the basics for the multilinear algebra terminology
required. In Section 4 we introduce our stream-based adap-
tion of the METAFAC algorithm. We evaluated our stream-
ing approach on real world data (Section 5) and present our
findings in Section 6.

2 Multi-Relational Graphs
As denoted above, a social network generally consists of
a set of related entities. In general, we are given sets

V1, . . . , Vk of entities of different types, such as users, key-
words or urls. Let Vi be the i-th type of entities, e.g. V1

corresponds to users, V2 refers to keywords and so on. A
relation then is a tuple of entities, e.g. a user-keyword re-
lation (u1, k1) is an element of V1 × V2. We also refer to
R := V1×V2 as the relation typeR of the relation (u1, k1).

The entities are given as strings, and we define a map-
ping ϕi for each entity type Vi, which maps entities to in-
tegers

ϕi : Vi → {0, . . . , |Vi| − 1}.
The mapping ϕi can be some arbitrary bijective function.
For some w ∈ Vi we refer to ϕi(w) as the index of w.
We denote the string of an entity given by its index j by
ϕ−1(j). This allows us to identify each entity by its index
and enables us to describe a set of relations between entities
by a tensor.

A tensor X is a generalization of a matrix and can be
seen as a higher-order matrix. A mode-k tensor X ∈
RI1×...×Ik is a schema with k dimensions where

X i1,...,ik ∈ R, ij ∈ Ij
denotes the entry at position (i1, . . . , ik). For k = 2 this
directly corresponds to a simple matrix whereas k = 3 is a
cube.

With the mappings ϕi of entities and the tensor schema,
a set of relations X ⊆ Vi1 × . . . × Vil(i) can be defined as

a mode-k tensor X ∈ R|Vi1 |···|Vil(i) | with

X ν1,...,νl(i) =
{

1 if (ϕ−1
1 (ν1), . . . , ϕ−1

l(i)(νl(i))) ∈ X
0 otherwise

(1)

where ϕ−1
i (νi) denotes the mapping ϕi that corresponds to

the i-th relation type, and Vi1 × . . .× Vil(i) are the indexes
of the entity types used in the relation i.

2.1 MetaGraph
Following the above approach for k = 2, we would be con-
sidering only binary relations, which correspond to edges
in the graph representation of the social network. Thus
the adjacency matrix for such a graph would be resembled
within a collection of mode-2 tensors.

MetaGraph introduced by [16] is a relational hypergraph
representing multi-dimensional data in a network of enti-
ties. A MetaGraph is defined as a graphG = (V,E), where
each vertex corresponds to a set of entities of the same type
and each edge is defined as a hyper-edge connecting two or
more vertices. By the use of hyper-edges, the MetaGraph
captures multi-dimensional relations of the social network
and therefore provides a framework to model n-ary rela-
tions.

Given the notion of relation types defined above, each
relation type Ri = Vi1 × . . . × Vil(i) corresponds to
a hyper-edge in the MetaGraph G. Each relation type
Ri = (vi1 , . . . , vil) observed within the social network is
reflected in a hyper-edge of the MetaGraph. Given a fixed
set of relation types R1, . . . , Rn, we can model the occur-
rence of relations of type Ri by defining a Tensor X (i) for
each Ri as described in (1).

This approach results in a description of the social net-
work by means of different relational aspects R1, . . . , Rn.
Each type Ri of relations for which a tensor is defined, re-
flects a subset of all the relations of the network. Capturing
the complete set of relations among all entities would ob-
viously result in |P(V )| = 2|V | different tensors.
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Figure 2: MetaGraph for Twitter

Figure 2 visualizes the metagraph we used for mod-
eling possible relations in the microblogging framework
Twitter. As an example, the relation R8 referring to
(user,tweet,tag,url) is represented by a hyper-edge connect-
ing four vertices.

2.2 Community Discovery Problem
With the use of tensors we have an approximated descrip-
tion of our social networks by means of a set of relation
typesR1, . . . , Rn. Thus we can describe our network graph
G by means of the data tensors which are defined according
to the observed relations R1, . . . , Rn in G, i.e.

G 7→
{

X (1), . . . ,X (n)
}
.

Based on this description we seek for a further partitioning
of the tensor representation into clusters of entities.

The solution proposed in [16] is a factorization of the
tensors X (i) into products of matrices U (q) which share a
global factor [z] and some of the U (q) matrices. Let X (i)

be the tensor describing Vi1 × . . . × Vil(i) , then we can
factorize this as

X (i) ≈ [z]
l(i)∏
j=1

×jU (ij). (2)

Within this factorization, the [z] factor is a super-
diagonal tensor containing non-zero values only at posi-
tions (i, i, . . . , i). The U (q) are R|Vq|×k matrices, where
|Vq| is the number of entities of the q-th entity type and k
is the number of communities we are looking for. For ten-
sors which relate to relation types with overlapping entity
types (e.g. (user,keyword,tag) and (user,keyword,url)) the
corresponding factorizations share the related U (q) matri-
ces (e.g. Uuser and Ukeyword). The ×j is the mode-j
product of a tensor with a matrix.

With an appropriate normalization as used in [16], the
U (q) matrices only contain values of [0, 1] which can be
interpreted as probability values. Based on this, the value
of U (q)

l,m can be seen as the probability of entity ϕ−1
q (l)

belonging to cluster m ∈ {1, . . . , k} and we can simply
map an entity to its cluster C(l) by

C(l) = arg max
m
U

(q)
l,m. (3)

Thus, the community discovery is mapped onto the si-
multaneous factorization of a set of tensors. The objective
is to find a factorized representation, which resembles the
original data tensors {X (i)} as closely as possible. Given
some distance measure D : RI1×...×Il × RI1×...×Il → R
this leads to the following optimization problem:

arg min
[z],{U(q)}

n∑
i=1

D(X (i), [z]
l(i)∏
j=1

×jU (ij)) (4)

2.3 Batch Processing of Evolving Tensors
To capture the evolving behavior of the data tensors Lin
et.al. proposed a batch processing approach. The stream
is processed as disjoint sliding windows. Let t denote the
current window and denote by zt−1, {U (q)

t−1} the model ob-
tained so far. Then the time-based optimization problem of
[16] yielding the new model zt, {U (q)

t } is given as

arg min
zt,{U(q)

t }
(1− α)

n∑
i=1

D(X (i)[zt]
l(i)∏
j=1

×jU (i)
t ) + αLprior

(5)

Lprior = D([zt−1][zt]) +
n∑
i=1

D(U (i)
t−1U

(i)
t ). (6)

The Lprior reflects the divergence between the new and
the old model, whereas the α specifies a trade-off between
the models.

3 Tensors & Tensor Factorizations
The previous sections presented tensors as a mathemati-
cal structure to model multi-dimensional relations and mo-
tivated their use to describe multi-relational data such as
community networks. In this section we will introduce ten-
sors and their factorizations in more detail.

3.1 Tensor Decomposition
Tensors can be decomposed into a sum of component rank-
one tensors [11]. A popular method for factorizing a tensor
into a product of matrices is the PARAFAC decomposition
(CP-decomposition) by [9]. Using CP, a third-order tensor
X ∈ RI×J×K can be decomposed to

X =

[
R∑
r=1

ar ◦ br ◦ cr

]
+ E (7)

where R is a positive integer and ar ∈ RI , br ∈ RJ , cr ∈
RK . See Figure 3 for a schema of this decomposition. This
decomposition is an approximation of X by an error of E .

Neglecting this error tensor E we are left with the ap-
proximation of X by

X ≈
R∑
r=1

ar ◦ br ◦ cr. (8)
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By breaking equation (8) further down into its elementwise
form, we get

xijk ≈
R∑
r=1

airbjrckr (9)

Since we later refer to the elements of this sum as prob-
ability values, we need to normalize the rank-one tensors
ar, br and cr for r = 1, ..., R to length one. With this
normalization, we are left with the following form

xijk ≈
R∑
r=1

zrairbjrckr (10)

where z ∈ RR is a weight-vector. This decomposition
sometimes is called higher-order singular value decompo-
sition (HOSVD) ([10]). The rank-one tensors ar, br and
cr for r = 1, ..., R represent the singular values and can be
used to derive a clustering of the data.
ar, br and cr for r = 1, ..., R can be combined in ma-

trices U1 ∈ RI×R, U2 ∈ RJ×R and U3 ∈ RK×R. We
construct a super-diagonal tensor [z] ∈ RR×...×R of z con-
taining just zeros apart from positions zk,...,k where it con-
tains value zk. This allows us to write eq. (10) as n-mode
product (see [11] for further information about tensor cal-
culation):

X ≈ ((([z]×1 U
1)×2 U

2)×3 U
3) = [z]

3∏
i=1

×iU i

(11)

Figure 4 visualizes the n-mode product for better under-
standing.

3.2 METAFAC - Metagraph Factorization
As mentioned before, the Metagraph is a description of
a multi-relational graph G by means of a set of tensors
{X (i)}. The objective of the METAFAC algorithm is to de-
rive tensor decompositions of the X (i) with shared factors

[z], U (q) which closely resemble the X (i). To measure the
approximation, [16] proposed the Kullback Leibler diver-
gence DKL [13], thus implying the following optimization
problem:

arg min
[z],{U(q)}

n∑
i=1

DKL(X (i), [z]
∏

i1,...,il(i)

×jU (ij)) (12)

To solve for (12) the authors derived an approximation
scheme by defining

µ(i) = vec(X (i) � ([z]
l(i)∏
j=1

×jU (ij))) (13)

S(i) = fold(µ(i) ∗ (z ∗UMi ∗ · · · ∗U1i)T ) (14)

where� is the elementwise division of tensors, and ∗ is the
Khatri-Rao product of matrices. These values are then be
used to update z and the {U (q)} iteratively using

z =
1
n

n∑
i=1

acc(S(i),Mi + 1) (15)

U q =
∑

l:el∼vq

acc(S(i), q,Me + 1) (16)

where acc is the accumulation-function of tensors and
Mi + 1 is the last mode of tensor S(i). This update is car-
ried out iteratively until the the sum in 4 converges. The
optimization is shown in Algorithm 1.

Algorithm 1 MF algorithm
Input: Meta-Graph G = (V,E), data tensors {X (e)}
Output: z and {Uq}

procedure METAFAC( G, {X (e)})
Initialize z, {Uq}
repeat

for all e ∈ E do
compute {S(e)} by eq. (13), (14)
compute z by eq. (15)

end for
for all q ∈ V do

update {Uq} by eq. (16)
end for

until convergence
end procedure

The batched version of the METAFAC approximation can
be derived by using the KL-divergence in equations (5),(6).
An appropriate approximation scheme has been proposed
by the following update function:

z = (1− α)
n∑
i=1

acc(S(i),Mi + 1) + αzt−1 (17)

U (q) = (1− α)
∑

l:el∼vq

acc(S(j), q,Mi + 1) + αU
(q)
t−1

(18)

4 Stream-based Community Discovery with
Tensors

In this section we present our adaptions of the METAFAC
framework by introducing a sampling-based tensor repre-
sentation of graphs and using time-stamped relations to in-
duce a decrease of impact of relations to reflect the decreas-
ing importance of Twitter messages.



Given a social network we are provided with a sequence
M of messages

M := 〈m0,m1, . . .〉

where each message mi implies a set of relations R(mi).
Let τ(mi) ≥ 0 be the arrival time of mi. This results in an
overall sequence of relations

S := 〈R(m0),R(m1), . . .〉

which are continuously added to the evolving social net-
work graph G. Hence we are faced with a sequence

〈Gt0 , Gt1 , . . .〉

of graphs where each Gti contains the relations of all mes-
sages up to time ti.

Let t, t′ be points in time with t < t′. In the following
we will byG[t,t′] denote the graph implied by only the mes-
sages of time-span [t, t′], hence Gt = G[0,t]. Accordingly
the graphs are represented by the corresponding tensor as

G[t,t′] 7→
{

X (1), . . . ,X (n)
}

[t,t′]
.

4.1 The MFSTREAM Algorithm
The METAFAC approach uses a sliding window of some
fixed window sizews to manage streams. Given a sequence
of time-points tj for j ∈ N with tj = tj−1 + ws, it factor-
izes {X (i)}[tj−1,tj ] based on a trade-off factor α as denoted
in equation (5).

Our MFSTREAM algorithm interleaves the optimization
of METAFAC by adding new relations during optimization
and uses a time-based weighting function to take into ac-
count the relations’ decreasing importance. Additionally,
the optimization is carried out over only a partial set of re-
lations as older relations tend to become obsolete for ad-
justing the model. We will present the time-based weight-
ing and the sampling strategy in the following and present
the complete algorithm in 4.4.

4.2 Time-based Relation Weighting
So far we considered the property of two or more entities
to be related as binary property, i.e. if entities i, j and k are
related, then

X i,j,k = w,

with w ∈ {0, 1}. With the extraction of relations from
time-stamped messages – as provided within the Twitter
platform – we are interested in incorporating the age of
these relations to reflect the decreasing up-to-dateness of
the information.

Hence we associate each relation r ∈ Ri with a times-
tamp τ(r) of the time at which this relation has been cre-
ated (i.e. the time of the message from which it has been
extracted). With S being a set of relations extracted from
messages this leaves us with the tensor representation of
relation type Ri = Vi1 × . . .× Vil(i) as

X (i)
i1,...,il(i)

={
τ(r) if r = (ϕ−1

1 (ν1), . . . , ϕ−1
l(i)(νl(i))) ∈ S

0 otherwise

(19)

In addition to that, we introduce a global clock, denoted
by τmax, which represents the largest (i.e. the most recent)
timestamp of all relations observed so far:

τmax := max { τ(r) | r ∈ X } .

Storing the timestamp τ(r) for each entry r in the tensors
allows us to define a weighting function for the relations
based on the global clock value. A simple example for a
parametrized weighting function is given as

ωα,β(r) :=
α

α+ 1
β (τmax − τ(r))

. (20)

4.3 Sampling
The runtime of each iteration of the approximation scheme
is basically manifested by the maximum numberN of non-
zero entries in the tensors. To reduce the overall optimiza-
tion time, we restrict the size of the tensors, i.e. number of
entities of each type, by introducing constants Cq ∈ N and
providing new entity mappings ϕq by

ϕq : Vq → V q with V q = {1, . . . , Cq}.

This has two implications: Clearly, these ϕq will not be
bijective anymore if |Vq| > Cq . Moreover, the size of the
U (q) matrices will also be limited to Cq × k.

We deal with these imposed restrictions by defining dy-
namic entity mappings ϕq , which maps a new entity e (i.e.
an entity that has not been mapped before) to the next
free integer of {1, . . . , Cq}. If no such element exists, we
choose f ∈ {1, . . . , Cq} as the element that has longest
been inactive, i.e. not been mapped to by ϕq . The rela-
tions affected by f are then removed from all tensors and
the current cluster model, i.e. U (q)

f,i = 1
k ∀ i = 1, . . . , k.

Effectively this introduces a “current window” {X (i)}
of relations, that affect the adaption of the clustering in the
next iteration. In contrast to the original METAFAC ap-
proach this also frees us from having to know the number
of entities and a mapping of the entities beforehand.

4.4 Continuous Integration
With the prerequisites of section 4.2 and 4.3 we now
present our stream adaption MFSTREAM as Algorithm 2.
MFSTREAM is a purely dynamic approach of METAFAC

which adds new relations to the data tensors {X (q)} and fits
the model [z], {U (q)} after a specified number of T mes-
sages. This differentiates our approach from METAFAC
as the optimization is performed by running a single iter-
ation of the optimization loop – with respect to the time-
based weighting – after adding the relations of T messages
to the tensors. The time complexity per iteration of the
MFSTREAM algorithm is the same as for the METAFAC
algorithms (see Section 3.2). Due to the fixed tensor di-
mensions, the maximum number of non-zero elements N
is constant, which implies O(1) runtime.

5 Evaluation
For the evaluation of our approach we extracted relations of
the Twitter website. Twitter is a blogging platform giving
users the opportunity to inform other users by very small
snippets of text containing a maximum of 140 characters.
In spite of such limitations users are not only posting mes-
sages – called tweets – but also enriching their tweets by
tags, urls or mentions, which allows users to address other
users. This brings up the entity types {user, tweet, tag, url
}.

To discover clusters on the above mentioned entities
present on the Twitter platform, we constructed a meta-
graph for Twitter as shown in Figure 2. The entity types



Algorithm 2 The MFSTREAM algorithm.
1: Input: MetaGraph G = (V,E), Stream M = 〈mi〉, capacities Cq , number of clusters k, constant T ∈ N
2: procedure MFSTREAM

3: Initialize z, {U (q)}, c := 0
4: while M 6= ∅ do
5: m := mc, c := c+ 1 . Pick the next message from the stream
6: for all (rj1 , . . . , rjl(j)) ∈ R(m) do
7: for all p = 1, . . . , l(j) do
8: if ϕp(rjp) = nil then . Replacement needed?
9: if |ϕp| = Cq + 1 then

10: f∗ := arg minf∈ϕp
τ(f)

11: U
(p)
f∗,s := 1

k
∀ s = 1, . . . , k

12: else
13: f∗ := min

f∈{1,...,Cp}
ϕ−1
p (f) = nil . Pick next unmapped f∗

14: end if
15: ϕp(rjp) := f∗, τ(f∗) := τ(m)
16: end if
17: end for
18: end for
19: νi := ϕp(rji) for i = 1, . . . , l(j)

20: X (p)
ν1,...,νl(j) := τ(m) . Update corresponding tensor

21: if c ≡ 0 mod T then . Single opt.-iteration every T steps
22: for all i ∈ {1, . . . , n} do
23: compute {S(i)} by eq. (14) and (13)
24: update z by eq. (15)
25: end for
26: for all j ∈ {1, . . . , q} do
27: update {U (j)} by eq. (16)
28: end for
29: end if
30: end while
31: end procedure

• R1: a user writing a tweet.

• R2: a user writing a tweet containing a special tag.

• R3: a user writing a tweet containing a special url.

• R4: a user mentioning another user in a written tweet.

• R5: a user writes a tweet containing a tag and an url.

• R6: a user writing a tweet containing an url and mentioning
another user.

• R7: a user writes a tweet containing a tag and a mentioned
user.

• R8: a user mentioning another user in a tweet containing a
tag and an url.

themselves imply as much as P(V ) = 24 possible rela-
tion types, some of which will not arise or are redundant.
E.g. since each tweet is written by a user, there is no rela-
tion (tweet,tag) which does not also refer to a user. Hence,
our MetaGraph is based on the relation types {R1, . . . , R8}
given as:

We extracted 1000 seed users and their direct friends and
followers. Followers are following a user which means that
messages of the user are directly visible for the followers
at their twitter website. Friends are all the users a partic-
ular user is following. We used an English stopword filter
to extract users which are writing in English language and
processed all friends and followers of the seed users, re-
vealing about 478.000 users. For these, we extracted all
the messages written between the 19th and 23rd of Febru-
ary 2010. Out of these 2.274.000 tweets we used the tweets
written at the 19th of February for our experiments, leaving
about 389.000 tweets from 41.000 users.

5.1 Evaluating the Model
For a comparison of the clusterings produced by MF-
STREAM and the METAFAC approaches we employ the
“within cluster” point scatter [8]. This is given as

W (C) :=
K∑
k=1

Nk
∑

C(i)=k

‖ xi − xk ‖2 (21)

where K is the number of clusters, xi is a member of a
cluster C(i) and xk is the centroid of a cluster k. It can
be seen as a sum of dissimilarities between elements in the
particular clusters.

We created clusterings on a stream of 200k messages
with MFSTREAM and restricted the tensor dimensions
to Cuser = Ctweet = 5000 and Ctag = Curl =
1000. We employed several weighting functions such as
ω1,1, ω10,1000 and ω100,1000 as well as a binary weighting
which equals the unweighted model (i.e. w ∈ {0, 1}).

To be able to compare the clusterings of MFSTREAM
and METAFAC, we processed messages until the first en-
tity type Vi reached its limit and stored the resulting clus-
tering on disk. Then we reset the ϕ mappings and started
anew, revealing a new clustering every time an entity type i
reached Ci, revealing a total of 93 clusterings. We applied
METAFAC on the messages that have been used to create
these 93 clusterings and computed their similarities using
W (C). Figure 5 shows that MFSTREAM delivers results
comparable to METAFAC for different weighting functions.
Figure 7 shows that using timestamped values instead of bi-
nary values for calculation of the MFSTREAM delivers bet-
ter results. The decrease of T , which implies a larger num-
ber of optimization steps, intuitively increases the quality



Weighting W (C) (mean) std. deviation
METAFAC 5.685 · 107 1.32 · 107

binary 7.511 · 107 2.00 · 107

ω1,1 6.142 · 107 1.57 · 107

ω1,1000 6.002 · 107 1.38 · 107

ω10,1000 6.272 · 107 1.43 · 107

ω100,1000 6.724 · 107 1.55 · 107

Figure 5: MeanW (C) of different weights (T = 20), com-
paring MFSTREAM and METAFAC

T W (C) (mean) std. deviation
5 6.043 · 107 1.35 · 107

10 6.133 · 107 1.36 · 107

50 6.058 · 107 1.40 · 107

100 6.465 · 107 1.49 · 107

250 10.882 · 107 3.13 · 107

500 43.419 · 107 11.47 · 107

Figure 6: Mean of W (C) with different update steppings
T (weight used: ω1,1000)

Figure 7: W (C) for MFSTREAM compared to the
METAFAC clusterings.

Figure 8: Relative W (C) of MFSTREAM using different
update step sizes T

of MFSTREAM as is attested by Figures 6 and 8.
In addition, we made experiments to show the effect of

the update frequency T . Figure 9 shows the relative run-
time of MFSTREAM where T = 1 corresponds to the base-
line at 1.0. Raising T results in shorter runtime, since the
model is updated less frequently, which is the major time
factor. The upper curve shows the runtime for updating af-
ter 5 relations (T = 5), the middle one shows T = 10, and
the latter refers to T = 50.

Varying sizes of entity types by the Cq results in cluster-
ings of different numbers of entities, which cannot be di-
rectly compared by W (C). Hence, we normalized W (C)
by the variance V of each clustering. Larger models of
course incorporate more information, which results in more
stable clusterings as can be seen in Figure 10.

6 Conclusion and Future Work
In this work we presented MFSTREAM, a flexible algo-
rithm for clustering multi-relational data from evolving net-
works, derived from the METAFAC framework by [16].
The main improvement of our approach is the reduction
of the approximation scheme on to a small relevant win-
dow of relations. The proposed time-based weighting of
relations contributes to this reduction by removing obso-
lete information that is not relevant to the model adaption
anymore.

MFSTREAM is able to handle relations containing new,
unseen entities by offering a replacement strategy for the
set of entities considered at optimization time. This makes
it especially suitable to continuously integrate new data
from a stream. We evaluated MFSTREAM on real-world

data crawled from the Twitter platform and showed its com-
parability to METAFAC.

The use of backend storage for off-loading obsolete data
that can be re-imported into the optimization window at a
later stage might be an interesting advancement. Also, con-
current criteria runtime and quality offer a starting point for
multi-objective optimization. Additionally, recent works
[15] motivate further improvements to handle a dynamic
number k of clusters within MFSTREAM.
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